Уральский минералогический сборник, 2001, № 11

Е. В. Медведева, П. М. Вализер

НОВЫЕ ДАННЫЕ ПО МИНЕРАЛОГИИ МЕТАПЕЛИТОВ И АМФИБОЛИТОВ СЕЛЯНКИНСКОГО БЛОКА (ИЛЬМЕНО-ВИШНЕВОГОРСКИЙ КОМПЛЕКС, ЮЖНЫЙ УРАЛ)

E. V. Medvedeva, P. M. Valizer

NEW DATA ABOUT MINERALOGY OF METAPELITES AND AM-PHIBOLITES OF SELYANKINSKY BLOCK (ILMENO-VISHNEVOGORSKY COMPLEX, THE SOUTH URALS)

Rock-forming minerals (garnet, annite, amphibol) from Selyan-kinsky block was investigated in this paper. The temperature of forming this minerals vary from 720 to 620 $^{\circ}\text{C}.$

Ввеление

Ильмено-вишневогорский комплекс расположен в южной части Ильменогорско-Сысертской антиклинали. Породы селянкинского блока являются в пределах комплекса одними из наиболее древних и представляют собой фрагмент дорифейского (1850 млн. лет) платформенного фундамента (?), который претерпел длительную историю преобразований: 1) гранулитовый метаморфизм, 2) региональный диафторез, 3) мигматизацию в условиях амфиболитовой фации [2, 3, 4, 5, 9].

Объекты и методы исследования

Объектом исследования являются породы обнажения 244, которые принято считать типичными для высокоглиноземистых пород селянкинского блока. В них установлены пиропальмандиновые гранаты (2 химических анализа, 1 микрозондовый анализ), высокотитанистый биотит (2 химических анализа) и цирконы гранулитового облика [5]. Нами изучены минералы групп граната, амфибола и слюд. Микрозондовые анализы исследованных минералов (табл. 1) выполнены на растровом микроскопе РЭММА-202 с микроанализатором (аналитик В. А. Котля-

Таблица 1 Микрозондовые анализы (вес. %) минералов из пород селянкинского блока

Проба		Гней	с мигма	тизиров	занный 2	244-7		Гнейс	мигмат 244		анный	Лейкосома мигматизированных гнейсов 24-				14-10		
Мине-		гранат гранат		аннит гранат		ані	аннит гранат		аннит		аннит							
рал		(Gt_1)		(Gt	: ₁₋₂)	(Bi	1-2)	(G	\mathbf{t}_2)	(Bi ₁₋₂)(вкл)		(Gt_{2-3})			(Ві ₁ ?)(вкл)		(Bi ₁₋₂)	
Размер зерна	4.2 мм		0.68 мк		160 мк		3.2 мм		68 мk		1.3 мм			100 мк		102 мк		
Зона	(c)	(r)	(k)	(c)	(r)	(c)	(r)	(c)	(r)	(c)	(r)	(c)	(r)	(k)	(c)	(r)	(c)	(r)
X	6	3	1	1	2	1	2	1	2	1	2	4	6	1	1	2	1	2
№ зерна		1		2			1	1		1		1			1		2	
SiO ₂	37.69	37.39	37.25	37.37	37.75	34.97	34.36	36.57	36.6	35.24	34.95	36.61	36.96	35.74	40.47	35.55	33.76	34.19
Al_2O_3	21.52	21.45	21.34	21.12	21.37	17.89	17.79	21.54	21.5	17.60	17.39	71.07	21.18	20.61	18.91	16.31	15.14	15.38
TiO_2	-	-	-	-	-	3.97	3.43	-	-	2.79	2.96	-	-	-	0.54	1.94	4.44	4.15
FeO	32.63	33.35	34.65	33.42	33.01	20.17	21.09	33.09	33.93	19.73	20.73	31.59	31.34	33.54	19.91	22.6	23.33	23.24
MnO	1.07	1.12	1.24	1.13	1.06	-	-	2.16	1.94	-	-	2.64	2.99	4.09	-	-	-	-
MgO	5.88	5.31	3.96	5.57	5.68	9.99	10.1	5.33	4.85	11.44	10.51	5.53	5.01	3.51	9.08	10.47	10.09	9.79
CaO	1.1	1.3	1.33	1.25	1.0	0.10	0.24	1.17	0.98	0.24	0.36	2.45	2.45	2.39	0.80	0.43	0.26	0.21
K_2O	-	-	-	-	-	9.19	9.31	-	-	9.15	9.31	-	-	-	6.30	8.75	9.15	9.24
\sum	99.9	99.92	99.78	99.85	99.88	96.08	96.35	99.86	99.89	96.1	96.21	99.89	99.88	99.88	96.03	96.05	96.18	96.20
f	0.85	0.86	0.9	0.86	0.85	0.67	0.68	0.86	0.87	0.63	0.66	0.85	0.86	0.91	0.69	0.68	0.69	0.70
Alm	80.2	81.2	84.1	80.8	81.3	-	-	79.3	82.5	-	-	74.8	75.1	77.0	-	-	-	-
Py	14.5	13.0	9.6	13.5	14.0	-	-	12.8	11.8	-	-	13.2	12.0	8.1	-	-	-	-
Sp	2.6	2.7	3.0	2.7	2.6	-	-	5.2	4.7	-	-	6.2	7.0	9.4	-	-	-	-
Ca	2.7	2.1	3.3	3.0	2.4	-	-	2.8	2.4	-	-	5.8	5.9	5.5	-	-	-	-

