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SUMMARY

The complexity of geophysical systems makes modelling them a formidable task, and in
many cases research studies are still in the phenomenological stage. In earthquake
physics, long timescales and the lack of any natural laboratory restrict research to
retrospective analysis of data. Such ‘fishing expedition’ approaches lead to optimal
selection of data, albeit not always consciously. This introduces significant biases, which
are capable of falsely representing simple statistical fluctuations as significant anomalies
requiring fundamental explanations. This paper identifies three different strategies for
discriminating real issues from artefacts generated retrospectively. The first attempts to
identify ab initio each optimal choice and account for it. Unfortunately, a satisfactory
solution can only be achieved in particular cases. The second strategy acknowledges
this difficulty as well as the unavoidable existence of bias, and classifies all ‘anomalous’
observations as artefacts unless their retrospective probability of occurrence is exceedingly
low (for instance, beyond six standard deviations). However, such a strategy is also
likely to reject some scientifically important anomalies. The third strategy relies on two
separate steps with learning and validation performed on effectively independent sets of
data. This approach appears to be preferable in the case of small samples, such as are
frequently encountered in geophysics, but the requirement for forward validation implies
long waiting times before credible conclusions can be reached. A practical application
to pattern recognition, which is the prototype of retrospective ‘fishing expeditions’, is
presented, illustrating that valid conclusions are hard to find.
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I N T R O D U C T I O N

The natural phenomena occurring in the solid Earth are rarely

simple in nature. In general, they are the sum of so many different

non-linear effects that writing their constitutive equations is

a formidable task. Phenomenological studies therefore play a

fundamental role in their investigation. This has been the

traditional approach of geology, later inherited by geophysics,

in that it applies the instruments and analytical tools of physics

to the same questions. As in all phenomenological studies,

success is possible if a wealth of accurate data are available. This

is the case in much exploration geophysics and in global seismo-

logical traveltime studies, which have enabled accurate mapping

of the velocity structure of the interior of the Earth. However,

this success also exposes some of the pitfalls of all issues rooted

in data. Statistics has developed very effective methods of

sampling integrated with data analysis, which are the bases

of modern agricultural sciences, pharmacology, production

control, etc. (cf. Cochran & Cox 1957). Such techniques, which

may be categorized under the heading of experimental design,

assume the ability to acquire new data at will and to control the

experimental conditions. Both of these are often impossible in

geophysical studies. Data availability introduces major con-

straints and this is one of the crucial problems in many fields

of geophysics. This lack of control on the ‘experiment’, and the

scarcity of data, open the door to selection bias.

In general, once identified, selection bias can be corrected,

or at least its extent can be evaluated, allowing the accuracy of

the analysis to be properly defined. The most dangerous type

of selection bias is therefore that which is not identified. This

can occur even in careful studies, and a notable example can be

found in recent observational seismology. It regards seismic

tomography, which appeared to have a resolution sufficient

to infer the fine detail of the topography of the core–mantle

boundary (Morelli & Dziewonski 1987). Unfortunately, these

authors neglected selection bias due to the non-random spatial

distribution of the seismic stations, which are mostly deployed

on the continents (Stark & Hengartner 1993).

In some cases, research is focused on phenomena where

limited understanding is combined with difficulty in acquiring

new data, rendering all analysis essentially empirical and retro-

spective. In this case, a particular type of selection bias may

Geophys. J. Int. (2001) 146, 489–496

# 2001 RAS 489



be largely concealed in the process of data analysis itself, and

goes under the name of retrospective selection bias. Earthquake

physics, of which even the basic processes are poorly known

(Ben-Menahem 1995), and for which only semi-qualitative

models have so far been derived (Main 1996), provides a typical

example. The present article seeks to analyse retrospective

selection bias by examining the statistics of earthquakes and of

the onset of volcanic eruptions, which share similar underlying

physical processes of fracture. We make explicit reference to

earthquake and eruption prediction, since their extreme character

readily exhibits the problems of retrospective analysis.

