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Nonlinear Seismic Effects in Soils: Numerical Simulation and Study

by Olga V. Pavlenko

Abstract To study the effects of nonlinearity in the seismic response of soils, a
numerical simulation of the propagation of vertically incident seismic waves in hor-
izontal soil layers were performed. Shear noiselike and monochromatic seismic
waves of various intensities were used as input signals. The behavior of soils was
described by a nonlinear hysteretic model. To extract and study nonlinear compo-
nents in the ground response, the nonlinear system identification method and analysis
of higher-order spectra of oscillations on the surface were applied. Even for weak
input signals, the response of the simulated soils contained a noticeable nonlinear
component. An increase in the intensity of input signals led to increasing distortions
of propagating signals, due to the generation and growth of combination-frequency
harmonics. The results show that odd types of nonlinearity are most typical for soils,
such as cubic and fifth-order nonlinearities, causing generation of the third and fifth
higher harmonics of main frequencies of input signals. Nonlinearities of even types,
such as quadratic, fourth-order, and sixth-order, concerned with asymmetry, or skew-
ness, of oscillations (i.e., quasi-static deformations of the surface) are usually weak,
except some special cases, in which a stress-strain relationship of a soil can be rep-
resented by functions with noticeable even components. A weak nonlinearity results
in an increase in high-frequency components, due to the generation of higher har-
monics. In cases of strong nonlinearity, in which a decrease in amplification and in
shear moduli become noticeable, changes in spectra of propagating signals achieve
their maximum. As a result, input signals with arbitrary spectra are transformed into
output signals with spectra of the type of E(f ) � f k, where k depends on the properties
of the medium.

Introduction

The nonlinear behavior of sedimentary soils in strong
ground motions remains an unsatisfactorily explored field.
In strong earthquakes, we can observe sharp changes in spec-
tral composition and amplitudes of oscillations depending
on ground conditions, soil consolidation and sagging, soil
loosening and lifting, liquefaction of water-saturated soils,
residual deformations, and so on. Overall, the effect is rather
complicated and depends on the composition and thickness
of soft deposits, on their saturation with water, and on the
level of underground water, as well as on the magnitude and
frequency content of an earthquake.

At the beginning of the 1970s, laboratory experiments
had been performed to study the behavior of soft sediments
under loading (Hardin and Drnevich, 1972), and it was found
that the stress-strain relationship was hysteretic (Fig. 1a) and
that the behavior of sediments was elastic plastic or elastic
viscous plastic. Similar relationships were obtained from
field experiments with small explosions, in which stress and
strain measurements in loam and loess above the level of the
underground water were performed simultaneously (Fig. 1b)
(Vasil’ev et al., 1969, 1977). Downhole vertical arrays pro-

vided further field evidence of nonlinear dynamic soil be-
havior during earthquakes. Ground motions recorded at the
Lotung large-scale seismic test site inferred reduction in
shear modulus with increasing effective shear strain, which
is found to compare satisfactorily with those obtained
through laboratory tests. Nonlinear stress-strain dependen-
cies were obtained directly from the free-field downhole ac-
celerations (Elgamal et al., 1995; Zeghal et al., 1995; Chang
et al., 1996).

For a long time, there was a substantial difference in the
viewpoints of seismologists and geotechnical engineers on
the role of nonlinear wave effects in seismic fields: engineers
have been convinced of strong nonlinearities in the behavior
of soft soils (at strains smaller than 10�4), while seismolo-
gists interpreted strong motion data up to a 0.3–0.4g level
with a linear viscoelastic behavior. This discrepancy pro-
gressively disappeared with the accumulation of represen-
tative experimental data on strong ground motion. Notice-
able manifestations of soil nonlinearity were observed in
recent earthquakes (Caillot and Bard, 1990; Aki and Irikura,
1991; Darragh and Shakal, 1991; Beresnev et al., 1995;



Figure 1. (a) An initial loading curve of simple
shear and hysteresis loops for the elastic-plastic
model of soil behavior. Stress and strain are scaled so
that the maximum stress and the low-strain modulus
are unity, that is, stress is normalized by multiplying
by 1/smax, where smax is the shear stress in failure, and
strain is normalized by multiplying by Gmax/smax,
where Gmax is the low-strain modulus (derived from
Joyner and Chen, 1975). (b) Typical compression and
(c) shear stress-strain curves for dry loam in (1) load-
ing and (2) unloading (the natural humidity of 10–
15%, Vp � 300 � 600 m/sec, Vs � 200 � 250 m/
sec). Field experiments were performed with small
explosions, and the relationships were calculated
from measurements of the main stress, rii(t), and
strain, eii(t), components in soils near the surface.
Normal stresses were measured by small rigid mem-
brane transmitters. Strains were measured by bore-
hole strainmeters with bases of 250–300 mm. Areas
of the circles are proportional to the numbers of mea-
surements (Vasil’ev et al., 1977).

Aguirre and Irikura, 1997), and statistical analysis confirmed
the tendency toward increasing nonlinearity with increasing
intensity of oscillations (Kamiyama, 1992). To describe the
nonlinear behavior of soils, various models were constructed
with elements of elasticity, plasticity, and viscosity. The con-
clusion was made that the direction to be followed to bridge
the gap between seismologists and geotechnical engineers is
the detailed analysis allowed by strong motion data from
dense seismic arrays (Bard and Pitilakis, 1995).

In Russia, the nonlinear wave effects in seismic fields
have been studied since the 1960s and 1970s (Nikolaev,
1967; Vasil’ev et al., 1969, 1977). First, the purpose was to
evaluate nonlinear corrections to the physical characteristics
(energy, spectral composition, etc.) of powerful sources of
seismic waves (seismic sources, explosions, seismic vibra-
tors), and later to develop new types of receiving and trans-
mitting antenna systems (Gushchin and Shalashov, 1981).
The following possible practical applications were proposed
based on the determination of nonlinear parameters of sed-
imentary and crystalline fractured rocks: new methods of
seismic microzonation, new sensitive methods of seismic
monitoring (based on theoretical and experimental facts that
nonlinear parameters are more sensitive to changes in the
stress state of the medium than linear parameters), and meth-
ods for seismic prospecting (Nikolaev, 1988; Groshkov et
al., 1990). Nonlinear seismology developed as a continua-
tion of nonlinear acoustics to seismic frequency bands, and
multiple experiments with a vibrator seismic source were
performed, aimed at detecting, in seismic fields, the nonlin-
ear effects that had been already found in acoustical fields.
Interaction of seismic waves, generation and growth of com-
bination-frequency harmonics, and other nonlinear effects,
as well as the influence of dispersion, absorption, and non-
linearity on seismic wave fields, were studied (e.g., Aleshin
et al., 1981; Gushchin and Shalashov, 1981; Nikolaev et al.,
1995).