Продолжение таблицы 1

T .	Меланосома мигматизированных гнейсов 244-4 Меланосома мигматизированных гнейсов 244-11										, ,								
Проба	Мелан	осома м	игмати	ізирован	ных гн	ейсов 2	44-4	Меланосома мигматизированных гнейсов 244							ов 244-	-11		Плагиогранит	
Ми-	гранат (Gt ₂₋₃) аннит		нит	аннит (Ві ₃)		гранат (Gr ₁ - ₃)				гранат (Gr ₁ - ₃)				аннит (Bi ₁₋₂)		гранат	(Gr ₂ ?)		
нерал	Ι	. (2	-37	(Bi ₂)	(вкл)		(3/	(1 3/			(01)				(=-1-2)		F (- 3.)		
Раз-				,															
мер	3	3.9 мм		60 мk		96 мк		5.4 мм			0.11 мм 0.68 мм			Вмм	1.02 мм		7.4 мм		
зерна				OO MK			70 mic					J.11 MM		0.00 11111		1.12 MM		7.7 191191	
Зона	(c)	(r)	(k)	(c)	(r)	(c)	(r)	(c)	(r)	(i)	(k)	(c)	(r)	(c)	(r)	(c)	(r)	(c)	(r)
X	2	8	2	1	2	1	2	4	6	2	4	6	1	1	2	1	2	13	25
№ зерна		1		1	l	2	2			1		1	2	3	3		1		1
SiO ₂	38.13	37.87	37.36	36.15	36.19	36.03	36.02	38.99	38.61	37.25	36.35	37.22	37.31	37.2	37.25	34.44	34.26	36.91	36.75
Al_2O_3	21.85	21.67	21.1	18.83	18.53	19.01	18.98	21.39	22.39	21.59	21.58	21.66	21.45	20.99	21.45	16.51	16.18	21.24	21.13
TiO_2	-	-	-	2.44	2.20	0.84	0.93	-	-	-	-	-	-	-	-	3.25	3.26	-	-
FeO	31.82	32.56	34.89	16.98	16.71	19.57	19.08	32.04	29.18	31.6	32.99	30.89	31.66	31.63	31.77	21.48	22.07	36.67	37.04
MnO	0.79	0.91	1.22	-	-	-	-	2.08	1.99	2.31	3.47	3.69	3.57	3.77	3.92	-	-	1.4	1.39
MgO	6.11	5.72	4.28	12.59	13.16	11.26	5.91	5.73	6.23	5.62	4.03	5.14	4.64	4.55	4.36	10.96	10.51	2.5	2.43
CaO	1.19	1.16	1.04	0.16	0.23	0.3	0.27	1.66	1.54	1.55	1.46	1.24	1.23	1.69	1.58	0.25	0.38	1.1	1.68
K_2O	-	-	-	9.13	9.09	9.08	9.13	-	-	-	-	-	-	-	-	9.35	9.51	-	-
Σ	99.89	99.89	99.89	96.29	96.12	96.08	96.10	99.88	99.95	99.83	99.88	99.84	99.86	99.83	99.86	96.23	96.17	99.85	-
f	0.84	0.85	0.89	0.55	0.56	0.63	0.76	0.85	0.83	0.85	0.89	0.86	0.87	0.87	0.88	0.66	0.67	0.66	0.67
Alm	79.7	80.7	84.2	-	-	-	-	77.2	74.9	76.9	78.6	75.4	77.1	76.0	76.3	-	-	-	-
Py	15.3	14.2	10.3	-	-	-	-	13.8	16.0	13.7	9.6	12.5	11.3	10.9	10.5	-	-	-	-
Sp	2.0	2.3	3.0	-	-	-	-	5.0	5.1	5.6	8.3	9.0	8.7	9.1	9.4	-	-	-	-
Ca	3.0	2.8	2.5	-	-	-	-	4.0	4	3.8	3.5	3.0	2.9	4.0	3.8	-	-	-	