In retrospective studies, data are analysed with the specific

aim of ‘finding something’. The methods of analysis differ

according to whether a sound theory is available or not. In

the first case, a mathematical description exists, the validity of

which has been previously established by extensive comparison

with experiment. New data can then be used to further confirm

or to extend the applicability of that theory. In the second case,

where no valid theory exists and there is only some vague idea

of where to look and what to look for, the analyst explores

the available data to find support for a credible theory. This

is not as straightforward as it seems. While the vast majority

of the studies on earthquake physics follow some existing

‘model’, and therefore appear to be framed according to the

first model, this is hardly ever true, because most such models

are only semi-qualitative. There is one notable exception,

the universally accepted slip-on-a-plane-fault earthquake model,

which treats ambient stress as the main variable. It provides

constitutive equations for the radiation field in the low-frequency

limit, which have been validated by many people. Can this be

taken as a valid model for the physics of earthquakes? The fact

that faults display a fractal geometry, that is, they are as far as

possible from planar, is strongly suggestive that it cannot. A

more definite proof is provided by the unquestionable failure of

attempts to predict earthquake occurrence deterministically.

All of these theories are based, more or less closely, on the slip-

on-a-plane-fault tenet and regard stress as the main determinant.

In conclusion, there is as yet no consolidated model to be

confirmed in earthquake physics, and all current studies are

in the domain of attempting to find a model, with a vague

idea of what to look for. This ‘fishing expedition’ approach will

stop only when a viable theory is found. The researcher and

the fisherman care only about the final result, and the successful

reporting of a scientific explanation erases most traces of the

process of data selection which the researcher has used to

achieve his apparently positive result. This is pernicious because

all the options examined and discarded as unproductive are not

counted as part of the statistical analysis, introducing a crucial

bias in the calculated probability that the supportive evidence is

due to chance.

R E T R O S P E C T I V E B I A S

Deriving a novel result from data implies the observation of

evidence that is ‘anomalous’ with respect to a general situation

of ‘normality’. ‘Normality’ is described in terms of a number of

variables, the values of which will follow an assumed distri-

bution. The observation of measured values in the tails of such

a distribution is at the basis of identification of any ‘anomaly’.

Note how these anomalies are ‘outliers’ to the distribution, the

rejection of which is carefully controlled since each outlier is

a potential ‘discovery’. The probability of any measured value

lying in the tail of a distribution can be estimated if (i) the

distribution is known and (ii) the sample is random. A wealth

of data is usually available for the ‘normal’ situation, so that

the first requirement (a known distribution) should be easily

verified. The major difficulty lies in the second requirement,

since the retrospective researcher is not dealing with a random

sample. His analysis consists of a careful scrutiny of the

data expressly aimed at identifying subsets that do not exhibit

‘normal’ behaviour, that is, he considers sets that are just

the opposite of a random sample. Estimating probabilities of

occurrence of deviations from ‘normality’ on the basis of non-

random sampling gives rise to a severe retrospective selection

bias in favour of the apparent anomaly. For example, if a large

number of cases, say 1r105, are drawn from a truly random

population, events with a very low probability of occurrence of,

say, 1r10x4 can be expected to occur about 10 times by mere

chance. Let us examine this case in more detail.

To a first approximation, the intervals of definition of the

different parameters can be assumed as mutually independent,

so the total number of possible choices is given by the Cartesian

product of the number of possible choices for each parameter.

Formally, denoting by ri the ith parameter (out of a total of N),

which defines the working set, and assuming that its interval of

definition has ni values (typically ni=2, i.e. a lower and an

upper bound) and that each of the latter is chosen among mij

values, the total number of cases considered, NT, is

NT ¼
YN
i¼1

Yni

j¼1

Ymij

k¼1

rijk : (1)

This means that the retrospective researcher may inadvertently

consider a very large number of cases, and this, together with

the disregard of having done so, leads him to conclude that he

has observed ‘unlikely’ cases occurring ‘surprisingly’ far more

often than expected.

For example, consider the following scenario: the occurrence

of earthquakes in region A is linked to the occurrence of earth-

quakes in region B. This conclusion is based on retrospective

examination of a seismicity catalogue after selecting a lower

magnitude threshold, that is, one value chosen among the three

values 3.0, 3.5 and 4.0. Each region is then specified as a

polygon with four vertices, each identified by two geographical

coordinates, each of which is examined for four possible values.