The nonlinear phenomena observed in sedimentary soils
in strong motions are due to the fact that Hooke’s law does
not hold for sediments, the stress-strain relationship is non-
linear, that is, its loading and unloading parts can be repre-
sented by the power series

2 3 4 5r(e) � a e � a e � a e � a e � a e � . . . , (1)1 2 3 4 5

where r is stress, e is strain, and a1, a2, a3, a4, a5 are constant
coefficients. The first term in the series a1e describes the
linear dependence (Hooke’s law); the others are nonlinear
corrections. The nonlinearity of the stress-strain relationship
leads to distortions in the shapes of propagating seismic
waves; the waves acquire new spectral components. In other
words, the waves interact with themselves and with each
other in a nonlinear medium, producing new components in
their spectra. The quadratic term a2e

2 defines the interaction
of two waves (for example, at frequencies x1 and x2) gen-
erating combination-frequency harmonics at frequencies
2x1, 2x2, x1 � x2 and the constant component at zero fre-

382 O. V. Pavlenko



quency. The cubic term a3e
3 defines the interaction of three

waves at frequencies x1, x2, and x3 generating combination-
frequency harmonics at 3x1, 3x2, 3x3, x1 � x2 � x3,
x1 � x2 � x3, x1 � 2x2, 2x1 � x2, and so forth.

To account for the medium nonlinearity in problems of
wave propagation, nonlinear corrections are introduced into
wave equations, according to formula (1). By analogy with
nonlinear acoustics, it was assumed that the most significant
correction to Hooke’s law is the quadratic term a2e

2, and
field experiments performed in Russia were aimed at de-
tecting the quadratic nonlinearity of soils (e.g., Aleshin et
al., 1981; Gushchin and Shalashov, 1981; Groshkov et al.,
1990; Nikolaev et al., 1995). The assumption of the predom-
inance of quadratic nonlinearity is usually made in studying
nonlinear seismic effects (Lund, 1983; Parker, 1988; Dimi-
trui, 1990). This article shows that soils possess mostly odd
types of nonlinearity, that is, the cubic correction to Hooke’s
law is most sufficient, whereas the quadratic and other even-
order terms are less important; however, in some cases even-
order terms become comparable with odd-order terms. It
should be mentioned that, though field experiments were
aimed at detecting even-order higher harmonics, the results
often showed a more noticeable increase in harmonics of
odd orders (Dimitriu, 1990; Nikolaev et al., 1995).

Though even and odd types of nonlinearity have much
in common, they lead to different nonlinear effects. Fre-
quencies of higher harmonics, shapes of seismic solitary
waves, and other nonlinear phenomena depend on the type
of soil nonlinearity; only even types of nonlinearity are con-
nected with the constant component of the seismic wave
field. Preliminary study is required to determine what cor-
rections to the wave equations are most important in one
case or another.

In this work, to determine the types and quantitative
characteristics of soil nonlinearity, the method of nonlinear
system identification was applied, which was successfully
used in nonlinear system analysis in many fields of science.
A soil with a typical stress-strain relationship was studied to
discover general regularities in nonlinear seismic phenom-
ena. This work will be continued by investigation of the
nonlinearity of soils in various geotechnical conditions, in-
cluding their liquefied states. Such work using vertical array
records of the 1995 Kobe earthquake is now in preparation.

The issue concerned with the types of soil nonlinearity
is closely connected to the problem of generation of higher
harmonics of propagating seismic waves. Generation of
higher harmonics has not yet been fully explored. Field ex-
periments with a vibrator source were performed without
preliminary modeling, accounting for real soil properties,
whereas nonlinear models of soil behavior were only applied
to calculations of earthquakes and were not used for studying
basic nonlinear seismic phenomena. Therefore, another goal
of this study is to investigate higher harmonic generation in
soils by means of numerical simulation. It is shown that
nonlinearity of soil behavior can lead to a certain shape of
spectra of propagating signals, in which spectra take the

form of E(f ) � f �k. This is in agreement with the common
theory of wave interactions in a nonlinear medium.

Nonlinear System Identification and Higher-Order
Spectra and Their Application to the Study of

Nonlinearity of Subsurface Soils

The nonlinearity of the seismic response of subsurface
soils is determined by their nonlinear stress-strain charac-
teristics, which play the parts of the transfer functions and
determine the transformation of input seismic signals into
the ground response. Figure 1a, b, and c shows that only the
beginning part of this curve, the domain of small deforma-
tions, is approximately linear. Therefore, only weak seismic
waves keep their shapes in propagating through such media,
whereas intense waves suffer distortions. To estimate a
ground seismic response at a given point, we should deter-
mine the linear and nonlinear domains in the response and
compare them with a whole set of possible seismic actions.
We should obtain a quantitative description of the ground
response to any seismic action. In system analysis this pro-
cedure is called nonlinear system identification. The problem
of nonlinear system identification is finding such a mathe-
matical description (model) of a system that its seismic re-
sponse coincides with the response of the real physical sys-
tem (Marmarelis and Marmarelis, 1978).

