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Finite-element analysis of controlled-source electromagnetic
induction using Coulomb-gauged potentials

Eugene A. Badea∗, Mark E. Everett‡, Gregory A. Newman∗∗,
and Oszkar Biro§

ABSTRACT

A 3-D finite-element solution has been used to
solve controlled-source electromagnetic (EM) induction
problems in heterogeneous electrically conducting me-
dia. The solution is based on a weak formulation of the
governing Maxwell equations using Coulomb-gauged
EM potentials. The resulting sparse system of linear al-
gebraic equations is solved efficiently using the quasi-
minimal residual method with simple Jacobi scaling as
a preconditioner. The main aspects of this work include
the implementation of a 3-D cylindrical mesh generator
with high-quality local mesh refinement and a formu-
lation in terms of secondary EM potentials that elimi-
nates singularities introduced by the source. These new
aspects provide quantitative induction-log interpreta-
tion for petroleum exploration applications. Examples
are given for 1-D, 2-D, and 3-D problems, and favor-
able comparisons are presented against other, previously
published multidimensional EM induction codes. The
method is general and can also be adapted for controlled-
source EM modeling in mining, groundwater, and envi-
ronmental geophysics in addition to fundamental studies
of EM induction in heterogeneous media.

INTRODUCTION

The controlled-source electromagnetic method (CSEM)
is well established in geophysical prospecting. The CSEM
method involves energizing the electrically conducting earth
with an inductively coupled or directly coupled time-varying
source of current and measuring with coincident or remote re-
ceivers the secondary electromagnetic (EM) field caused by
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the resulting eddy currents. The secondary field, at frequencies
where the displacement current is negligible, depends primar-
ily on the electrical conductivity distribution of the ground. In
CSEM applications, the transmitters and receivers may be air-
borne, placed on the surface, or located in a borehole. A good
overview of the CSEM method can be found in Nabighian
(1988, 1991).

Wireline induction logging is a CSEM application that uses
coaxial borehole transmitter and receiver coils of fixed sep-
aration. The method has long been used within the oil and
gas industry (Doll, 1949) to infer in-situ electrical conductiv-
ity depth profiles within reservoirs. The electrical conductivity
profiles, especially when analyzed jointly with other physical
properties derived from well logs, are important because they
can aid in diagnosing the structural, textural, and lithographic
variations of the formation. In some cases they can permit an
estimation of hydrocarbon potential. An introduction to the
theory of induction logging can be found in several references
(Moran and Kunz, 1962; Chang and Anderson, 1984; Kaufman
and Keller, 1989; van den Berg and van der Horst, 1995).

It is widely believed that CSEM prospecting methodologies,
including but not limited to induction logging, will benefit from
an improved quantitative understanding of CSEM responses in
arbitrary 3-D geological settings. The development of such an
understanding hinges on the ability to model EM induction in
3-D electrically conducting media. Several algorithms already
exist for determining the EM response of a 3-D conducting
earth to CSEM or plane-wave excitation (Wang and Hohmann,
1993; Druskin and Knizhnermann, 1994; Newman and
Alumbaugh, 1995; Xiong and Tripp, 1995; Everett and Schultz,
1996; Anderson et al., 1996; Smith, 1996; Avdeev et al., 1997;
Zhdanov and Fang, 1997; Zanoubi et al., 1999). The demanding
programming and storage requirements of forward modeling,
the potential economic and scientific benefits of improvements
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in geophysical prospecting methods, and the complexity of
the earth’s geology all stimulate additional research into tech-
niques for efficient and accurate solutions capable of handling
general 3-D electrical conductivity distributions.

Only a short time ago, finite-element (FE) modeling of
3-D EM induction for geophysical prospecting applications was
considered beyond the capability of readily available comput-
ers. Now it is tractable on desktop workstations. Finite-element
methods have enjoyed widespread popularity for some time in
engineering computational electromagnetics (Biro and Preis,
1989; Boyse et al., 1992; Mur, 1993) and are presently bene-
fiting from advances in unstructured mesh generation, sparse
matrix solvers, postprocessing, and visualization techniques.

We consider an FE algorithm for inductively coupled 3-D
CSEM modeling for geophysical prospecting applications. The
algorithm is based on the so-called (As, 9s) secondary coupled-
potential formulation of Maxwell’s equations. Similar formula-
tions but in terms of total EM potentials (A, 9) have been used
by Biro and Preis (1989) to solve eddy current problems and by
Everett and Schultz (1996) to model global-scale geomagnetic
induction in the earth’s upper mantle. Our interest and the
numerical examples presented here pertain to borehole induc-
tion logging, but the algorithm is quite general. For example,
it could be applied to surface and airborne CSEM problems.

