В. И. Попова, А. А. Леванов, В. А. Попов, Л. Н. Поспелова

ФЕРРОКОЛУМБИТ-ИЛЬМЕНОРУТИЛОВЫЕ ГРАФИЧЕСКИЕ СРАСТАНИЯ ИЗ ГРАНИТНЫХ ПЕГМАТИТОВ МИАССОВО-ТАТКУЛЬСКОГО ЖИЛЬНОГО ПОЛЯ ИЛЬМЕНСКИХ ГОР

V. I. Popova, A. A. Levanov, V. A. Popov, L. N. Pospelova

FERROCOLUMBITE-ILMENORUTILE GRAPHIC INTERGROWTH FROM THE TATKUL-MIASSOVO FIELD GRANITE PEGMATITE, IL-MEN MOUNTAINS

The syntaxic ferrocolumbite-ilmenorutile intergrowth, orientired in 3 systems, are given. In the growth fabric (001) ferrocolumbite is parallel to (101) ilmenorutile, and [010] thear is parallel.

Как продукты распада твердого раствора выделения колумбита в ильменорутиле отмечались П. Рамдором в гранитных пегматитах Ивеланда в Норвегии [7] и П.Черни и Ф.Чехом [8] в Западной Моравии около Вежне. В Ильменских горах манганоколумбит в ильменорутил-стрюверите установлен В. О. Поляковым [5] в амазонитовом пегматите копи 59, и есть упоминание о находках ильменорутила с включениями колумбита в гранитных пегматитах с иттриевой специализацией [3]; ильменские находки тоже были интерпретированы как распадовые. Позднее П.Черни с соавторами [9], изучая кристалл ильменорутила с включениями колумбита из пегматитов Гарон-Клейм (юго-восточная Манитоба, Канада), пришли к заключению об одновременной кристаллизации этих фаз. Нами изучены ферроколумбит-ильменорутиловые срастания из гранитных неамазонитовых пегматитов средней части Ильменских гор на Южном Урале.

Минералогическими исследованиями пегматитов Миассово-Таткульского жильного поля (между озерами Бол. Таткуль и Бол. Миассово) установлено, что из шестидесяти обследованных жил во многих развита какая-либо акцессорная редкоземельноредкометальная минерализация [2, 6]. По строению и составу (и, возможно, по относительному возрасту) выделяются не менее пяти разных типов гранитных пегматитов: 1) ритмично-зональные гранитоподобные тела с мусковит-гранатовыми зонами и пегматоидными кварц-микроклиновыми выделениями; 2) двуполевошпатовые пегматиты с блоковыми выделениями микроклина; 3) графические кварц-микроклиновые пегматиты с блоковой двуполевошпатовой зоной и кварцевым ядром; 4) зональные тела с аплитовой, пегматоидной кварц-плагиоклазовой и центральной графической кварц-микроклиновой зонами; 5) пегматиты с краевой графической кварц-микроклиновой зоной, сменяющейся графическим двуполевошпатовым пегматитом и блоковым микроклином, затем мусковит-кварц-альбитовой зоной и кварцевым ядром. В жилах первых трех типов характерны акцессорные ферроколумбит, ксенотим, циркон, монацит, ильменорутил, иногда турмалин, хризоберилл; в жилах 4 типа — ферроколумбиты, обогащенные танталом (танталит-колумбиты), монацит, турмалин, апатит, иногда хризоберилл, в жилах 5 типа — турмалин, колумбит-танталит и ферротанталит, берилл, циркон, монацит (в пегматите копи 232 найдены также тапиолит, микролит, броккит, дюмортьерит, триплит). При изучении кристаллов ильменорутила из трех различных по строению жил — № Гр4, 19 и 32 — центральной части поля (рис. 1) в двух из них (№ 19 и 32) были выявлены микровключения ферроколумбита.

Жила № Гр4 (типа 1) представляет собой ритмичнозональный двуслюдяной двуполевошпатовый гранит (в кварцитах) с чередованием зон разной зернистости с разным количеством граната и мусковита и пегматоидными кварц-микроклиновыми выделениями; ильменорутил обнаружен в мелкозернистом гранитоподобном кварц-мусковит-полевошпатовом агрегате краевой зоны жилы. Жила № 19 (типа 2), залегающая в гнейсах и субизометричная в плане, сложена двуслюдяным двуполевошпатовым пегматитом с блоковыми выделениями калишпата; ильме-

норутил развит в мелкоблоковом кварц-олигоклазовом агрегате краевой части жилы с акцессорными альмандином, монацитом и ксенотимом. Пегматитовая жила № 32 (типа 3) локализована в участке изгиба дайки крупнозернистого биотитового гранита, по ее западному контакту с амфиболитами; жила зональна с краевой биотит-

Рис. 1. Схема расположения описываемых жил Миассово-Таткульского поля.