To obtain such a description, let us represent our system
as a black box with an input and an output. We look for a
relation between the input and output signals. In a common
case, under the conditions of stationarity, analyticity, and a
finite memory of a system (these conditions are usually sat-
isfied for real physical systems), an output signal can be
represented as the Volterra series, that is, a sum of multiple
integrals of an input signal (Marmarelis and Marmarelis,
1978):

�

y(t) � k � k (s)x(t�s)ds �0 1�
0

� �

k (s ,s )x(t�s )x(t�s )ds ds �2 1 2 1 2 1 2� �
0 0

� � �

� k (s ,s ,s )x(t�s )x(t�s )x(t�s )ds ds ds � . . . ,3 1 2 3 1 2 3 1 2 3� � �
0 0 0

(2)

where x(t) is an input signal, y(t) is the output signal, t is
time, s, s1, s2, s3 are time delays, and k0, k1(s), k2(s1, s2),
k3(s1, s2, s3) are the zero-order, first-order, second-order, and
third-order Volterra kernels of the system, which are sym-
metric functions.

If a system is linear,

k (s , s ) � k (s , s , s ) � . . . � 0,2 1 2 3 1 2 3
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and knowledge of the first term of the Volterra series (i.e.,
knowledge of the first-order kernel k1(s), which is the im-
pulse characteristic of the system) is sufficient to describe
the system. To describe a nonlinear system, several terms
are necessary. The majority of physical systems can be sat-
isfactorily described by the first few terms because the series
converges rather quickly. This is stipulated both by the
smoothness of the functionals and by a linearizing effect of
noise (noise accompanying measurements as well as noise
occurring inside the system).

The Wiener series is widely used along with the Vol-
terra series. It consists of functionals, which are linear com-
binations of functionals of the Volterra type. Terms in the
Wiener series are orthogonal with respect to the input signal
in the form of the Gaussian white noise, so we can determine
the Wiener kernels independently from each other. From the
other side, the Gaussian white noise as an input signal allows
the most effective testing of the system because the Gaussian
white noise is a very rich signal: it contains components of
all frequencies and amplitudes. Thus, the determination of
the Wiener kernels of a system is a good method for its
identification (Marmarelis and Marmarelis, 1978). In this
case, the dependence of the system response upon an input
signal can be written in the form:

�

y(t) � G [h (s , . . . , s ); x(t�), t� � t], (3)� m m 1 m
m�0

where Gm are orthogonal functionals, if x(t) is the Gaussian
white noise with a zero mean, {hm(s1, . . . , sm)} is the se-
quence of the Wiener kernels, and s1, . . . , sm are time delays.
Each kernel is a symmetric function. The first four Wiener
functionals are represented in the form:

G [h ; x(t)] � h , (4)0 0 0

�

G [h ; x(t)] � h (s)x(t�s)ds, (5)1 1 1�
0

�

G [h ; x(t)] � h (s ,s )x(t�s )x(t�s )ds ds2 2 2 1 2 1 2 1 2� �
0

�

� P h (s ,s )ds , (6)2 1 1 1�
0

G [h ; x(t)] �3 3

�

h (s ,s ,s )x(t�s )x(t�s )x(t�s )ds ds ds �3 1 2 3 1 2 3 1 2 3� � �
0

�

�3P h (s ,s ,s )x(t�s )ds ds ,3 1 2 2 1 1 2� �
0 (7)

where s is time delay, P is the intensity of the white noise
not depending on frequency.

Orthogonality of terms in the Wiener series with respect
to the Gaussian white noise provides essential advantages in
describing nonlinear systems: (1) effective methods can be
used in estimating kernels, based on determination of cross-
correlation functions; and (2) limited numbers of these terms
can represent the best approximations for a real system from
the viewpoint of the minimal mean square error. By analogy
with an ordinary impulse characteristic h(t), kernel series
{hm} can be treated as a generalized, composed impulse
characteristic of a system. The first-order kernel determines
the linear part of the system response, whereas higher-order
kernels describe the interactions between the values of the
input signal in the past with respect to their influence on the
response at present (Marmarelis and Marmarelis, 1978).

In this study, the kernels of the system were found by
the cross-correlation method described in (Marmarelis and
Marmarelis, 1978). The zero-order kernel is equal to the av-
erage of the response of the system to the Gaussian white
noise:

h � E[y(t)]. (8)0

The first-order kernel is expressed through the cross-corre-
lation function of the input white noise and the response of
the system:

h (s) � (1/P)E[y(t)x(t � s)]. (9)1

The second-order kernel is defined as

2h (s , s ) � (1/2P )E[y (t)x(t � s )x(t � s )], (10)2 1 2 1 1 2

where

y (t) � y(t) � G [h , x(t)] � G [h , x(t)], (11)1 1 1 0 0

and the third-order kernel is

h (s , s , s ) �3 1 2 3 (12)
3(1/6P )E[y (t)x(t � s )x(t � s )x(t � s )],2 1 2 3

where

y (t) � y(t) � G [h , x(t)]2 2 2

� G [h , x(t)] � G [h , x(t)] (13)1 1 0 1

(Marmarelis and Marmarelis, 1978).
The mean square error of approximation is a quantita-

tive measure of the agreement between the model and the
real system response. The constant component of the re-
sponse corresponding to the zero-order kernel {h0} gives a
zero-approximation error. The mean square deviation of the
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response from this line is calculated and normalized so that
it is 100. Then the mean square deviation is estimated from
the response from the model {h0, h1}, which uses the first-
order kernel, and is normalized by the same value as was
previously normalized for the zero-approximation error. The
deviations then are calculated and normalized by the same
value of the real system response from responses of the non-
linear models predicted by the kernels {h0, h1, h2} and {h0,
h1, h2, h3} (Marmarelis and Marmarelis, 1978). Performing
these calculations, we estimate the degree to which the
second-order {h2} and the third-order {h3} kernels contrib-
ute to the nonlinear component of the system response, and
we draw conclusions regarding the types and quantitative
characteristics of the system nonlinearity. If the second-
order kernel {h2} gives the largest contribution, the system
possesses mostly quadratic nonlinearity; if the third-order
kernel {h3} contributes more, the system is cubic-nonlinear,
etc. The system is virtually linear, if nonlinear components
in the response are negligibly small.