FINITE-ELEMENT ANALYSIS

FE and finite-difference (FD) methods (Wang and
Hohmann, 1993; Newman and Alumbaugh, 1995; Anderson
et al., 1996; Smith, 1996) are numerical techniques for solving
Maxwell’s diffusion equations in inhomogeneous, electrically
conducting media. The two methods are comparable in terms of
solution accuracy, storage requirements, and execution speed.
The FE method operates with completely unstructured meshes
whose element boundaries can be made to conform to ir-
regular geometries that are characteristic of subsurface het-
erogeneities, including the deviating boreholes, fluid invasion
zones, and dipping geological formations routinely encoun-
tered in petroleum well logging. The FD method operates with
structured grids that do not conform to irregular configurations.

Integral equation and series solutions to 3-D CSEM prob-
lems in geophysics are also available (Xiong and Tripp, 1995;
Avdeev et al., 1997; Zhdanov and Fang, 1997) and are compu-
tationally efficient in terms of computer memory and execu-
tion speed. For example, Avdeev et al. (1997) use a modified
Neumann series approach in which an unknown equivalent
source current density drives a secondary EM field. The
method is rapidly convergent and efficient compared with tra-
ditional integral equation methods where inversion of a full
matrix is required.

FE solutions to EM induction problems can be formulated in
terms of coupled vector-scalar potentials (A, 9) or directly in
terms of an electric or magnetic field vector E or H. While both
formulations offer their own advantages, they must satisfy the
following two key requirements: (1) the normal electric field
component is permitted to jump at material interfaces while the
tangential field components remain continuous and (2) the cal-
culated EM fields contain no purely divergent spurious modes.
In an E or H field formulation, these requirements can be met
with the use of an explicit penalty coefficient on the EM field di-
vergence (Zanoubi et al., 1999) or else by adopting specialized
vector or edge elements (Barton and Cendes, 1987; Sugeng,

1998; Zanoubi et al., 1999.) By construction, edge elements
are divergence free and hence cannot support spurious modes.
The unknowns are the tangential components of the electric
field along edges of the elements. Edge elements also permit
the normal component of the electric field to be discontinuous
across material interfaces.

An alternative to a direct E or H field formulation is to use
gauged EM potentials (Biro and Preis, 1989.) This approach is
taken here. Since the magnetic vector potential A and electric
scalar potential 9 are both continuous across material inter-
faces, edge elements are not needed. Furthermore, enforcing
the Coulomb gauge condition ∇ · A= 0 ensures that the cal-
culated EM potentials contain no purely divergent spurious
modes (Paulsen and Lynch, 1991).

Gauged EM potentials

Electric and magnetic fields at low frequencies (such that
displacement currents can be neglected) satisfy the diffusive
Maxwell’s equations:

∇ × E = iωµ0H, (1)

∇ ×H = J = JS+ σE, (2)

where ω is the angular frequency,µ0 is the permeability of free
space, and σ (r) is the spatially varying electrical conductivity
of the geological formation being studied. The electric current
density J divides into a source term JS, which is known, plus
an ohmic conduction term σE, which describes the induced
or eddy currents inside the earth. The underlying exp(−iωt)
time dependence is implicitly assumed in these equations. A
constitutive equation B=µ0H relates the magnetic induction
and magnetic field vectors. The divergence-free conditions
∇ · J= 0 and ∇ ·B= 0 are also imposed, indicating no point
sources or sinks of electric current or magnetic induction exist
inside the solution domain Ä.

Equations (1) and (2) sometimes are solved more readily if
the EM field (E,H) is expressed in terms of a magnetic vector
potential A and an electric scalar potential 8, defined accord-
ing to the following pair of equations:

B ≡ ∇ ×A, (3)

E ≡ iωA−∇8. (4)

In terms of the EM potentials, equation (2) becomes the curl–
curl equation:

∇ × ∇ ×A = µ0JS+ µ0σ (iωA−∇8). (5)

The discretized curl–curl equation leads to asymmetric FE
matrices and the possibility of numerically unstable spurious
modes (see Paulsen and Lynch, 1991.) To avoid these numeri-
cal difficulties, we follow the approach of Biro and Preis (1989)
and incorporate the term −∇(∇ · A) to the left side of equa-
tion (5) to get