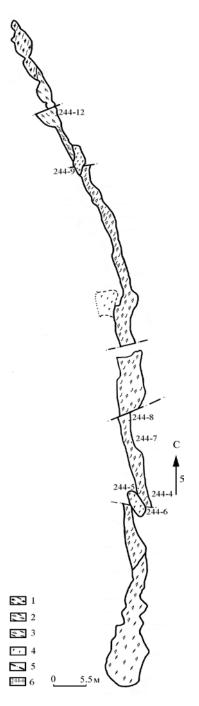
Продолжение таблицы 1

Проба	Амфиболит 244-6											7. 1			
Мине-	гранат (Gr ₂ - ₃ ?)			аннит (Ві ₃ ?) аннит (Ві ₁)			амфиболы								
Размер зерна	1.6 мм			67 мк		60 мк		1.3 мм		40 мк		20 мк		40 мк	
Зона	(c)	(r)	(k)	(c)	(r)	(c)	(r)	(c)	(r)	(c)	(r)	(c)	(r)	(c)	(r)
X	1	1	1	1	2	1	2	1	5	1	2	1	2	1	4
№ зерна		1		1		1]	1	2		3		4	
SiO_2	37.74	37.36	37.54	40.07	40.77	34.76	34.36	40.67	41.55	43.29	44.38	40.5	40.87	42.12	44.54
Al_2O_3	20.77	21.24	21.43	12.83	12.78	13.39	13.76	13.9	11.02	9.89	9.65	13.18	12.78	11.36	9.45
TiO_2	-	-	-	1.59	1.38	4.63	4.58	2.14	1.93	1.42	1.39	2.32	2.203	1.73	1.54
FeO	26.22	26.30	26.16	20.20	19.35	24.4	25.18	19.74	20.85	20.74	20.5	20.18	20.12	20.77	19.71
MnO	2.45	2.63	2.28	-	-	-	-	0.21	0.26	0.17	0.18	0.10	0.16	0.16	0.25
MgO	3.13	2.91	3.42	12.67	13.13	9.58	8.97	8.37	8.56	8.99	9.19	7.94	8.094	8.86	9.47
CaO	9.57	9.47	8.91	0.43	0.46	0.25	0.31	10.81	11.51	11.52	11.2	11.03	11.2	10.99	10.96
Na ₂ O	-	-	-	-	-	-	-	1.72	0.77	0.83	0.56	1.18	1.11	0.86	1.04
K_2O	-	-	-	8.03	8.01	8.91	8.82	1.97	1.74	1.31	1.17	1.79	1.75	1.52	1.21
$\frac{\sum}{\mathbf{f}}$	99.90	99.94	99.75	95.84	95.88	95.96	95.98	98.94	98.20	98.19	98.21	98.24	98.10	98.44	98.16
f	0.89	0.9	0.88	0.61	0.59	0.72	0.74	0.7	0.71	0.7	0.69	0.72	0.72	0.7	0.68
Alm	63.4	63.7	64.2	-	-	-	-	-	-	-	-	-	-	-	-
Py	7.6	7.0	8.4	-	-	-	-	-	-	-	-	-	-	-	-
Sp	5.9	6.4	5.6	-	-	-	-	-	-	-	-	-	-	-	-
Ca	23.1	21.7	21.9	-	-	-	-	-	-	-	-	-	-	-	-

Окончание таблицы 1

Проба					Амфибол	тит 244-9			эпчиние тис	,		
Минерал			амфибол			гранат (Gr ₂ - ₃ ?)						
Размер зерна	350мк		60	мк	100)мк	260	0мk	120мк			
Зона	(c)	(r)	(i)	однор.	(c)	(r)	(i)	(c)	(r)	однород- ный		
X	2	3	1	3	2	2	1	1	4	5		
№ зерна	1 2				3	3		4				
SiO ₂	42.49	38.45	43.41	43.16	41.92	42.6	43.54	41.99	43.79	37.59		
Al_2O_3	12.56	10.28	11.92	11.68	12.51	12.4	12.43	12.36	11.38	20.87		
TiO_2	1.96	2.27	2.19	2.15	2.01	1.85	2.19	2.03	1.67	0.20		
FeO	18.73	17.80	17.76	18.55	19.24	18.6	18.71	18.47	18.52	27.72		
MnO	0.21	0.26	0.19	0.16	0.14	0.17	0.21	0.27	0.17	1.18		
MgO	8.94	9.01	8.64	8.99	8.9	8.70	8.84	9.15	9.52	3.37		
CaO	11.38	11.23	11.40	11.25	11.48	11.34	11.24	11.30	11.45	5.47		
Na ₂ O	1.4	1.28	1.33	1.26	1.18	1.31	1.15	1.34	1.14	-		
K_2O	0.91	0.9	0.87	0.88	0.94	0.93	0.89	0.81	0.70	-		
$\frac{\sum}{f}$	98.77	91.49	97.73	97.76	98.33	98.00	99.20	97.73	98.36	96.39		
f	0.68	0.66	0.67	0.67	0.68	0.68	0.66	0.66	0.66	0.89		
Alm	-	-	-	-	-	-	-	-	-	67.02		
Py	-	-	-	-	-	-	-	-	-	8.12		
Sp	-	-	-	-	-	-	-	-	-	3.04		
Ca	-	-	-	_	-	-	-	-	-	21.96		