Рис. 2. Форма кристаллов ильменорутила (*a*) и ассоциирующих с ним ферроколумбита (δ), монацита (ϵ) и цирконксенотимовых сростков (ϵ) из жилы № 32.

Пояснения в тексте

кварц-микроклиновой графической зоной, сменяющейся блоковым двуполевошпатовым агрегатом с крупными расщепленными пластинами мусковита, лейстами биотита и акцессорными ильменору-

тилом, альмандином, монацитом, ксенотимом, ферроколумбитом, цирконом, апатитом, хризобериллом; центральная часть жилы сложена кварцевым ядром [2].

Ильменорутил образует черные субизометричные зерна и кристаллы до 1—3 мм, частью с индукционными поверхностями совместного роста с породообразующими минералами (альбитом, мусковитом, кварцем). На редких хорошо образованных кристаллах короткопризматического габитуса (рис. 2, *a*) установлены формы: $a\{100\}$, $m\{110\}$, $s\{111\}$, иногда маленькая $\{511\}$, ранее не отмечавшаяся. Грани кристаллов ильменорутила имеют микроямчатую поверхность с алмазным блеском.

Кристаллы ферроколумбита в разных жилах немного различны по облику. В пегматите жилы № Гр4 кристаллики ферроколумбита досковидные, сильно удлиненные по [001] и уплощенные по {010}; габитусными гранями являются b{010}, m{110}, u{111}. В жиле № 32 это пинакоидально-призматические кристаллы, удлиненные вдоль [001] и уплощенные по {010} (рис. 2, δ), с габитусными формами b{010}, a{100}, c{001}, u{111}, e{201}, менее развитыми m{110}, g{130}, y{160}, s{221}, X{151} и участками индукционных поверхностей. Ферроколумбит встречен в неориентированных сростках с монацитом, ксенотимом и цирконом, но не отмечались сростки кристаллов ильменорутила с отдельными кристаллами ферроколумбита (а только с микровключениями).

Для монацита характерны таблитчатые кристаллы, уплощенные по [100], с развитием габитусных форм $a\{100\}, m\{110\}, w\{101\}, x\{\overline{1}01\}, v\{\overline{1}11\}, b\{010\}$ (рис. 2, *в*); в жиле № 32 такой Рис. 3. Распределение микровключений ферроколумбита в сечении (100) ильменорутила из жил № 19 (а) и 32 (б). Отраженный свет, зарисовка по фотографии

монацит встречен в сростке с дипирамидальным ксенотимом с гранями $z\{101\}$ и $a\{100\}$. Ксенотим часто образует закономерные срастания с цирконом (рис. 2, *г*); выступающие из ксенотима головки призматических кристаллов циркона огранены призмой $a\{100\}$ и дипирамидой $p\{111\}$.

При исследовании в отраженном свете полированных срезов ильменорутила, субпараллельных оси [001], в матрице ильменорутила (серого цвета) видны многочисленные включения ферроколумбита темно-серого цвета, разнообразные по размерам и форме. Величина их 0.001-0.2 мм по удлинению, распределение внутри кристаллов ильменорутила неравномерное и различающееся в разных жилах: в жиле № 19 включения ферроколумбита локализованы только в центральной части кристалла ильменорутила и составляют 15—16 % ее площади (рис. 3, а); в жиле № 32 количество включений ферроколумбита в центральной части кристалла ильменорутила составляет 8-9 % площади, а в периферической зоне ильменорутила — 10—11 % (рис. 3, б). Включения ферроколумбита представлены вытянутыми линзочками и цепочками субизометричных зерен с неровными ограничениями (рис. 4); некоторые зерна достигают поверхности кристаллов ильменорутила или граничат с вростками альбита и мусковита. В отраженном поляризованном свете зерна ферроколумбита угасают неодновременно, образуя три системы: в сечении, близком к (100) ильменорутила, преобладающее число включений ферроколумбита одной системы угасают примерно через 90° относительно угасания ильменорутила, другая система зерен ферроколумбита угасает через 132—133°, третья — через 165— 170°, отражая закономерные срастания с ильменорутилом. Нам известно только одно описание ориентированного срастания колумбита с ильменорутилом (из амазонитового пегматита Ильменских гор), где

Рис. 4. Форма включений ферроколумбита и характер неоднородности ильменорутила из жилы № 32.

Изображение во вторичных электронах (РЭММА-202М): светлые включения — ферроколумбит, серые участки ильменорутила обогащены ниобием, темносерые — обеднены; черное трещины и дефекты зерна. Горизонтальные линии рамки параллельны (011) ильменорутила

В. О. Поляковым [4] было установлено, что в сростке оси [010] ильменорутила и колумбита параллельны, а грань (001) колумбита совпадает с гранью (101) ильменорутила ($\rho = 33.8^{\circ}$). Величины углов между осью [100] и нормалями к граням {101} ильменорутила на стереопроекции составляют 57°, 90° и 123°, а между нормалями к граням {101} углы 45° и 66°. Измеренные нами углы угасания между системами зерен ферроколумбита в среднем близки этим величинам, поэтому можно полагать, что включения ферроколумбита образуют сростки с ильменорутилом по этому же закону.