∇ ×∇ ×A−∇(∇ ·A)− iωµ0σ (A+∇9) = µ0JS. (6)

The added term vanishes and equation (5) remains unchanged
as long as the Coulomb gauge condition ∇ ·A= 0 is satisfied.
Applying the vector identity ∇ × ∇ ×A − ∇(∇ ·A)=−∇2A
shows that equation (6) is equivalent to a vector Helmholtz
equation

∇2A+ iωµ0σ (A+∇9) = −µ0JS, (7)
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for which the discretized form is numerically very stable. In
deriving equations (6) and (7) we have introduced the reduced
scalar potential 8≡−iω9, which will lead to a symmetric FE
matrix.

By taking the divergence of equation (5), we easily verify
that the divergence-free condition∇ · J= 0 is automatically en-
forced. However, this condition is no longer satisfied if the aug-
mented equation (6) is used. Thus, to maintain a divergence-
free current density, the auxiliary equation

∇ · [iωµ0σ (A+∇9)] = 0 (8)

must be solved simultaneously with the Helmholtz equation.
Equations (7) and (8) are valid inside the solution domain Ä
and constitute the incompletely gauged (A, 9) coupled vector-
scalar potential formulation of Maxwell’s equations. In deriv-
ing equation (8), we assume ∇ · JS= 0, which is valid for an
inductively coupled source. For directly coupled sources, such
as an electric dipole, this is invalid.

By themselves, equations (7) and (8) are insufficient to guar-
antee a unique vector potential A. The possibility for genera-
tion of spurious modes still exists. To remove this possibility, the
Coulomb gauge condition ∇ ·A= 0 must be applied through-
out the solution domain Ä. Following Biro and Preis (1989),
we take the divergence of equation (6) to obtain

∇2(∇ ·A) = 0, (9)

which shows that the divergence of the vector potential A sat-
isfies Laplace’s equation everywhere inside the solution do-
main Ä. Thus, to apply the Coulomb gauge, we enforce a zero
Dirichlet condition on ∇ ·A along the boundary 0 of the solu-
tion domain. This statement follows from a well-known theo-
rem which states that a function u satisfying Laplace’s equation
∇2 u= 0 on some domainÄ, with homogeneous boundary con-
dition u= 0 prescribed along the boundary0, is identically zero
on that domain.

Secondary potentials

The source often enters directly into the formulation of a
CSEM problem through the explicit specification of the source
current density JS in equation (7). However, when a secondary
potential formulation is used to model EM induction, a source
of arbitrary shape, complexity, and orientation can be intro-
duced conveniently by defining a set of known, primary EM
potentials (Ap,9p). The primary potentials normally consist of
the analytic expression for induction in a homogeneous forma-
tion with σp= const. or a layered electrical conductivity struc-
ture of the form σp(z). However, the primary potentials could
be the response of any heterogeneous conductivity structure
σp(r).

The secondary EM potentials (As, 9s) are defined accord-
ing to A≡Ap+As and 9 =9p+9s, in terms of which the
governing equations (7) and (8) become

∇2As + iωµ0σ (As +∇9s) = −iωµ01σ (Ap +∇9p),

(10)

∇ · [iωµ0σ (As +∇9s)] = −∇ · [iωµ0σ (Ap +∇9p)],

(11)

where 1σ ≡ σ − σp is the difference between the conduc-
tivity distribution σ (r) whose response is required and the
background distribution σp(r) whose response is already
known.

Boundary conditions and primary potentials

Boundary conditions on the EM potentials (As, 9s), which
are relevant to the induction logging problem considered here,
are relatively straightforward, although for other CSEM ap-
plications they can become more involved. In this work, the
induction logging problem is formulated using a cylindrical
geometry, with the vertical coordinate z oriented positive
downward. The transmitter is embedded in an inhomogeneous
conductor representing the geological formation and is pre-
sumed to be a filamentary current loop of finite radius a lo-
cated at vertical position z= zS on the z-axis of the cylindrical
solution domain Ä. We consider a horizontal loop, but the al-
gorithm is more general and can handle, for example, tilted
loops corresponding to deviated boreholes. The outer curved
walls and the top and bottom end caps ofÄ constitute the outer
boundary 0. The outer walls and end caps are assumed to be
located far enough away from the transmitter so that the EM
fields there have a negligible value. In this case, a homogeneous
Dirichlet boundary condition