Рис. 1. Схематическая карта коренных выходов обн. 244. (по данным Е. П. Макагонова, А. Д. Рассказовой).


1 — гнейсы гранат-биотитовые с графитом, фибролитом; 2 — гнейсы гранат-биотитовые с полосчатой и веретенообразной текстурой; 3 — гнейсы гранат-биотитовые с телами плагиогранитного состава; 4 — амфиболиты; 5 — разрывные нарушения; 6 — точки отбора проб

ров) и микрозондовом анализаторе JCXA-773 JEOL (аналитик Е. И. Чурин) (стандарты: пироп-альмандин № 87375; ферримагнезиогорнблендит № 111356; биотит STD19).

Описание пород и результаты исследования минералов

Обнажение 244 представлено субмеридионально протяженнными грядами мигматизированных гнейсов, среди которых присутствуют субсогласные и секущие тела амфиболитов и небольшие изометричные тела пород плагиогранитного состава (рис. 1). Породы сильно дислоцированы, выделяется три системы складчатости с направлениями шарниров складок: 1) 84°∠ 49—50°; 2) 175—180° ∠ 10—15°; 3) 245—270° ∠ 10—15° (рис. 2).

Мигматизированные гранатбиотитовые гнейсы составляют около 92 % от общего объема пород обнажения и представлены преимущественно полосчатыми мигматизированными гнейсами, ширина полос лейкократового и меланократового материала колеблется от первых см до 10—15 см. Структура

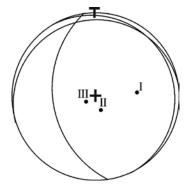


Рис. 2. Стереометрическая проекция плоскостей шарниров складок в гнейсах обн. 244.

I. $84^\circ \angle 49-50^\circ$; II. $175-180^\circ \angle 10-15^\circ$; III. $265^\circ \angle 10-15^\circ$

пород мелко-среднезернистая. Текстура полосчатая, линзовидно-полосчатая. Реже встречаются гнейсы с плойчатой и веретенообразной текстурой, образующие небольшие «гнезда» размером до

первых метров. Распределение лейкократового и меланократового материала в них примерно одинаково.

Гранат в гнейсах с веретенообразной структурой и меланосоме полосчатых гнейсов образует крупные индивиды (от 0.5 мм до 1.2 см), содержащие до 20 % включений (биотит, плагиоклаз, сфен, циркон, апатит), и мелкие зерна (0.3—0.1 мм) с редкими включениями. У отдельных индивидов граната меланосомы отмечаются шлейфы волочения из мелких кристалликов с более высоким содержанием марганца. Гранат лейкосомы представлен крупными кристаллами (от 0.5 мм до первых см). Аннит в гнейсах присутствует в виде отдельных табличатых индивидов среди кварц-полевошпатового гранолепидобластового агрегата (от 0.1 до 5 мм) и в виде включений в гранате (0.02 мм), где часто имеет прямоугольную форму с ровными границами.

Гранатовые плагиограниты образуют тело протяженностью около 3.5 м. Цвет пород — светло-серый. Структура крупносреднезернистая. Текстура массивная. Границы с вмещающими породами четкие. Индивиды граната (размером от 0.2 до 7 см) ситовидной структуры в объеме породы распределены неравномерно.

Гранатовые амфиболиты представлены линзовидными телами темно-серого цвета, мощностью до 2-2.5 м. Структура мелкозернистая. Текстура тонко-среднеплитчатая. Выделяются линзы субсогласного и секущего залегания. Гранат представлен мелкими индивидами (0.3—0.15 мм) с редкими включениями. В секущем теле гранат равномерно распределен по всему объему породы, а в субсогласном зерна граната отмечены лишь в замковых частях мелких складочек. Аннит амфиболитов образует гранобласты (0.35 \times 0.5 мм) с резорбированными границами, содержит включения (0.03 мм) циркона и присутствует в виде включений (0.1 мм) в гранате и плагиоклазе. Амфибол составляет до

60—75 % от основной массы и образует мелкие $(0.2 \times 0.5 \text{ мм})$ индивиды с резорбированными границами.