Составы ильменорутила и ферроколумбита исследованы рентгеноспектральным микроанализом в 1988—89 гг. в Институте геологии и геофизики СО АН СССР (микрозонд «Камебакс Микро», программа CORREX, аналитик Л. Н. Поспелова, г. Новосибирск) и дополнены в 2000—2001 гг. в Институте минералогии УрО РАН (микрозонд JXА-733 Superprobe, аналитик Е. И. Чурин, г. Миасс). Всего выполнено 42 анализа, и наиболее представительные из них приведены в таблице.

Ильменорутил из разных жил неоднороден по составу при содержаниях 63—83 мас. % TiO₂, 8.5—24 % Nb₂O₅ и 3.7—7 % FeO. В жиле Гр4 в ильменорутиле включений колумбита не обнаружено, но ильменорутил характеризуется повышенным содержанием ниобия (табл., анализ 1). В ильменорутиле из жил № 19 и 32 включения ферроколумбита и их малый размер часто мешают анализу, однако отмечено, что расположение участков с повышенными содержания Nb и Fe в ильменорутиле пятнистое и в целом не зависит от распределения включений ферроколумбита; участки ильменорутила с разным содержанием ниобия иногда имеют ограничения, субпараллельные граням кристалла, отражая, вероятно, результат блочного роста зонально-секториальных кристаллов ильменорутила (см. рис. 4). В центральной части

Таблица

	1	2	3	4	5	6	7	8	9
NI O	22.02	10.40	10.01	70.00	70.52	0.46	,	(0.0)	70.10
ND_2O	22.93	12.42	19.91	/0.09	/0.53	8.46	11.98	68.26	/0.19
5									
Ta_2O_5	1.42	0.94	1.24	2.35	2.42	0.75	2.57	2.47	2.56
TiO ₂	68.53	79.23	72.23	4.58	3.42	83.06	77.64	5.03	3.87
FeO	5.21	4.54	6.46	17.20	16.57	3.72	5.02	18.34	17.34
MnO	0.09	0.06	0.06	1.56	4.18	0.09	0.01	1.09	3.50
MgO	0.20	H.o.	0.10	0.92	0.80	H.o.	0.02	0.96	0.46
WO ₃	0.02	H.o.	0.21	1.80	0.72	H.o.	0.08	1.80	0.89
CeO ₂	H.o.	H.o.	0.32	0.04	H.o.	H.o.	0.39	0.12	0.08
La_2O_3	0.18	H.o.	0.13	0.04	0.05	H.o.	0.23	0.03	0.03
Y_2O_3	H.o.	H.o.	0.18	0.50	H.o.	H.o.	0.15	0.47	0.62
Sc_2O_3	0.12	H.o.	0.13	1.14	0.23	H.o.	0.03	0.48	0.32
Сумма	98.70	97.19	100.97	100.22	98.92	96.08	98.12	99.05	99.86

Состав ильменорутила (1—3, 6—7), ферроколумбита из сростков (4, 8) и отдельных кристаллов ферроколумбита (5, 9), мас.%

Примечание. Анализы 1 — из жилы № Гр4; 2—5 — из жилы № 19 (2 — центр кристалла, 3 — край); 6—9 — из жилы № 32 (6 — центр кристалла, 7 — край). Микрозонд, аналитики Л. Н. Поспелова (ан. 1, 3—5, 7—9), Е. И. Чурин (ан. 2, 6). Н.о. — не определялось.

кристалла из жилы № 19, содержащей включения ферроколумбита, наиболее «чистый» ильменорутил содержит 79.23 мас. % TiO₂ и 12.42 % Nb₂O₅ (анализ 2). Периферическая зона этого кристалла, свободная от включений, тоже неоднородна и обогащена Nb (анализ 3), особенно зона роста призмы (в сравнении с зоной дипирамиды). В жиле № 32 в центральной части кристалла ильменорутила включений ферроколумбита меньше, и они мельче, а «чистый» ильменорутил содержит 83.06 мас. % TiO₂ и 8.46 % Nb₂O₅ (анализ 6); в периферической зоне ильменорутила (где больше включений ферроколумбита) титана немного меньше, а ниобия больше (анализ 7). В ильменорутиле из жилы № 32 в среднем характерны повышенные количества тантала. Микровключения ферроколумбита в ильменорутиле в отличие от самостоятельных кристаллов ферроколумбита характеризуются повышенными содержаниями титана, железа, вольфрама, скандия и меньшими — марганца. Отмечено небольшое различие в составе вростков ферроколумбита (в жиле № 32): включения в центре ильменорутила содержат меньше марганца и тантала (MnO 0.6-0.8; Та₂O₅ 2.1—2.2 мас. %) по сравнению с включениями той же системы в периферической зоне ильменорутила (MnO 1.6—1.9; Та₂О₅ 2.6—2.8 мас. %). Самостоятельные кристаллы ферроколумита зональны и секториальны по составу, что выявляется в кон-

Рис. 5. Изменение по профилю (а) относительных содержаний Nb и Ta (б) в кристалле ферроколумбита (по микрозондовым данным).