This constitutes an unstated optimal choice amongst 32 values

per region. Finally, the association is tested based on selecting

events within a time interval of the catalogue, employing five

possible values for the starting point of the interval and five for

its end. The total number of cases considered in this simple

example is, according to eq. (1), 2.4r103, so by mere chance we

might expect to find one association with apparent probability

of the order of 10x4, some tens of cases with probabilities of the

order of 10x3, and so on.

It must be noted (i) that the parameter choices will

be dependent on one another to some extent, and (ii) that

retrospective selection is seldom conducted efficiently and

exhaustively through a systematic exploration of the parameter

space. It is common practice to rely on ‘intuition’ to reduce

the size of the set that must be explored by trial and error to

achieve the best apparent result. These constraints produce a

retrospective bias that is smaller than the theoretical limit of an

efficient optimal selection but by an unknown amount.
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T H E D I F F E R E N T F A C E T S O F
S T A T I S T I C A L D A T A A N A L Y S I S

In the following, we discuss the various aspects of retrospective

selection bias, which are largely concealed by the procedure of

defining the ‘anomalies’ themselves, and against which standard

statistical analysis is ineffective (Stark & Hengarter 1993). To

illustrate the traps of retrospective investigation, at the end

of the discussion we present a practical example regarding an

application of pattern recognition—the prototype of empirical

retrospective analysis—to the eruptive activity of Mount Etna.

In the most classical treatment, statistical data analysis is

ignored altogether and the data are interpreted subjectively. In

this case, the reliability of the conclusions depends essentially

on the intuition and on the authority of the proponent.

Nowadays, virtually all data are analysed using statistical

tools. Basic techniques, such as simple regression, correlation

and spectral analysis, are widely known and commonly used,

but their implications and fine details are less well understood,

and this often leads to misapplication, misinterpretations and

incorrect results (Mulargia & Gasperini 1995; Gonzato et al.

1998). Classical advice on data analysis (Fisher 1935) is to

concentrate on ideas and not on the method, which should be

the simplest and most intelligible that does the job. When more

refined statistical tools are used, more detail can be revealed.

While these tend to be more powerful, and possibly to be used

more carefully, they also tend to divert interest towards the

technique of analysis itself. This distracts the author first, and

the reader later, from the data set and its definition. Furthermore,

use of these refined techniques may impress the reader with their

complexity, and discourage him from investigating further. The

results may then be uncritically interpreted as reliable. Estimates

based on refined computer simulations are particularly exposed

to this danger, unless the source codes are made available

(which happens very rarely).

F I G H T I N G R E T R O S P E C T I V E
S E L E C T I O N B I A S : S T R A T E G Y 1 , T H E
‘ H O P E F U L ’ A P P R O A C H

We now analyse how the problem of retrospective selection bias

can be defined in detail and tackled. We outline our attempt to

control retrospective selection bias by describing three specific

strategies.

If one could count all the cases explicitly and implicitly

considered, it would be possible to make an unbiased estimate

of the probability of occurrence of the ‘anomaly’. This is a

particular case of the general problem of hypothesis testing,

which is discussed later in the paper. Statisticians have worked

on multiple hypothesis testing for some time and call it the false

discovery rate problem. A number of procedures are avail-

able for controlling it statistically (Hsu 1996). In short, this is

a multiplicity problem associated with the simultaneous test of

not one but many hypotheses. Improved Bonferroni methods

have been proposed by Simes (1986) and Scheffé (1959),

and, with a broader scope, by Benjamini & Hochberg (1995).

Satisfactory solutions to specific problems have also been

developed (Eckhardt 1984; Stark & Hengartner 1993; Mulargia

1997).

Unfortunately, many of the options considered are declared

only implicitly, and are sometimes hidden in the procedure of

analysis itself. Explicitly optimal selections are usually exhibited

as clearly subjective and are the easiest to spot and correct. The

task of identifying optimal selections becomes more difficult

when these are still explicit, but less evident. In this case, a

variety of nuances are possible, starting with weak arguments

such as ‘precursory phenomena [are] observed at very large

distance, and [are] absent in the vicinity of the focal region’

(Varotsos & Lazaridou 1991; Thurber & Sessions 1998). Next

come geographic arguments such as ‘this study reports about

earthquakes in Central California’ (Keilis-Borok & Rotwain

1990). In general, unless quantitative arguments are provided,

for example, about the resolving power of the seismic network

used, it is not clear why earthquakes should be grouped spatially

using state borders.

