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The elaboration of monomineral thermobarometers
based on the composition of one phase is a challenging
task in modern petrology. This is because xenoliths are
lacking or rare, and only xenocrysts are available in
many mantle-derived rocks. For example, prospecting
and exploration for diamonds are commonly conducted
with separate grains of mantle-derived associated min-
erals. The estimation of their formation temperature is
important both for theoretical petrology and applied
purposes.

The problem of the creation of such a thermometer
may be solved by (1) the development of a basic model
of a two-pyroxene (clino- and orthopyroxene) ther-
mometer and (2) further elaboration of a monomineral
clinopyroxene thermometer.

Solvus two-pyroxene thermometry is based on the
following reaction:

 

(I)

 

The equilibrium constant for the reaction may be
written as

 

(1)

 

To date, most two-pyroxene and clinopyroxene [8, 10]
thermometers are still based on very primitive thermo-
dynamic models. Therefore, their application for
extrapolations far beyond the parameters of the experi-
mental data bank remains questionable. Attempts to
create thermodynamically substantiated versions have
been made by Ryabchikov [4], who took into account
the parameters of the interaction of elements at M

 

1

 

 and
M

 

2

 

 sites for clino- and orthopyroxenes. The free energy
of a two-pyroxene reaction (I) was determined as
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In order to construct a new version of the thermom-
eter, the activity of enstatite minal in Cpx was calcu-
lated at the M

 

2

 

 site, according to the model of nonsym-
metric solutions using the data on Fe–Ca and Ca–Fe
interactions from [7], Mg–Ca and Ca–Mg from [8], and
Mg–Fe, Fe–Mg, Ca–Na, and Na–Ca from [11]. The
value for Mg–Na and Na–Mg interactions were
accepted as 18 000 J/mol. Symmetric parameters were
admitted for the calculation of excess energies at the M

 

1

 

site for peridotitic compositions:

 

Mg–Al = Al–Mg = 44 270–8.63

 

T

 

(ä) 

 

J/mol

 

, (3)

Mg–Fe= Fe–Mg = –1000 

 

J/mol

 

. (4)

 

Interaction between the sites [11] was also taken
into account. The redistribution of Fe and Mg between

 

å

 

1

 

 and 

 

å

 

2

 

 sites was determined using the scheme pro-
posed by Wood and Banno [15]. The activity of the
enstatite minal in Opx was considered equal to unity.

The accuracy of the thermometer assessed by peri-
dotitic mineral assemblages obtained from experiments
in the range of 1050–1755

 

°

 

C and 20–60 kbar [1, 12–
14] (46 analyses, in total) was as follows: 

 

1

 

σ

 

 = 54°

 

 and

 

Δ

 

 (mean) = 46

 

°

 

C. The Taylor thermometer (1998),
which is based on the same data, has similar character-
istics (

 

1

 

σ

 

 = 54°

 

 and 

 

Δ

 

 = 41°

 

). However, it should be
noted that the author achieved such an accuracy by
introducing empirical corrections for the Fe, Ti, and
tschermakite minal contents in clinopyroxene.

In order to elaborate the clinopyroxene monover-
sion of the thermometer, it is necessary to consider the
distribution of Mg, Ca, and Fe between M

 

1

 

 and M

 

2

 

 sites
in coexisting Cpx and Opx and to elaborate a way to
calculate Mg at M

 

1

 

 and M

 

2

 

 sites in Opx based on the
Cpx composition [3, 10]. Discriminant schemes for the
calculation of the Opx composition are presently avail-
able [3, 10]. They were most fully developed by Ul’yanov
[3] on the basis of experimental and natural data.

By using the above discriminant schemes as a basis,
the relationships between Fe and Mg in Cpx and Opx at
M

 

1

 

 and M

 

2

 

 sites were considered following the Wood–
Banno method of calculation [15]. The available exper-
imental data indicate that the Fe contents at the M

 

1

 

 site
are approximately equal both in Cpx and Opx. The
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Fe contents are also nearly equal to those at M

 

1

 

 and M

 

2

 

sites in Opx. The Mg content at M

 

1

 

 and M

 

2

 

 sites in Opx
may be expressed as follows [3]:

These expressions were substituted into the equa-
tion of reaction constant (I). The accuracy of the cli-
nopyroxene version of the thermometer for the same
experimental data in the range of 1050–1820

 

°

 

C and
20–70 kbar (61 analyses, in total) was 

 

1

 

σ

 

 = 73

 

°

 

 and

 

Δ

 

 = 62

 

°

 

 (Fig. 1). The temperature of garnet–clinopy-
roxene assemblages without orthopyroxene was also
estimated (this is important for its application to
natural  minerals). The accuracy of this method is
higher than that of all other empirical versions. For
example, the clinopyroxene thermometers proposed by
Mercier [10] and Lindsley [9] provide accuracies of
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 = 145°
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), respec-
tively. The clinopyroxene modification of the Taylor
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(1998) thermometer based on discriminant schemes
yields 

 

1

 

σ

 

 = 103°

 

 and 

 

Δ

 

 = 80°

 

. As follows from Fig. 1,
this version of the thermometer may overestimate the
temperature and pressure at 

 

T

 

 < 

 

1000°ë 

 

and 

 

P 

 

< 25 kbar,
and, on the contrary, underestimate these parameters at

 

T

 

 > 1500

 

°

 

C and 

 

P

 

 > 50 kbar. Therefore, the optimum
range of application of the thermometer is T = 1100–
1500°C and P = 25–50 kbar.
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Fig. 1. The difference in temperature calculated (1) by the
Mercier method and (2) the proposed thermometer depend-
ing on experimental (a) temperature and (b) pressure. Anal-
yses for calculation were taken from [1, 12–14].
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Fig. 2. Calculated temperature and pressure for peridotite
xenoliths from (1) the Obnazhennaya and (2) Udachnaya
pipes relative to the graphite–diamond equilibrium. Analy-
ses were taken from [2, 4]; the initial temperature was cal-
culated at P = 30 kbar and then plotted on the shield geo-
therm.

Fig. 3. Calculated temperature and pressure for peridotite
xenoliths from (1) Pipe 200, northern Lesoto and (2) the
Premier Pipe relative to the graphite–diamond equilibrium.
Analyses were taken from [5, 6]; the initial temperature was
calculated at P = 30 kbar and then plotted on the shield geo-
therm.
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The model was used for the estimation of the PT
parameters related to the formation of diamond-bearing
and barren peridotite xenoliths from Yakutian and
South African kimberlites, and the estimated tempera-
tures were plotted on the shield geotherm. For Yakutian
xenoliths, the depth increases from the diamond-free
Obnazhennaya Pipe to the diamond-bearing Udachnaya
Pipe (Fig. 2). A similar tendency was revealed for the
South African Pipes: the depth increases from depleted
xenoliths from the Pipe 200 in Northern Lesotho (PT
parameters were originally estimated as T = 906–950°C
and P = 25–31 kbar) to lherzolite nodules from the dia-
mond-bearing Premier Pipe (Fig. 3).

The results obtained indicate that the elaborated
modification of the thermometer allows one to estimate
the formation temperature of deep clinopyroxene
xenocrysts. It fits the petrological criteria and may be
applied to the estimation of the diamond potential of
mantle-derived rocks.
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