In spectral terms, the response of a nonlinear system can
be represented by the sequence of spectra: the power spec-
trum, bispectrum, trispectrum, and other higher-order spectra
(Marmarelis and Marmarelis, 1978; Nikias and Raghuveer,
1987). The Nth-order spectrum CN(x1, x2, . . . , xN�1) of
the real discrete stationary process x(k) is defined as the
Fourier transform of its Nth-order cumulant sequence
cN(s1, s2, . . . sN�1), i.e.,

C (x , x , . . . , x )N 1 2 N�1

� �

� . . . c (s , s , . . . , s ) . (14)� � N 1 2 N�1
s ��� s ���1 N�1

• exp{�j(x s � . . . � x s )}1 1 N�1 N�1

(Nikias and Raghuveer, 1987). The power spectrum, bispec-
trum, and trispectrum are special cases of the Nth-order spec-
trum, i.e., power spectrum (N � 2):

��

C (x ) � c (s ) exp{�j(x s )}, (15)2 1 � 2 1 1 1
s ���1

bispectrum (N � 3):

C (x , x ) �3 1 2 (16)
�� ��

c (s , s ) exp{�j(x s � x s )},� � 3 1 2 1 1 2 2
m��� n���

trispectrum (N � 4):

� � �

C (x , x , x ) � c (s , s , s ) •4 1 2 3 � � � 4 1 2 3
s ��� s ��� s ���1 2 3 (17)

• exp{�j(x s � x s � x s )}.1 1 2 2 3 3

Here c2(s1), c3(s1, s2), and c4(s1, s2, s3) are sequences of the
second-order, third-order, and fourth-order cumulants of the
process x(k), respectively. While the second-order and third-
order cumulants and the second-order and third-order mo-
ments are identical:

c (s ) � m (s ) � E[x(k)x(k�s )], (18)2 1 2 1 1

c (s ,s ) � m (s , s ) � E[x(k)x(k�s )x(k�s )], (19)3 1 2 3 1 2 1 2

(where E[ ] means averaging), this is not true for the fourth-
order (and higher) statistics. To generate the fourth-order
(and higher) cumulant sequence, we need to know the mo-
ment and autocorrelation sequences.

Analysis of higher-order spectra of signals passing
through a nonlinear system also allows determination of the
types and quantitative parameters of the nonlinearity of the
system (Nikias and Raghuveer, 1987).

In this work, normalized higher-order spectra, that is,
higher-order coherences are estimated. One-dimensional di-
agonal (x1 � x2 � . . . � xN�1 � x) fourth-, fifth-, and
sixth-order coherences are constructed by analogy with the
bicoherence (Haubrich, 1965):2r (x , x )3 1 2

2|C (x , x )|3 1 22r (x , x ) � . (20)3 1 2 C (x )C (x )C (x � x )2 1 2 2 2 1 2

The fourth-order coherence (tricoherence) is calculated by
the equation

2|C (x)|42r (x) � , (21)4 3C (x)C (3x)2 2

the fifth-order coherence is calculated by the equation

2|C (x)|52r (x) � , (22)5 4C (x)C (4x)2 2

and the sixth-order coherence is calculated by the equation

2|C (x)|62r (x) � . (23)6 5C (x)C (5x)2 2

Higher-order coherences take values from 0 to 1 and
have a simple physical meaning, which can be explained by
the following example. Let a signal at the input of a system
with quadratic (or cubic) nonlinearity contain, among others,
oscillations at frequencies x1 and x2. Then the output signal
will contain oscillations at frequencies x1, x2, as well as at
combination frequencies 2x1, 2x2, x1 � x2, and x1 � x2

(in the case of cubic nonlinearity, 3x1, 3x2, x1 � x1 � x2,
x1 � x2 � x2, x1 � x1 � x2, etc.), the phases of these
signals are connected by certain relations called quadratic
(cubic) phase coupling. For two given frequencies, x1 and
x2, bicoherence is equal to the part of the power2r (x , x )3 1 2
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spectral density at frequency x1 � x2, which is coupled with
harmonics at frequencies x1 and x2. For three given fre-
quencies x1, x2 and x3, respectively, tricoherence

is the part of the power spectral density at2r (x , x , x )4 1 2 3

frequency x1 � x2 � x3, coupled with harmonics x1,
x2, and x3. If the values of higher-order coherence

are close to 1, a high phase coher-2r (x , x , . . . , x )N 1 2 N�1

ence takes place. Therefore, the combination-frequency har-
monic x1 � x2 � . . . � xN�1 is the result of the interaction
of the main harmonics x1, x2, . . . , xN�1. On the other side,
if the values are close to 0, the harmonics x1, x2, . . . , xN�1

and x1 � x2 � . . . � xN�1 are independent.
In the considered example, the generation of harmonics

at frequencies 2x1, 2x2, x1 � x2, and x1 � x2 proceeds
simultaneously as a common process, and the knowledge of
one of these processes (for example, generation of harmonic
x1 � x2) is sufficient for getting a representation of the
nonlinearity of the system and of other processes. Respec-
tively, higher-order spectra possess symmetry properties,
and their different symmetric regions correspond to these
different harmonics. Knowledge of a higher-order spectrum
in one of its symmetric regions (for example, knowledge of
the bispectrum in the triangular region x2 � 0, x1 � x2,
x1 � x2 � p) is enough for its complete description (Nikias
and Raghuveer, 1987), as well as for getting a representation
of nonlinear interactions in the medium. A special case is
the generation of harmonics at frequencies 2x1 and 2x2,
which correspond to diagonal values of higher-order spectra.
Without essential loss of information, we can use the more
descriptive one-dimensional higher-order spectra instead of
clumsy multidimensional higher-order spectra to get a rep-
resentation of the nonlinearity of the system.