(As, 9s) ≡ (0, 0) on0 (12)

is valid on the outer boundary 0.
The primary potentials (Ap, 9p) are chosen to be the po-

tentials from a horizontal loop source located in a homoge-
neous formation described by a uniform electrical conductivity
σp= σ0. For a horizontal loop transmitter of radius a centered
on position (ρ, z)= (0, zS) and carrying a current I , the primary
potentials are given by the Hankel transform

Ap(r) = Ap(ρ, z)φ̂ = µ0 I aφ̂

2

∫ ∞
0

1
α0

exp(−α0|z− zS|)

× J1(λa)J1(λρ)λ dλ (13)

and 9p≡ 0, where φ̂ is the unit vector in the azimuthal di-
rection, α2

0 = λ2− iµ0σpω, and J1 is the Bessel function of
order one. Equation (13) verifies that the divergence of Ap

vanishes, a necessary condition for satisfying the Coulomb
gauge condition. All Hankel transforms in this paper are calcu-
lated using the digital filter method of Guptasarma and Singh
(1997).

The weak boundary value problem

Despite the natural cylindrical geometry for the induction
logging problem under consideration, the finite-element anal-
ysis is conveniently carried out in Cartesian coordinates. In this
frame, the vector Laplacian operator readily decomposes into
three scalar Laplacian operators, which eases the calculations
required to assemble the finite-element matrix. Thus, the sec-
ondary magnetic vector potential As is written as

As = Asxx̂ + Asyŷ+ Aszẑ, (14)
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whereupon equations (10) and (11) become

∇2 Asx+ iωµ0σ

(
Asx+ ∂9s

∂x

)
= −iωµ01σ Apx,

∇2 Asy+ iωµ0σ

(
Asy+ ∂9s

∂y

)
= −iωµ01σ Apy,

∇2 Asz+ iωµ0σ

(
Asz+ ∂9s

∂z

)
= −iωµ01σ Apz, (15)

iωµ0

(
∂σ Asx

∂x
+ ∂σ Asy

∂y
+ ∂σ Asz

∂z

)
+ iωµ0∇ · [σ∇9s] = −iωµ0∇ · [σAp].

The FE analysis of 3-D CSEM induction starts with con-
sideration of the weak formulation (Wait and Mitchell, 1985;
Biro and Preis, 1990) of the coupled potential boundary
value problem defined by equation (15) subject to bound-
ary condition (12). The weak solution is the set of func-
tions (Asx, Asy, Asz, 9s) which satisfies the volume-integrated
equations

−(∇η,∇Asx)Ä + iωµ0

(
ση, Asx+ ∂9s

∂x

)
Ä

= −iωµo(1ση, Apx)Ä,

−(∇η,∇Asy)Ä + iωµ0

(
ση, Asy+ ∂9s

∂y

)
Ä

= −iωµo(1ση, Apy)Ä,
(16)

−(∇η,∇Asz)Ä + iωµ0

(
ση, Asz+ ∂9s

∂z

)
Ä

= −iωµo(1ση, Apz)Ä,

iωµ0

(
η,
∂σ Asx

∂x
+ ∂σ Asy

∂y
+ ∂σ Asz

∂z

)
Ä

− iωµ0(σ∇η,∇9s)Ä = iωµ0(σ∇η,Ap)Ä

for every suitable choice of the test function η(r). In equation
(16) and hereafter, the shorthand notation

(u, v)Ä ≡
∫
Ä

uv dÄ and (∇u,∇v)Ä ≡
∫
Ä

∇u · ∇v dÄ

(17)
is used for volume integrals. Equations (16) were formed by
multiplying each equation (15) by η(r) and then integrating
over the solution domain Ä. The test function η(r) can be any
continuous function that vanishes on the boundary 0 and has
square-integrable spatial derivatives.

In the derivation of equation (16), the four terms in equation
(15) that contain second-order derivatives were integrated by
parts to reduce by one the order of the differentiation. The two
integration-by-parts formulas used are Green’s formula,

(u,∇2v)Ä = −(∇u,∇v)Ä + surface terms, (18)

and a related identity,

(u,∇ · [σ∇v])Ä = −(σ∇u,∇v)Ä + surface terms. (19)

Integration by parts is standard practice in FE analysis. Without
it, the linear approximation of the vector potential As that we
plan to use [see equation (20)] would not make sense. The
surface terms appearing in equations (18) and (19), which are

2-D integrals over the boundary 0, vanish because the test
function η(r) is zero on the boundary of Ä.