Arguments at the edge of subjectivity are more subtle.

Tectonic arguments are a good example. A study concerning

earthquakes on the San Andreas fault (an apparently sound

problem) will typically imply selecting events in a geographical

region of complex geometry, the shape of which is chosen on

the basis of arguments concerning the accurate spatial identi-

fication of active faults, a goal that is impossible to achieve

objectively (e.g. Knopoff et al. 1996). Since each vertex fixes

two parameters, and since polygonal regions with more than 10

vertices are common (Knopoff et al. 1996), the selection of the

operative set is likely to conceal an optimal selection of a large

number of parameters (see the example above).

An obvious countermeasure is the systematic use of stability

studies, but this has its own problems. How should the stability

analysis be performed? How large is the variation range? How

large is the tolerance? Sound results must be robust against

variations so large that they would most likely already have

been ‘discovered’. Similar arguments apply to the other para-

meters for selecting the size window and the time window,

and the difficulty is to identify each single subjective choice

(Mulargia 1997).

Identifying optimal selections hidden in the definitions is

easy only in principle, since these can easily be overlooked. For

example, choosing ‘cumulative moment as the variable to study

the features of a given seismic region and its correlation with

other regions’ appears to be a sensible choice for the intrinsic

physical meaning of this variable. However, since moment release

is dominated by large events, the author may, in effect, have

reduced a massive catalogue of some tens of thousands of events

to the few largest ones. The subjective operation of choosing

the boundary of the chosen region may result in a revised choice

of these large events, with substantial effects on the results.

Finally, identifying and correcting the optimal selections

hidden in the procedure of analysis itself is possible only in

some particularly simple cases such as those described above.

In general this is very laborious, often requiring specialist

mathematical methods (e.g. Stark 1992).

In light of the above, it is clear that correcting all the possible

processes of optimal selection is a formidable task. It becomes

possible if the selection procedure is exhaustive and efficient. If,

as mostly happens, rather than a systematic exploration of the

parameter space, selection is conducted by intuition and trial

and error, it is hardly possible to track the number of choices

that have really been explored. All that can be said is that this

number is smaller than the theoretical limit of an efficient

retrospective selection.
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F I G H T I N G R E T R O S P E C T I V E B I A S :
S T R A T E G Y 2 , T H E U L T R A -
C O N S E R V A T I V E A P P R O A C H

Realizing that retrospective bias is ubiquitous, that it may

crucially affect most analyses, and that correcting it ab initio is

very difficult, we examine the radical alternative of rejecting all

apparent anomalies except those that have an extraordinarily

low retrospective level of significance. The idea is that since

retrospective optimal selections induce much lower apparent

significance levels, rather than accepting as ‘anomalies’ cases

beyond, say, 2 or 3 standard deviations, one moves the accept-

ance threshold to 6 sigmas or so, that is, to apparent significance

levels of 10x6 or lower (Anderson 1990; Mulargia 1997). This

may appear as a wise and practical option. Unfortunately, it

also has the unwanted effect of discarding possibly genuine

‘anomalies’. To examine this, consider the typical case of

testing a variable for which some apparent ‘anomaly’ has been

found retrospectively.

A D R A W B A C K O F S T R A T E G I E S 1 A N D 2 :
T H R O W I N G T H E B A B Y O U T W I T H T H E
B A T H W A T E R

We discuss in the following a basic statistical issue that, in

spite of being well known, is very often overlooked. Let us

hypothesize that some as yet undiscovered process representing

an ‘anomaly’ with respect to known ‘normal’ evidence does

indeed exist, and let this be characterized by average values of

some variable x. Irrespective of the form of the distribution

of x, which in geophysics is often non-Gaussian, the central

limit theorem (Mood et al. 1974) tells us that the average

of the anomalous x will have a sampling distribution that is

asymptotically Gaussian with parameters mA and standard

deviation sA. These can be identified as ‘anomalous’ since the

same average for the ‘normal’ situation will also likely follow a

Gaussian distribution, but with parameters mN and sN.