Гранат по составу соответствует: в гнейсах малокальциевому пироп-альмандину и марганцевому малокальциевому пироп-альмандину, в плагиогнейсах — альмандину и в амфиболитах-гроссуляр-альмандину (табл. 1).

Малокальциевый пироп-альмандин в веретенообразных гнейсах в крупных индивидах имеет обратную зональность, выраженную в понижении содержаний магния и повышении марганца от центра к краю зерна: центр — $Alm_{80.2}Py_{14.5}Sp_{2.6}$ Са-комп. $_{2.7}$, край — $Alm_{81.2}Py_{12.8}Sp_{2.8}Ca$ -комп. $_{3.2}$, оторочка — $Alm_{84.1}Py_{9.6}Sp_{3.0}Ca$ -комп. $_{3.3}$ (Gt $_1$) (рис. 3, а). Мелкие индивиды характеризуются слабой неоднородностью: центр — $Alm_{80.8}Py_{13.5}Sp_{2.7}Ca$ -комп. $_{3.0}$, край — $Alm_{81.3}Py_{14.0}Sp_{2.6}Ca$ -комп. $_{2.4}$ (Gt $_{1.2}$). В меланосоме полосчатых гнейсов малокальциевый пироп-альмандин образует крупные кристаллы с зональностью: центр — $Alm_{79.7}Py_{15.3}Sp_{2.0}Ca$ -комп. $_{3.0}$, край — $Alm_{80.7}Py_{14.2}Sp_{2.2}$ · Са-комп. $_{2.9}$, оторочка — $Alm_{84.2}Py_{10.3}Sp_{2.9}Ca$ -комп. $_{2.5}$ (Gt $_{2-3}$).

Марганцевый малокальциевый пироп-альмандин в веретенообразных гнейсах представлен мелкими зернами, с составом: центр — $Alm_{79.3}Py_{12.8}Sp_{5.2}Ca$ -комп. $_{2.8}$, край — $Alm_{82.5}Py_{11.8}Sp_{4.7}Ca$ -комп. $_{2.4}$ (Gt_2).

В <u>лейкосоме</u> полосчатых гнейсов данный гранат представлен крупными индивидами с обратной зональностью, выраженной в увеличении марганцовистости и уменьшении магнезиальности: центр — $Alm_{74.8}Py_{13.2}Sp_{6.2}Ca$ -комп._{5.8}, край — $Alm_{75.1}Py_{12.1}Sp_{7.0}$ Са-комп._{5.9}, оторочка — $Alm_{77.0}Py_{8.1}Sp_{9.4}Ca$ -комп._{5.5} (Gt_{2-3}) (рис. 3, г).

В меланосоме полосчатых гнейсов для крупных индивидов марганцовистого малокальциевого пироп-альмандина фиксируется сложная зональность: центр — $Alm_{77.2}Py_{13.8}Sp_{5.0}Ca$ -комп._{4.0}, край I — $Alm_{74.9}$ $Py_{16.0}Sp_{5.1}Ca$ -комп._{4.0}, край II — $Alm_{76.9}Py_{13.6}Sp_{5.7}Ca$ -комп._{3.7}, оторочка — $Alm_{78.6}$ $Py_{9.6}Sp_{8.3}Ca$ -комп._{3.5}($Gt_{1.3}$); для мелких индивидов регистрируются незначительные колебания по марганцу: центр

 $Alm_{76.0}$ $Py_{10.9}Sp_{9.1}C$ а-комп._{4.0}, край — $Alm_{77.0}Py_{10.2}Sp_{9.8}C$ а-комп._{3.0} (Gt₃) (рис. 3, б, в).

Альмандин в породах плагиогранитного состава образует крупные индивиды однородного состава с небольшим колебанием железа от центра к периферии (центр — $Alm_{88.0}Py_{5.0}Sp_{3.3}$ Са-комп._{3.7}, край — $Alm_{91.0}Py_{3.2}Sp_{3.1}Ca$ -комп._{2.7}) ($Gt_{3?}$).