центрационных профилях при микрозондовом анализе (рис. 5) с некоторым увеличением средних содержаний тантала и марганца к периферии зерен.

Выше уже отмечалось, что подобные описанным срастания ранее рассматривались и как результат распада твердого раствора [1, 3, 5, 7, 8], и как продукты сокристаллизации [9]. В исследованных нами кристаллах ильменорутила гипотеза распада не подтверждается морфологическими признаками включений ферроколумбита. Во-первых, вростки ферроколумбита имеют сложную форму, характерную для синтаксических тел (а продукты распада должны были бы иметь пластинчатую и игольчатую форму). Во-вторых, вростки иногда достигают поверхности кристалла ильменорутила и граничат с зернами альбита и мусковита внутри кристаллов; именно синтаксические тела могут выходить на поверхность кристалла-матрицы (они собственно и зарождаются на его поверхности в процессе роста), а распадовые тела бывают только внутри матрицы. В-третьих, анатомическая картина распределения компонентов в сростках не показывает закономерного изменения состава ильменорутила вокруг вростков колумбита (нет обеднения компонентами колумбита). Таким образом, ориентированные срастания ферроколумбита с ильменорутилом в нашем примере относятся к явлениям синтаксии с законом срастания (001) ферроколумбита и (101) ильменорутила при параллельности их осей [010]; колумбит-ильменорутиловые закономерные срастания подобны кварц-полевошпатовым графическим срастаниям. Находки ильменорутила в краевых или промежуточных зонах пегматитов Миассово-Таткульского поля, парагенезис его с породообразующими минералами, отсутствие сростков с самостоятельными кристаллами ферроколумбита, некоторые различия в составе включений ферроколумбита и отдельных кристаллов его, а также более марганцовистый и танталистый состав краевых зон кристаллов ферроколумбита дают основания считать ильменорутил более ранним минералом в жилах, нежели кристаллы ферроколумбита; микровключения ферроколумбита являются ранней генерацией, а кристаллы его более поздней.

Авторы благодарны Е. И. Чурину, В. А. Котлярову, А. В. Рочеву за помощь в работе, а также чтут память В. О. Полякова, немало способствовавшего А. А. Леванову в исследованиях пегматитов.

Литература

1. *Корнетова В. А.* Ильменорутил // Минералы (справочник). М.: Наука, 1965. Т. 2, вып. 2. С. 259—265.

2. Леванов А. А. Гранитные пегматиты Миассово-Таткульского жильного поля Ильменских гор // Минералы месторождений и зон техногенеза рудных районов Урала. Свердловск: УрО АН СССР, 1990. С. 92—112.

3. Поляков В. О. Типоморфизм акцессорных редкометальных минералов в пегматитах Ильменских гор // Минералогия и генезис пегматитов / Информ. матер. IV Всесоюз. совещ., ч. 1. Миасс, 1991. С. 50—52.

4. Поляков В. О., Корнилов Ю. Б. Новые поступления в музей Ильменского заповедника // Материалы к минералогии Южного Урала. Свердловск: УНЦ АН СССР, 1978. С. 69—71.

5. Поляков В. О., Красина А. С. Соотношение тантала и ниобия в ильменорутилах из амазонитовых пегматитов Ильменских гор // Минералы и парагенезисы минералов месторождений Урала. Свердловск: УНЦ АН СССР, 1983. С. 23—25.

6. Попова В. И., Леванов А. А. Онтогения гранитных пегматитов копей 232 и 255 Ильменского заповедника // Онтогения пегматитов Урала. Свердловск: УНЦ АН СССР, 1980. С. 28—44.

7. *Рамдор П*. Рудные минералы и их срастания. М.: ИЛ, 1962. 1132 с.

8. Cerny P., Cech F. Ilmenorutil z Vezne na zapadni Morave a produkty jeho rozpadu // Casop. Moravsk. musea Brne, vedy prirod. 1962. № 47. C. 13—22.

9. Cerny P., Paul B., Hawthorne F. C., Chapman R. A niobian rutile — disordered columbite intergrowth from the Huron-Claim pegmatite, southeastern Manitoba // Can. Miner. 1981. Vol. 19. № 4. P. 541—548.