Our task is to identify the ‘anomaly’ in the data. In

general, the ‘normal’ population will be documented by a large

number of samples nN of s units each, so that we may assume

that mN and sN are known. On the other hand, the ‘anomalous’

population is likely to be documented by much smaller samples,

possibly just one sample—a single datum. This is the case history

approach, quite common in geophysics (Wyss & Martirosyan

1998), which describes a single piece of evidence at a time.

Following standard procedure, we identify an ‘anomaly’ on

the basis of a sample with average values of x equal to X�A by

testing the null hypothesis H0 : X�A=mN against the (one-sided)

composite alternative H1 : X�A>mN. The test will be based on

the z standard variate,

z ¼
�XA ÿ kN

pN=
ffiffiffi
n
p

A
, (2)

where nA is the number of samples in the ‘anomalous’ set.

Rejecting H0 for positive z values larger than a given threshold

Z means accepting the risk of disregarding all the values larger

than Z that are indeed ‘normal’. This is the type I error, which

concerns the misidentification of a true null hypothesis. That is,

we identify a truly normal event as ‘anomalous’. Probabilities a
of type I error (a is called the significance level of the test) no

larger than 0.01 (which in a two-sided test is equal to 3 standard

deviations), or at most 0.05 (which in a two-sided test is equal

to 2 standard deviations), are commonly adopted.

Significance level: the lower, the better?

If one independently knew the parameters of the ‘anomalous’

population mA and sA (as happens in established clinical testing),

one could test the null hypothesis H0 : X�A=mN against the

simple alternative H1 : X�A=mA. In this case, X�A will identify

(see Fig. 1) a right tail in the ‘normal’ distribution, correspond-

ing to the type I error discussed above, and a left tail in the

‘anomalous’ distribution, corresponding to the probability b of

a type II error, with b estimated by

z0 ¼
�XA ÿ kA

pA=
ffiffiffi
n
p

A
: (3)

Rejecting H1 for all values of average x smaller than X�A

will mean accepting a risk of rejecting true anomalies equal to

b. This is conveniently described in terms of the power of the

test, which is defined as 1xb, and should ideally be close to 1

(Lehmann 1986). Any attempt to lower a, that is, to shift X�A

towards the right, will imply an increase in b. In other words,

guarding against false retrospective issues may lead us to reject

genuine ‘anomalies’.

Figure 1. Testing whether an average value X�A belongs to a ‘normal’ distribution or to an ‘anomalous’ one. The shaded area to the right of X�A under

the ‘normal’ curve represents the probability of declaring X�A to be ‘normal’ and is equal to the significance level. The dotted area to the left of X�A

under the ‘anomalous’ curve represents the probability of declaring X�A to be ‘anomalous’ and 1 minus its value is equal to the power of the test. Larger

values of X�A have a lower significance level, but also a lower power. The only way to achieve simultaneously low significance level and high power is to

separate the ‘normal’ and ‘anomalous’ curves from each other by increasing the sample size (see text).
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The key role of sample size

According to eq. (2), the value of 1/z and therefore the values of

a and b vary as the inverse square root of the total number

of anomalous samples collected, nA in a set of size N. If this is

large, we may be able to meet the goal of having a low signifi-

cance level and, at the same time, a high power. In other words,

if the number of ‘anomalous’ data is large, in principle it is

possible to meet the requirement of Strategy 2 for retrospective

studies without compromising the capability of detecting genuine

anomalies. For example, if some ‘precursor’ were observed in

retrospect for 10 000 earthquakes it could be quite comfortably

accepted as a precursor, irrespective of the optimizations that

led us to identify it.

The situation worsens progressively when the number of

events decreases. The worst case is reached when case histories

are considered. There is then no average over samples but

instead a single datum. This has two pernicious effects: first,

there is no help from the central limit theorem in guaranteeing

that the sampling distribution tends towards the Gaussian, so

any assumption of Gaussian approximation is inappropriate.

A non-Gaussian, most probably non-parametric, approach

can be attempted, but statistical methods do not handle single

points well. Second, no control whatsoever is possible on the

power of the test, and the only way to achieve low significance

levels is to accept that the test has very low power. In light of

this, we see that case histories have little hope of being effective

analytical tools. They are by definition mere case reports, and

should only serve to arouse interest in some precise topic,

thereby promoting detailed systematic research. In no way can

particular case histories be used to draw firm conclusions.