Гроссуляр-альмандин из субсогласного амфиболитового тела неоднороден, от центра к краю фиксируется слабое увеличение со-

Рис. 3. Зональность в гранатах обн. 244: а — из гнейсов, обр. 244-7, размер зерна — 4.2 мм; б — из меланосомы полосчатых гнейсов, обр. 244-11, размер зерна — 0.11 мм; в — из меланосомы полосчатых гнейсов, обр. 244-11, размер зерна 3.2 мм; г — из лейкосомы полосчатых гнейсов, обр. 244-10, размер зерна 1.3 мм

держаний марганца и уменьшение магния: центр — $Alm_{66.6}$ $Py_{8.5}Sp_{2.7}Ca$ -комп. $_{22.0}$, край — $Alm_{67.3}Py_{7.6}Sp_{3.2}Ca$ -комп. $_{21.9}$ ($Gt_{2-3?}$). Гранат из секущего амфиболитового тела марганцевый с составом: центр — $Alm_{64.3}Py_{7.6}Sp_{6.4}Ca$ -комп. $_{21.7}$, край — $Alm_{63.7}Py_{7.0}Sp_{6.4}$ Ca-комп. $_{22.9}$, оторочка — $Alm_{64.2}Py_{8.3}Sp_{5.6}Ca$ -комп. $_{21.9}$ ($Gt_{2-3?}$).

Слюда во всех исследуемых породах представлена аннитом (табл. 1). Зональность в ней обусловлена изменениями содержания титана и, в меньшей мере, магния (табл. 1). Максимальное содержание титана — 4.6 вес. % в анните из основной массы амфиболита, минимальное содержание — 0.5 вес. % во включениях аннита в гранате лейкосомы полосчатых гнейсов.

В анните веретенообразных гранат-биотитовых гнейсов содержания титана варьируют в пределах 2.7—3.9 вес. % (табл. 1, Bi_{1-2} , обр.244-7 и 244-12), отмечается слабое уменьшение содержаний титана от центра (3.97 вес. %) к краю (3.43 вес. %). Для аннита этих пород из включений в гранатах характерно содержание титана 2.7—2.9 вес. % (табл. 1, обр. 244-12).

Аннии лейкосомы полосчатых гнейсов из основной массы содержит максимальное количество титана (4.4 вес. %). Аннии включений в центральной части малокальциевых пиропальмандинов имеет минимальное содержание титана и зонален: центр — 0.5 вес. %, край — 1.9 вес. %. Аннии из основной массы меланосомы полосчатых гнейсов имеет более низкое содержание титана 0.8—1.0 вес. %; а аннии включений в гранате имеет содержания титана 2.2—2.4 вес. %.

Аннит из секущего тела <u>амфиболитов</u> представлен двумя разностями: 1) аннит основной массы имеет максимально высокое содержание титана (4.6—4.5 вес. %); 2) аннит из пегматоидного прожилка содержит минимальное количество титана, неоднороден — центр 1.6 вес. %, край 1.2 вес. %.

Амфибол по составу отвечает ферричермакиту, калиевому ферричермакиту, магнезиогорнблендиту и ферримагнезиогорнблендиту. Отмечаются как отдельные индивиды амфиболов, так и зональные кристаллы. В субсогласном теле амфибол представлен ферричермакитом, ферримагнезиогорнблендитом. Зональные индивиды в центре имеют состав ферричермакита, а в краевой части — ферримагнезиогорнблендита (рис. 4, а, б). В секущем теле определены калиевый ферричермакит и магнезиогорнблендит. Зональные индивиды в центре имеют состав калиевого ферричермакита, а в краевой части — магнезиогорнблендита (табл. 1, обр. 244-6: 1, 2, 3, 4; 244-9: 1, 2, 3, 4) (рис. 4 в, г, д)

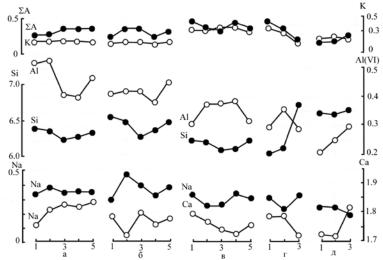


Рис. 4. Зональность амфиболов серии чермакит-горнблендит из амфиболитов:

а — чермакит, обр. 244-9, размер зерна 350 mk; б — чермакит-горнблендит, обр. 244-9, размер зерна 260 mk; в — чермакит, обр. 244-6, размер зерна 40 mk; г — чермакит-горнблендит, обр. 244-6, размер зерна 20 mk; д — горнблендит обр. 244-6, размер зерна 40 mk

Обсуждение результатов

В породах обнажения 244 отсутствуют минералы критических реакций, позволяющие четко определить условия и направление процессов метаморфизма. Детальное изучение вещественного состава минералов позволяет предположить следующие условия образования минеральных парагенезисов.