In this work, conventional direct methods for higher-
order spectral estimation were used based on fast Fourier
transform (FFT), which gave nonbiased and consistent es-
timates. To estimate higher-order spectra for the sequence
x(k), the sequence is divided into p equal nonoverlapping
intervals, over which averaging of estimates is performed.
Estimates become smooth for sufficiently large p (Nikias
and Raghuveer, 1987). If x(k) is a stationary Gaussian pro-
cess, for large p, bicoherence values are approx-2r (x , x )3 1 2

imately v2 distributed with 2 degrees of freedom and the
expected mean value of �1/p for nondiagonal terms (Haub-
rich, 1965). It can be easily shown that bicoherence, tricoh-
erence, fifth-order coherence, and sixth-order coherence val-
ues are approximately v2 distributed with 2 degrees of
freedom, and the expected mean value of �(N � 1)!/p for
diagonal terms, where N is the order of the coherence, and
the multiplier (N � 1)! appear because of the symmetry
properties of higher-order spectra. For a Gaussian process,
which passed through a nonlinear system, mean values of
higher-order coherence are larger than (N � 1)!/p. In this
case, high values of bicoherence testify to the quadratic non-
linearity of the system and give its quantitative estimates.
High values of tricoherence (or the fifth- and sixth-order
coherences) testify to the cubic (or fifth- and sixth-order)

nonlinearity of the system and give its quantitative estimates.
Thus, we determine the types and quantitative parameters of
the system nonlinearity.

In engineering seismology, the propagation of a verti-
cally incident seismic wave in horizontally layered sedi-
ments is also a problem of the transformation of the seismic
wave by a nonlinear system. Here, the input signal is the
incident seismic wave, and the output signal is the movement
on the surface. In this work, numerical simulation was per-
formed, and the movement on the surface was calculated for
the input signals of three types: the Gaussian white noise,
monochromatic signals, and sums of two monochromatic
signals. First, the system was tested by the Gaussian white
noise, and the Wiener kernels were calculated by the method
of cross-correlation functions (Marmarelis and Marmarelis,
1978); linear parts of the ground response and nonlinear cor-
rections were determined. Then monochromatic signals at
frequencies of 2, 5, 8, 11, 14, and 17 Hz and pairs of these
signals were used as input signals, and their nonlinear dis-
tortions in the medium were studied. Input signals of various
intensities were used to establish regularities in nonlinear
seismic processes in soils.

To calculate oscillations on the surface, an algorithm
was used elaborated by Joyner and Chen (implicit method,
Joyner and Chen, 1975), in which the rheological nonlinear
elastic-plastic Iwan model was applied, which is similar to
that obtained in laboratory experiments by Hardin and
Drnevich (1972). Hysteresis loops shown in Figure 1a cor-
respond to this model. The accuracy of the modeling de-
pends upon the number n of elements used. Calculations
were performed for n � 50 as in the original article (Joyner
and Chen, 1975). This algorithm implies the stress-strain
relationship to be a transfer function of the medium, which
was very satisfactory for the purposes of this study.

The soil profile used in the numerical simulation was
the same as in the article by Joyner and Chen (1975): a
horizontally layered sedimentary column bounded above by
the free surface and below by a semi-infinite elastic medium
representing the bedrock. The same normalized curves
shown in Figure 1a were used for all of the soil layers; dif-
ferences in soil behavior from one layer to another resulted
from differences in the values of shear stress in failure smax

and the low-strain shear modulus Gmax assigned to different
layers. The soil profile was a 200-m section of firm alluvium
with a density of 2.05 g/cm3. Shear stress in failure, smax,
and the S-wave velocity progressively increased with depth.
Parameters of the underlying half-space were the same as in
the article by Joyner and Chen: the substratum was assigned
a shear velocity of 2.0 km/sec, and a density of 2.6 g/cm3;
part of the energy of the incident wave was radiated back
into the underlying medium.

The choice of the nonlinear model depended on a few
factors. On the one hand, this model captured common ele-
ments of nonlinear soil behavior that made it useful for a
baseline evaluation of site response. On the other hand, it
was simple, and therefore it was advantageous for studying
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new phenomena. In the study presented here, the complexity
of the model could be a nuisance, and it is shown below that
the obtained conclusions are of a rather common character.
The choice of the nonlinear model influences quantitative
characteristics of nonlinearity, but cannot add anything qual-
itatively new to the results. The same can be said about the
site geometry. Only quantitative estimates are influenced by
the site geometry. According to the theory of wave propa-
gation in a nonlinear medium, nonlinear distortions are ac-
cumulated, therefore, the thicker the sedimentary layer, the
more pronounced the manifestations of nonlinearity (Zar-
embo and Krasil’nikov, 1966).

Results and Discussion

Figure 2a, b, and c represents examples of the response
of the studied system of soil layers to the Gaussian noise in
a wide frequency range (0.3–170 Hz), obtained in numerical
simulation and predicted by models. Estimates of the zero-,
first-, second-, and third-order kernels of the system were
based on input and output signals of 65,000 points of du-
ration (190 sec).

Zero-order kernels h0 are constant components of the
seismic wave field at the surface, namely, the quasi-static
deformations of the surface. They are small, but nonzero;
for different time intervals of the response they take positive
or negative values, which are larger for higher-intensity in-
put signals. The limits of their variations are approximately
proportional to the mean square amplitudes �V2(t)� of oscil-
lations on the surface, which is in agreement with the theory
of nonlinear wave interactions (Zarembo and Krasil’nikov,
1966), and they are presented in Table 1. This means that
horizontal displacements of points on the surface in positive
and negative directions are different, that is, subsurface lay-
ers slowly shift to one or the other side in their oscillations.
This effect can be interpreted as a result of accumulation of
residual shift deformations on the surface. Asymmetry,
skewness of oscillations, is concerned with even nonlinear-
ities, which were fairly small in this case, considering the
small values of h0.

First-order kernels h1(s) were estimated in 300 points,
two-dimensional second-order kernels h2(s1, s2) were esti-
mated in 7225 points, and three-dimensional third-order ker-
nels h3(s1, s2, s3) were estimated in 125,000 points. Based
on these kernels, the response of the linear model (Fig. 2a–c,
trace 3) and nonlinear corrections accounting for quadratic
(Fig. 2a–c, trace 5) and cubic (Fig. 2a–c, trace 7) nonlinear-
ities were constructed according to equations (3) to (7).
Trace 4 (Fig. 2a–c) represents the deviation of the real sys-
tem response from the response of the linear model con-
structed by the zero- and first-order kernels {h0, h1}. Trace
6 (Fig. 2a–c) is the deviation of the system response from
the response of the nonlinear model predicted by kernels {h0,
h1, h2}. Trace 8 (Fig. 2a–c) is the deviation of the system
response from the response of the nonlinear model predicted
by kernels {h0, h1, h2, h3}. For the studied system, consid-

ering quadratic and cubic nonlinearities decreases the mean
square error of approximation as is shown in Table 1.