A practical example of the effects of ‘anomalous’ sample
size: fumarole temperatures

In order to see the beneficial effect of sample size let us con-

sider, as an example, the case of the ‘fumarole’ temperatures at

a hypothetical volcano. This case considers the 20 yr record of

daily readings at 10 different fumarole sites. On this basis we

know that the average ‘normal’ temperature is 450 uC, with a

standard deviation of 100 uC. During the period in question, a

major eruption occurred, and a retrospective analysis of the

available record apparently suggests that the average temper-

ature of the 10 fumaroles in the week prior to the eruption was

500 uC. How should one interpret this ‘anomaly’? Although

temperatures can only be positive in value, their sampling distri-

bution should nevertheless be approximately Gaussian. In this

case, the sample is made of a single point, and all reasoning is

speculative. Using the equations above and disregarding all

retrospective bias, we have that the sample difference in the

average temperatures corresponds to z¼ð450ÿ500Þ=ð100=
ffiffiffi
1
p
Þ,

that is, an apparent retrospective (one-sided) significance level

of 0.31. Obviously, there is no way to exploit this datum in

any significant analysis, illustrating the point made above that

case histories can only reasonably be used to promote further

research.

Alternatively, let us hypothesize a situation involving a larger

sample. Let us assume that we have a series of 22 eruptions, and

that before them on average the same temperature of 500 uC
(average over the 10 fumaroles) as above is measured. Now

eq. (2) yields an apparent significance level of 0.01. If all the

parameters for choosing the sample had been selected at random,

this value would suggest the existence of a temperature anomaly

before the eruptions. However, some retrospective optimal

selection has almost certainly occurred, so that this level appears

insufficient to support any anomaly issue.

Let us then say that, in agreement with Strategy 1 or 2, to

counter the retrospective bias a more conservative threshold for

significance level equal to 0.00001 is chosen, which corresponds

to a (one-sided) z value of 4.27. This would obviously mean

that the above set of 22 temperatures with average 500 uC can

be comfortably judged ‘normal’. However, let us assume that

an ‘anomaly’ does indeed exist and that its population mean

and standard deviation are respectively equal to 515 uC and

100 uC. By accepting this sample as ‘normal’ we are then likely

to make a type II error with an even larger probability than a

type I error. In fact, since z ¼ ð500ÿ 515Þ=ð100=
ffiffiffi
2
p

2Þ ¼ 0:704,

the value of b is equal 0.242. We therefore face the following

dilemma: the significance level must be lowered to counter retro-

spective bias, but this may lead us to throw away some genuine

results.

Eqs (2) and (3) suggest the key to the solution of this

quandary: increase the size of the ‘anomalous’ sample to meet

simultaneously the desired levels of a and b. For example, leaving

all the above temperature values unchanged, but changing the

size of the ‘anomalous’ set to 73 units, will set the significance

level below the required 0.00001 level and, at the same time,

increase the power to 0.90. If increased temperatures were

observed routinely in advance of 73 eruptions, we could with

confidence conclude that these temperatures were anomalous.

In other words, if sample size is large enough to allow an

exceedingly low significance level and, at the same time, a high

power, then we can comfortably reject the null hypothesis of

‘normality’.

Note that using the values above we would guard against

misclassification of ‘anomalies’ with average T=515 uC, but

not, for example, against those with T=507 uC. Since we do not

generally know the parameters of the ‘anomalous’ distribution,

the customary approach (Scheffé 1959) is to estimate the power

of the test as a function of this temperature, using the pro-

cedure we have just outlined, assuming a variety of values for

the mean of the ‘anomalous’ distribution (e.g. 505, 508, 511,

514, 517, 520 uC, etc.) together with a fixed sample size and

standard deviation. This produces a set of b values that allows us

to estimate the interval in which the anomalous temperatures

would be successfully detected, so that independent evidence

can then be used to validate the results.