В гнейсах гранат представлен двумя зональными разновидностями — малокальциевым пироп-альмандином и марганцевым малокальциевым пироп-альмандином, которые зональны. Малокальциевые пироп-альмандины содержат максимальные количества пиропового минала (16.0 %), возможно отражают гранулитовый этап метаморфизма. Однако, гранат интенсивно разбит трещинами, что позволяет предположить гомогенизацию граната и диффузное перемещение компонентов. Обратная зональность в гранате характеризует регрессивную направленность метаморфических процессов и фиксирует условия высокотемпературной амфиболитовой фации. Зональность и вещественный состав марганцевого малокальциевого пироп-альмандина позволяют предположить его формирование в условиях от амфиболитовой до эпидот-амфиболитовой фации (мигматизация). В субсогласном теле амфиболитов гроссуляр-альмандин имеет обратную зональность, выраженную в сопряженном колебании марганца и магния, которая позволяет сделать предположение о двух этапах его преобразования в условиях амфиболитовой и эпидот-амфиболитовой фаций метаморфизма. Более высокое содержание марганца для гроссуляр-альмандина из секущего тела может свидетельствовать об относительно более низкой температуре его образования. Альмандиновый гранат в породах плагиогранитного состава фиксирует мигматизацию в условиях низкотемпературной эпидот-амфиболитовой фации.

Аннит в породах обнажения имеет широкий диапазон колебаний по содержанию титана. Максимальные концентрации титана в анните из гнейсов 4.4—3.9 вес. %, на графике (рис. 5) аннит располагается в полях гиперстен-гранат-биотитовых и биотит-гранатовых пород гранулитовой фации метаморфизма. В анните преимущественно фиксируется уменьшение содержаний титана от центра к краю зерен, что свидетельствует о регрессивном РТ-пути метаморфических процессов. (Но включения аннита в гранате из лейкосомы характеризуются увеличением титана от центра к краю от 0.5 до 1.9 вес. %). Аннит из секущего тела амфиболита содержит максимальное количество титана — 4.6 вес. %, что соответствует полю гиперстен-биотит-роговообманковых пород гранулитовой фации

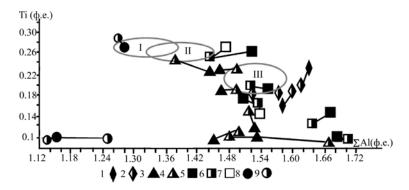


Рис. 5. График распределения Ті и Al с доверительными эллипсами (по Е. Н. Ушаковой) в биотитах из высокоглиноземистых гнейсов селянкинского блока.

Гнейсы мигматизированные: 1 — центр зерна; 2 — край зерна; лейкосома: 3 — центр зерна; 4 — край зерна; меланосома: 5 — центр зерна; 6 — край зерна, 7— оторочка; амфиболит: 8 — центр зерна; 9 — край зерна

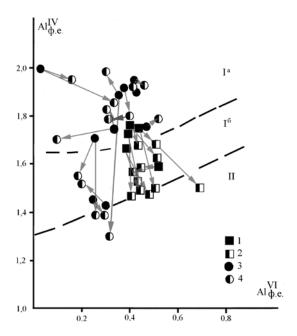


Рис. 6. График распределения Al(VI) и Al(IV) в амфиболах из амфиболитов обн. 244.

Согласное тело амфиболитов: 1 — центр зерен; 2 — край зерен. Секущее тело амфиболитов: 3 — центр зерен; 4 — край зерен. I^a — поле амфиболов из гранулитов Лапландии и Сутамского района, I^6 — поле амфиболов из гранулитов комплекса Адирондака (по Γ . М. Друговой), Π — поле амфиболов амфиболитовой фации (по Π В. А. Закруткину)

(рис. 5). Аннит из пегматоидного прожилка в секущем амфиболите содержит минимальные количества титана 1.6 вес. % и отражает мигматизацию низкотемпературной амфиболитовой фации.

Амфибол из амфиболитовых тел представлен в зональных индивидах: в центре — ферричермакитом и калиевым ферричемакитом, в краевой части — ферримагнезиогорнблендитом и магнезиогорнблендитом. По соотношению октаэдрического и тетраэдрического алюминия ферричермакит и калий ферричермакит отвечает условиям гранулитовой фации, а ферримагнезиогорнблендит и магнезиогорнблендит-амфиболитовой (рис. 6).

Температура метаморфических процессов образования и преобразования пород обнажения 244, оцененная по ассоциациям гранат-биотит, гранат-амфибол и амфибол-биотит, варьирует в интервале 720—620 °C (табл. 2).