Progressive decrease in the mean square error showed
that the system is substantially nonlinear, and the second-
and third-order kernels considerably improved the system’s
description. Accounting for quadratic nonlinearity decreased
the mean square error only by �2%, whereas accounting for
cubic nonlinearity decreased it by 6–10%, that is, the system
possessed a weak quadratic nonlinearity and a substantial
cubic nonlinearity. Note that the intensity of the quadratic
and cubic nonlinear components increases with the increas-
ing intensity of the input signal.

A fairly large residual remained after subtracting the
linear component and the corrections due to the quadratic
and cubic nonlinearities from the calculated system re-
sponse. The residual can be related to the influence of the
higher-order (fourth-order, fifth-order, etc.) nonlinearities, as
well as to inaccuracies in estimating kernels. These inaccu-
racies are caused by various reasons, such as the finite du-
ration and the boundedness of the spectral band of the Gaus-
sian noise, truncation of the tails of normal distribution of
noise amplitudes, and inaccuracies in calculations (the de-
tailed error analysis and correction methods are given in
Marmarelis and Marmarelis, 1978).

Analyzing changes in shapes and spectra of seismic
waves (Fig. 3a–c), three cases are considered: (a) the input
signal is monochromatic, (b) it is a sum of two monochro-
matic signals, and (c) it is the Gaussian noise in a wide
frequency range (0.3–170 Hz). The first row of seismograms
(1) is the input signal, the second row shows the oscillations
on the surface for four different intensities of input signals
corresponding to those listed in Table 1, and the bottom row
(8) shows the respective stress-strain curves. Increase in
amplitudes of input signals shifts working intervals of the
curves to nonlinear domains, which induces nonlinear dis-
tortions: changes in amplification and spectral composition
of signals and acquisition of high-frequency and low-
frequency combination harmonics, namely, nonlinear effects
(Zarembo and Krasil’nikov, 1966).

For a nonlinear system, the spectrum of the output sig-
nal always differs from the spectrum of the input signal;
usually, it is more complicated. Changes in the spectral com-
position of signals are shown in row (3) in Figure 3a–c. Input
signal spectra are shown with thin lines, and corresponding
spectra of output signals on the surface are shown with thick
lines. Given that the input signal is monochromatic, its non-
linear distortions are due to generation and growth of the
third, fifth, seventh, and so on, harmonics of the main fre-
quency (Fig. 3a: higher harmonics at frequencies of 15, 25,
35, 45, and 55 Hz); therefore, we can conclude that the sys-
tem possessed odd types of nonlinearity.

The richer the spectrum of the input signal is, the more
complicated the spectrum of the response of a nonlinear sys-
tem is, which is a result of wave interactions that are more
diverse. The superposition principle is not satisfied in a non-
linear system; the system response to a sum of two signals
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Figure 2. The response of the system of soil layers to the
Gaussian white noise of various intensities: (a) �2� �V (t)��
0.001 m/sec, (b) � 0.005 m/sec, (c)2 2� �V (t)� � �V (t)�� �
� 0.02 m/sec. 1 is the input signal; 2 is the response of the
system; 3 is the response predicted by a linear model; 4 is
the difference between the response of the system and the
response predicted by a linear model; 5 is the nonlinear cor-
rection due to quadratic nonlinearity predicted by kernel
{h2}; 6 is the difference between the response of the system
and the response predicted by the model {h0, h1, h2}; 7 is
the nonlinear correction due to cubic nonlinearity predicted
by kernel {h3}; 8 is the difference between the response of
the system and the response predicted by the model {h0, h1,
h2, h3}.
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Table 1
Limiting Values of h0 and Mean Square Errors of Approximation

Intensity (m/sec)2�V (t)�� Mean Square Errors for Models

Input
Signal

Output
Signal

Limiting
h0 (m/sec) {h0} {h0, h1} {h0, h1, h2} {h0, h1, h2, h3}

0.001 0.003 10�6 100 32.4 30.4 25.6
0.005 0.01 10�5 100 33.8 32.5 26.7
0.02 0.03 10�4 100 41.4 38.9 33.2
0.1 0.1 10�3 100 56.7 54.0 43.3

differs from a sum of the responses to each of these signals.
If an input signal is a sum of two harmonics, for example,
at frequencies of 5 and 11 Hz (Fig. 3b), its propagation in a
nonlinear medium is accompanied by the generation of
higher third, fifth, seventh, and so on, harmonics of each of
these frequencies: 15, 25, 35, 45, 33, 55 Hz, etc., as well as
by the generation of combination-frequency harmonics of
21 Hz (5 � 5 � 11 Hz), 27 Hz (5 � 11 � 11 Hz), 17 Hz
(11 � 11 � 5 Hz), 37 Hz (5 � 5 � 5 � 11 � 11 Hz),
43 Hz (5 � 5 � 11 � 11 � 11 Hz), 39 Hz (11 � 11 �
11 � 11 � 5 Hz), 49 Hz (11 � 11 � 11 � 11 � 5 Hz),
and many other combination-frequency harmonics of the
fifth, seventh, and so on, orders as a result of higher-order
interactions. At the same time, combination-frequency har-
monics, evidently indicating even types of nonlinearity, are
absent in the spectra of output signals.

Generation of combination-frequency harmonics leads
to redistribution of energy between spectral components. For
rather intense input seismic signals, the power spectral
density of oscillations on the surface takes the form of
E(f ) � f�k (where f is frequency and k depends on the prop-
erties of the medium), regardless of the spectral composition
of an input signal (Fig. 3a–c, the last columns). A similar
dependence was derived theoretically in nonlinear acoustics.
Nonlinear wave effects in the acoustic field cause redistri-
bution of energy over the spectrum. In the case of the inter-
action of a large number of waves, the power spectral density
of the resulting field is characterized by the dependence of
E(f ) � f �2, provided that the medium is nondispersive and
does not contain sources and absorbers of energy (Kadom-
tsev and Karpman, 1971). Dispersion and absorption hinder
the development of nonlinear processes, that is, dispersion
impedes the transition of energy of the main-frequency har-
monic to its higher harmonics, whereas absorption leads to
a quicker attenuation of higher harmonics. Therefore, coef-
ficient k depends on dispersion, absorption, and nonlinear
properties of the medium.