F I G H T I N G R E T R O S P E C T I V E B I A S :
S T R A T E G Y 3 , T H E T W O - S T A G E
A P P R O A C H

We have seen that a large sample size, in connection with one

of the above strategies, can effectively control retrospective

bias. However, large samples are rare in geophysics, which

often involves small, and often very small, sample sizes. For

example, the number of instances of recurrence of large earth-

quakes on the same fault segment is, at best, a handful (Pantosti

et al. 1993). The eruptive episodes at a given volcano are, at

best, a few tenths, etc. We ask whether retrospective bias can be

tackled with the further constraint of small size. Miracles are

not to be expected, but a wise approach seems to be to get the

most out of the few available data.
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Namely, all available retrospective data are analysed,

operating the usual approach—avoiding inconsistencies and

untenable ad hoc selections (such as extracting individual data

points as mentioned at the beginning of Strategy 1)—with-

out correcting for any optimization. Standard test and signi-

ficance levels are then adopted, with no attempt to validate the

data. These are used to establish ‘candidate’ anomalous results

that are then investigated within a second separate stage of

forward validation. In other words, once the rules for defining

the best retrospective anomaly have been determined, rather

than attempting to estimate the retrospective bias explicitly

(as demanded by Strategy 1) or to protect against it by adopt-

ing very conservative significance thresholds (as demanded

by Strategy 2), we use standard or marginally conservative

significance levels such as 0.01 or 0.001 to identify the candidate

‘anomalies’. These establish an unequivocal definition of the

‘anomaly’, that is, of the laws of the game. Keeping these laws

strictly unchanged, validation is then performed on a separate,

truly independent set. This must necessarily consist of a further

experiment run forward in time (Mulargia & Gasperini 1996).

The great advantage is that standard significance tests can be

employed, because in forward time we do not have the benefit

of hindsight, and there is no need to account for retrospective

bias. As a consequence, less stringent requirements are imposed

on sample size. For example, in the fumarole case examined

above, a sample size of 22 would be sufficient to establish a

retrospective candidacy, and another forward sample size of

22 to validate it, a total of 44, approximately half the number

required to establish the anomaly by retrospective validation

alone.

The limitation of this strategy is that due to the com-

paratively long timescales of many geophysical phenomena it

may nevertheless require a comparatively long time to acquire

forward data, the only data that are guaranteed not to suffer

from retrospective selection bias. On the other hand, there seems

to be no easy alternative: significant sample sizes are required to

draw any conclusion. The relative sizes can be calculated using

eqs (2) and (3).

This strategy can produce interesting issues in the case of

negative results, that is, when candidate ‘anomalies’ cannot be

identified, as discussed in detail in the following paragraph.

There is no hope without a sound candidacy

Suppose that during retrospective analysis of a given set of

data in the framework of the two-stage candidacy–validation

strategy a researcher is unable to find any clear sign of anomaly

according to the standards for candidacy, that is, below the

0.01 (or 0.05) significance level. In this case, there can be little

hope that a forward test, without the help of retrospective

optimization, will support any specific thesis. The dispassionate

researcher will therefore simply discard the ‘anomalous’ issue

and redirect his efforts in other directions. Curiously, this is

at odds with what generally happens. Sometimes researchers

‘fall in love’ with their hypotheses and defend them by re-tuning

their data selection [for instance, compare Varotsos & Lazaridou

(1991) with Varotsos et al. (1993), or Thurber (1996) with

Thurber & Sessions (1998)].

As a consequence, application of the candidacy procedure, that

is, identifying and correcting the most obvious optimizations

and applying significance analysis to standard levels, is sufficient

to undermine the credibility of many apparently established

hypotheses. The characteristic earthquake and the time- and

slip-predictable earthquake models, to name a few, do not pass

the standard tests for candidacy (see respectively Kagan 1993

and Mulargia & Gasperini 1995).

Practical application to pattern recognition, the
prototype of retrospective selection bias

The term pattern recognition indicates a generic search for

structure in a given set of data, with little or no reliance on

existing models. As such, it represents the prototype of ‘fishing

expeditions’. Pattern recognition at some level is used in all

types of analyses. The oldest, and still most popular, method of

pattern recognition is based on visual examination and sub-

jective intuition, medical diagnosis being the typical example.