Определение температуры по геотермометрам гранат-биотит, гранат-амфибол и амфибол-биотит $^{Taблицa\ 2}$

Порода		Гра	анат		Био	ТИТ	Амф	ибол	Температура (С°)		
•	Название	(c)	(r)	(k)	(c)	(r)	(c)	(r)	**	***	
Гнейсы мигмати- зирован- ные	Мало-Са Py-Alm	0.15	0.14	0.01	0.37 *0.3	0.3 *0.4			(c)620° (r) 680° (k) 640° *(c) 680° *(r) 640°	(c)700° (r) 780° (k) 680°	
лейкосома	Mn мало-Са Py-Alm	0.14	0.13	0.09	*0.28	0.3 *0.31			(c) 680° (r) 660° (k) 620° *(c) 680° *(r) 680°	(c) 800° (r) 780° (k) 700°	
меланосома	Mn мало-Са Ру-Alm	0.15	0.17(I) 0.13(II)	0.1	*0.36	0.32 *0.34			(c) 680° (r)720° (i)680° (k) 630° *(c)720° *(r)680°	(c) 750° (r) 820° (i)≈700 (k) 620°	
	мало-Са Py-Alm	0.16	0.14	0.11	0.34 *0.32	0.34 *0.34			(c) 680° (r) 660° (k) 620° *(c)700° *(r)680°	(c) 820° (r) 750° (k) 640°	
Амфибо- лит субсоглас- ный	Gr-Alm	0.098	0.091		0.4 0.25	0.33	0.15 0.28	0.11	(c)580° (r) 620° (c) 650° (r) 600° -580°	(c)700° (r) 720°	
Амфибо- лит секущий	Gr-Alm	0.096					0.14 0.28	0.13 0.30	(c) 680° (r)620 -650°		

Примечания: * — биотит из включений в крупных гранатах; ** — по Л. Л. Перчуку; *** — по В. А. Глебовицкому.

Таким образом, изложенные выше данные указывают на длительную историю метаморфических процессов, протекающих при максимальных термодинамических параметрах, соответствующих низкотемпературной гранулитовой фации метаморфизма.

Исследования поддержаны РФФИ и Администрацией Челябинской области (проект 01-05-96418).

Литература

- 1. Гранулитовая фация метаморфизма / Под ред. Γ . М. Друговой. Л., Наука, 1972. 256 с.
- 2. Иванов Б. Н., Роненсон Б. М., Баженов А. Г., Кошевой Ю. Н. Анатектитовые мигматиты селянкинской толщи ильменогорского комплекса (Южный Урал) // Доордовикская история Урала. Т. 6. Метаморфизм. Свердловск: УНЦ АН СССР, 1980. С. 60—75.
- 3. Краснобаев А. А., Ленных В. И., Холоднов В. В., Жданова С. Н. О реликтах гранулитового метаморфизма в породах ильменогорского комплекса (Южный Урал) // Доклады АН СССР. 1980. Т. 253. № 5. С. 1193—1196.
- 4. Ленных В. И., Рассказова А. Д., Петров В. И. Гранулитовый метаморфизм в ильменских и вишневых горах // VII Всесоюзное петрографическое совещание. Тез.докладов. Т. 3. Новосибирск, 1986. С. 98—100.
- 5. Ленных В. И., Рассказова А. Д. Особенности гранатов из метапелитов Селянкинского блока ильмено-вишневогорского комплекса // Минералы и минеральное сырье Урала. Екатеринбург: УНЦ АН СССР, 1992. С. 58—63.
- 6. *Медведева Е. В., Вализер П. М., Котляров В. А.* Эволюция парагенезиса гранат-биотит в породах селянкинского блока Ильмено-Вишневогорского комплекса Южного Урала // Петрография на рубеже XXI века: итоги и перспективы. Т. IV. Сыктывкар, 2000. С. 102—104.
- 7. Никандров С. Н., Кобяшев Ю. С., Вализер П. М. Амфиболы Ильменогорского комплекса. Серия геологическая. Миасс: ИГЗ УрО РАН, 2000. 119 с.
- 8. Рассказова А. Д., Ленных В. И. Реликты двупироксеновых кристаллосланцев и магнетитовых кварцитов // Минералы и минеральное сырье горно-промышленных районов Урала. Свердловск: УНЦ АН СССР, 1989. С. 87—94.
- 9. *Русин А. И.* Дорифейские метаморфические комплексы Восточного склона Урала // Доордовикская история Урала. Т. 6. Метаморфизм. Свердловск, 1980. С. 41—59.
- 10. Термо- и барометрия метаморфических пород / Под ред. В. А. Глебовицкого. Л.: Наука, 1977. 207 с.

79