Therefore, the results of the simulation show that gen-
eration of combination-frequency harmonics is observed
even for small amplitudes of input signals, whereas other
nonlinear effects, such as decrease in amplification and de-
crease in the shear modulus, become noticeable only for
rather large input signals, when changes in the spectra of
propagating signals achieve their maximum (Fig. 3a–c, rows
2, 3, and 8). Fig. 3a–c, row 8 represents the working areas

of stress-strain curves for various input signals. These figures
show that decrease in amplification and decrease in the shear
modulus are not noticeable for small amplitudes of input
signals.

Based on the results of the simulation, we concluded
that increase in high-frequency components is expected in
cases of weak nonlinearity (i.e., weak input signals and/or
thin sedimentary deposit) but is not expected in cases of
strong nonlinearity (i.e., strong input signals and/or thick
layer of sediments). In the latter case, input signals with any
arbitrary spectra will be transformed into output signals on
the surface with spectra of the type of E(f ) � f�k, where k
depends on the properties of the medium. A demonstrative
example of such spectral changes are the acceleration re-
cords of the 1995 Kobe earthquake at Port Island downhole
group, where high-frequency spectral components are de-
creasing and low-frequency components are increasing in
accelerogramms from the depth to the surface (Aguirre and
Irikura, 1997).

Power spectra and higher-order coherences of input and
output signals characterize quantitatively nonlinear distor-
tions of signals in the medium. Figure 3a–c represents bi-
coherence (row 4), tricoherence (row 5), fifth-2 2r (x) r (x)3 4

order coherence (row 6), and sixth-order coherence2r (x)5

(row 7). Thin lines correspond to the higher-order2r (x)6

characteristics of input signals, and thick lines correspond to
those for surface oscillations.

Figure 3a, b, and c (rows 4, 5, 6, and 7) show that in-
crease in the intensity of input signals leads to increase in
tricoherence and the sixth-order coherence of signals on the
surface. If an input signal is monochromatic or a sum of
monochromatic signals (Fig. 3a, b), increase in the fourth-
and sixth-order coherences at the main frequencies of the
input signal (i.e., at 5 Hz and 11 Hz) indicates the generation
of their third and fifth higher harmonics. For input signal
amplitudes that are rather high, the fourth- and sixth-order
coherences are close to 1 at the main frequencies of input
signals (5 Hz—Fig. 3a; 5 Hz and 11 Hz—Fig. 3b). This
means that an entire phase coupling occurs between the main
frequency and its third and fifth harmonics.

The results show that the generation of higher harmon-
ics is more effective for higher main frequencies (i.e., more
effective for frequency 11 Hz than for 5 Hz, Fig. 3b). As
was mentioned previously, propagation of monochromatic
signals at frequencies of 2, 5, 8, 11, 14, and 17 Hz was
studied, and although working intervals of the stress-strain
diagrams were similar, the third and fifth harmonics were
generated most effectively for the input signal at frequency
17 Hz. This is in agreement with the theory of nonlinear
wave interactions: amplitudes of combination-frequency
harmonics are proportional to their wave numbers, that is,
higher-frequency combination harmonics are generated
more effectively than lower-frequency ones (Zarembo and
Krasil’nikov, 1966). The conclusion of a more effective gen-
eration of higher harmonics for higher frequencies of input
signals, as well as the alternative sign of quasi-static shift
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Figure 3. Caption on page 393.

390 O. V. Pavlenko



Figure 3. (Continued).
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Figure 3. (Continued).
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Table 2
Mean Values of Higher-Order Coherences of Oscillations

on the Surface

Intensity of the
Input Signal (m/sec)2�V (t)�� � (x)�2r 3 � (x)�2r 4 � (x)�2r 5 � (x)�2r 6

0.001 0.037 0.105 0.38 1.8
0.005 0.04 0.107 0.43 1.72
0.02 0.041 0.119 0.48 2.12
0.1 0.066 0.35 0.99 4.49

(N � 1)!/p 0.036 0.11 0.43 2.1

deformations on the surface, agree with the results described
in Zvolinskii (1982), in which the propagation of a sinusoi-
dal wave in an elastic or plastic layer was calculated. Positive
and negative quasi-static deformations of the surface were
measured in field experiments with a vibrator seismic source
at distances of hundreds of meters from the vibrator (Niko-
laev et al., 1995).

If amplitudes of an input sinusoidal signal are rather
high, its propagation in a nonlinear medium is accompanied
by large distortions; the number of combination-frequency
harmonics is high, and the signal becomes noiselike (Fig.
3a,b, last columns). The power spectral density takes the
form of E(f ) � f�k, and the mean values of higher-order
coherences approach the value of (N � 1)!/p, which is char-
acteristic for noiselike signals, and exceed it. If the intensity
of the input signal is high, higher-order coherences increase
in their high-frequency domains (Fig. 3b,c, last columns)
and become greater than (N � 1)!/p, indicating an essential
content of combination-frequency harmonics in the re-
sponse. Table 2 represents the mean values of higher-order
coherences (averaged over the spectral range) of oscillations
on the surface for the input signal–Gaussian noise of various
intensities. The lower row shows corresponding values
(N � 1)!/p (p � 55 in the calculations).

We can see from these data and from Figure 3c that if
the intensity of the input Gaussian noise is high, all higher-
order coherences exceed values of (N � 1)!/p. However,
calculated real and imaginary components of the higher-
order coherences (Fig. 4) show that increase in the third- and
fifth-order coherences is caused by the increase in scattering
of their real components about a zero mean, whereas the real
components of the fourth- and sixth-order coherences actu-
ally increase in the high-frequency range. Corresponding
imaginary components vary about zero with zero means for
any amplitudes of input and output signals. Therefore, in-
crease in the fourth-order and sixth-order coherences indi-
cates the cubic and the fifth-order nonlinearities of the
system.