As we mentioned above, this (at least in part) subjective

approach explores only some of the possibilities. On the

other hand, exhaustive procedures of pattern recognition

have been developed thanks to modern computing technology.

A wide variety of algorithms have been developed to this end

(Duda & Hart 1973; Bezdek 1987; Fukunaga 1990), but

applications in geophysics have so far been limited. The most

well-known are probably those of the Russian approach to

predicting earthquakes (Gelfand et al. 1978; Keilis-Borok et al.

1988; Kossobokov et al. 1990), which rely on long-established

logical algorithms rather than the more recent computationally

intensive procedures.

Both types of algorithms have been applied to identify

the patterns of seismicity preceding and accompanying the

eruptive activity of Mount Etna (Mulargia et al. 1991, 1992).

These applications have led to the conclusion that there is a

link between the occurrence of local earthquakes and the flank

eruptive activity of Mount Etna, while the summit activity

seems to be uncorrelated. In particular, it was found that local

seismicity accompanies each eruption, with the occurrence of at

least seven events within an 80-day interval centred at the onset

of each eruption. The statistical pattern recognition approach

used by Mulargia et al. (1992) estimated this pattern to be

significant in retrospect below the 0.05 level for the 11 flank

eruptive episodes during the period 1974–1989. The pattern

correctly identified all events and misidentified as ‘eruptive’

another 13 intervals. The identification was also checked in retro-

spect for stability, and proved highly stable since truncating the

learning set as far back as 1979 December 31; that is, covering

only 40 per cent of the total period left the recognized pattern

unchanged. The conclusion that flank eruptive activity is tied to

local tectonics at Etna seemed therefore to emerge as a sound

candidate.

We examine whether this issue stands against validation by

posterior occurrences. During the period from 1989 December 31

up to the time of writing, only one flank eruption occurred

at Mount Etna. This started on 1991 December 14 and lasted

for 15 months, with a total erupted volume of 250r106 m3

(Gresta, personal communication, 1999). In this same period,

instrumental problems limited the available seismic record to

the interval 1990 January 1–1996 December 31. The results of

the validation attempt are as follows. The onset of the 1991

eruption was characterized by seven seismic events within the

prescribed interval. Entering this value in eq. (2) together with

the values of the ‘normal’ population inferred from the learning

period 1974–1989, i.e. mN=3.95, sN=3.81, yields a probability

of a type I error (falsely rejecting the null hypothesis) equal to
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0.21. At the same time, entering this same value in eq. (3)

together with the values of the ‘anomalous’ population inferred

from the learning period, i.e. mA=13, sN=7.63, yields a

probability of a type II error (falsely rejecting the alternative

hypothesis) also equal to 0.21. In other words, the single forward

occurrence appears inconclusive and neither confirms nor

negates the recognized pattern. At the same time, extending the

learning set to 1996 December 31, with the inclusion of the 1991

eruption, introduces minor modifications in the parameters of

the ‘normal’ and ‘anomalous’ populations and does not suggest

any instability or change in behaviour. Specifically, extension

of the learning period shifts mN from 3.95 to 4.1, sN from 3.81 to

3.54, mA from 13 to 12.5 and sA from 7.63 to 7.48. In short, the

validation attempt gives inconclusive results, and the recognized

pattern remains merely a candidate. This example also illustrates

once more that sound conclusions, be they relative to candidacy

or validation, require sizeable sets of data.

C O N C L U S I O N S

Retrospective bias undermines many findings, making what

is just an artefact of optimal parameter selection, interpreted

as if parameters were selected at random, appear to be real.

Retrospective optimization has many implicit aspects that make

it generally impossible to trace and correct the bias ab initio.

A wise countermeasure would then appear to be simply to

acknowledge the existence of this bias and discard all con-

clusions derived retrospectively except the exceedingly unlikely

ones (beyond 5 or 6 standard deviations). While sound when

applied to results derived from large amounts of data, with

small sample sizes, this strategy also has the unwanted effect

of rejecting genuine results. With the small sample sizes often

encountered in geophysics, the best strategy seems to be a

two-stage approach using standard significance levels in both

a first step aimed at identifying candidate anomalies, where all

reasonable optimizations are allowed, and a second (forward)

validation step in which no optimization is allowed.
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