Thus, the numerical simulation shows that subsurface
soils with a typical stress-strain relationship (Fig. 1a) are
characterized mostly by odd types of nonlinearity, whereas
even nonlinearities are weak. This is quite natural because
the stress-strain curves describing the conversion of input
signals into the response are described by odd functions with
weak even components; in this case, even-order spectra of

output signals were close to zero (Nikias and Raghuveer,
1987). For higher amplitudes of input signals, working in-
tervals of the stress-strain curves shift to nonlinear areas,
where even components gain in magnitudes. In these cases,
first of all, quasi-static deformations of the surface appear as
a summed effect of all even-order nonlinearities. Even-order
nonlinearities are characteristic for media possessing stress-
strain dependencies, which are described by functions with
significant even components. For example, such behavior is
observed in liquefied soils and in cases in which the stress-
strain curves contain parts with large slopes (close to hori-
zontal). In such media, additionally to quasi-static defor-
mations, generation of even-order higher harmonics can be
expected.

Quantitative manifestations of nonlinearity, that is, am-
plitudes of combination-frequency harmonics, are defined
by the stress-strain relationships. As is known, real stress-
strain dependencies of soils obtained in experiments are very
diverse and dependent on the granulometric composition of
a soil, its humidity, and so on. Stress-strain curves for water-
saturated soils substantially differ from the stress-strain re-
lationship shown in Figure 1a: the initial convex-up part is
followed by a deviation to the stress axis (concave-up part)
(Vasil’ev et al., 1977). The character of the seismic wave
field and the effects of nonlinearity are different in such
soils, and we can expect shock waves beyond the limit of
elasticity (Zvolinskii, 1982). Stress-strain dependencies rep-
resented by the only convex-up parts are sometimes called
soft diagrams (this type is characteristic for soft soils like
loess loams and sands); whereas so-called “hard” dependen-
cies composed of concave-up parts are characteristic for
water-saturated sands and clays. Respectively, different indi-
cations of nonlinear behavior are known in sands and clays:
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Figure 3. Changes in shapes, spectra, and higher-order coherences of seismic sig-
nals propagating in a nonlinear medium (three cases are considered, with different
intensities of input signals): (a) a monochromatic signal, (b) a sum of two monochro-
matic signals, (c) the Gaussian noise in a wide frequency range. Row 1, input signals;
row 2, the response (oscillations on the surface); row 3, power spectra of the input
signals (thin lines) and spectra of the responses (thick lines); rows 4–7, one-dimensional
bicoherence , tricoherence , fifth-order , and sixth-order coher-2 2 2 2r (x) r (x) r (x) r (x)3 4 5 6

ences of the input signals (thin lines) and the responses (thick lines); row 8, corre-
sponding stress-strain diagrams (they depend on depth; maximum values are shown).



Figure 4. Real (rows 1–4) and imaginary (rows 5–8) components of higher-order
coherences of the Gaussian noise in a wide frequency range: rows 1, 5, real and imagi-
nary components of bicoherence; rows 2, 6, real and imaginary components of trico-
herence; rows 3, 7, real and imaginary components of the fifth-order coherence; rows 4,
8, real and imaginary components of the sixth-order coherence. Thin lines show char-
acteristics of input signals. Thick lines show that of output signals.
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nonlinear effects are more often observed in sandy sites,
whereas nonlinear behavior of clay deposits with high plas-
ticity index appears at higher deformations (Bard, 1995).

To estimate variations in quantitative characteristics of
nonlinearity for different types of soils, the calculations were
repeated for cases of a more soft stress-strain relationship
than that obtained by Hardin and Drnevich (1972), and for
a more hard type of the relationship as well. The results were
qualitatively the same: the higher harmonics of odd types
were generated. For weak input signals, variations in the
amplitudes of higher harmonics can achieve 200–300% de-
pending on the model. For high amplitudes of input signals,
the exponent k differs for different models.

Conclusions

Numerical simulation was performed of the propagation
of vertically incident seismic waves in a system of horizontal
soil layers. The method of nonlinear system identification
was applied to analyze nonlinear properties of soils. Soils
possessing a typical stress-strain relationship obtained in lab-
oratory experiments by Hardin and Drnevich (1972) were
studied.

The results of the numerical simulation show that non-
linear wave processes develop in soils in the following order:
the third, fifth, seventh, and so on, higher harmonics of the
main frequencies of the input signal are generated, and the
interaction between them leads to generation of new com-
bination-frequency harmonics. As a result, the number of
spectral components increases, and the spectrum takes the
form of E(f ) � f�k, in which k depends on dispersion, ab-
sorption, and nonlinear properties of the medium. Genera-
tion of higher harmonics was found to be more effective for
higher-frequency input signals.

Therefore, in cases of weak nonlinearity (i.e., weak in-
put signals and/or thin sedimentary layer), an increase in
high-frequency components is expected, whereas in cases of
strong nonlinearity (i.e., strong input signals and/or thick
sedimentary layer), input signals with arbitrary spectra are
transformed into output signals on the surface with spectra
of the type of E(f ) � f�k, where k depends on the properties
of the medium. A weak nonlinearity corresponds to the case
in which manifestations of nonlinearity such as degradation
of shear moduli and decrease in signal amplification are not
noticeable, whereas, strong nonlinearity corresponds to the
case in which decrease in amplification and in shear moduli
can be detected.

In real media, dispersion, absorption, and seismic noise
hinder the development of nonlinear processes. As a result,
the third- and fifth-order nonlinearities should be of most
importance in real media, whereas more higher-order non-
linearities, such as the seventh-, ninth-order are apparently
negligible. The influence of even-order nonlinearities and
the possibility of static deformations seem to be small in
usual cases, however, they become significant in cases, when
a stress-strain relationship of a soil is described by functions

with noticeable even components (for example, a stress-
strain dependence containing parts with slopes close to hor-
izontal).

As a whole, nonlinear seismic processes in soils are de-
termined by their stress-strain dependencies, by the intensity
and spectral composition of the incident seismic wave, and
by dispersion and absorption properties of the medium.
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