The weak solution, despite its name, is unique (Wait and
Mitchell, 1985) and satisfies both the strong formulation of
the boundary value problem [equations (10–12)] and the weak
formulation, [equation (16)]. The equivalence of the weak
and strong solutions is a fundamental property of Euler-type
second-order partial differential equations. For a more com-
plete discussion see Silvester and Ferrari (1996). Our central
objective is to find the weak solution using a FE approximation.

Finite-element matrix assembly

If piecewise linear expansions are used for the EM poten-
tials (As, 9s), the weak system of differential equations given
by equation (16) can be reduced to a sparse system of linear
algebraic equations. The latter is readily solved by an iterative
sparse matrix routine. To assemble the sparse FE system of
equations, the 3-D solution domain Ä is first discretized into
a mesh of nonoverlapping polyhedral elements with nodes at
the vertices. Later, we discuss the mesh generation algorithm,
which partitions the domain Ä into tetrahedra.

To initiate the FE sparse matrix assembly, the EM potentials
(As, 9s) are expanded into a piecewise linear representation:

As(r) =
N∑

j=1

Asx jα j (r)x̂ + Asyjα j (r)ŷ+ Aszjα j (r)ẑ,

(20)

9s(r) =
N∑

j=1

ψs jα j (r), (21)

where α j (r) is a linear nodal basis function (Everett and
Schultz, 1996) associated with node j of the mesh, while
(Asx j, Asyj, Aszj, ψs j) for each of j = 1, . . . , N are unknown co-
efficients to be found by the FE analysis. There are N nodes in
the interior of the mesh, not including the nodes that lie on the
boundary0. When nodal basis functions are used in the expan-
sions equations (20) and (21), the 4N coefficients are equal to
the values (as yet unknown) of the secondary EM potentials
on the interior nodes of the mesh.

The piecewise linear expansions for the secondary EM po-
tentials, given by equations (20) and (21), are inserted into
equation (16). This insertion clearly generates only four equa-
tions in the 4N unknown coefficients, a grossly underdeter-
mined system. However, a test function η(r) has yet to be spec-
ified. The test function η(r) can be chosen as the nodal basis
function αi (r) associated with an interior node i of the mesh.
Indeed, in the Galerkin method a well-determined set of 4N
linear equations in 4N unknowns is generated if each of the
N basis functions {αi (r)}Ni=1 is used, in turn, as the test func-
tion. It can be shown (Wait and Mitchell, 1985) that as N→∞,
the unique solution to this well-determined system of equa-
tions converges to the strong solution of the boundary value
problem prescribed by equations (12) and (15).

The linear system that results from applying the Galerkin
method can be written in the form

3u = b, (22)

where the FE matrix 3 is a 4N× 4N sparse complex block
symmetric matrix. Each of the 4× 4 submatrices is complex
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symmetric. After the linear system equation (22) is solved [us-
ing the quasi-minimal residual (QMR) method described in
Appendix A], the solution vector u contains the calculated sec-
ondary EM potentials (As, 9s), stored according to u= (u1,
u2, . . . ,uN)T , with

ui = (Asxi, Asyi, Aszi, ψsi),T (23)

where Asxi≡ Asx(ri ) is the x-component of the secondary vec-
tor potential As evaluated at node i of the mesh, and so forth.

The FE block matrix3 is composed of 4× 4 symmetric sub-
matrices, given for each of i, j = 1, . . . , N by

3i j =
(

γi j I33 iωµ0(σαi ,∇α j )Ä
iωµ0(σαi ,∇α j )T

Ä −iωµ0(σ∇αi ,∇α j )Ä

)
.

(24)

In equation (24), I33 is the 3× 3 identity matrix and γi j is the
scalar function γi j ≡−(∇αi ,∇α j )Ä+ iωµ0(σαi , α j )Ä.The elec-
trical conductivity is assumed constant over each tetrahedron,
in which case all the integrals involved in assembling the FE
matrix 3 can be calculated analytically.

Vector b appearing in equation (22) is of the form b=
(b1, b2, . . . ,bN)T , with

bi = −iωµ0

[∑
k

Apxkζik,
∑

k

Apykζik,
∑

k

Apzkζik,

−
∑

k

(Apxkθikx + Apykθiky + Apzkθikz)

]T

, (25)

where

ζik = (1σαi , αk)Ä, θikx =
(
σ
∂αi

∂x
, αk

)
Ä

,

(26)

θiky =
(
σ
∂αi

∂y
, αk

)
Ä

, θikz =
(
σ
∂αi

∂z
, αk

)
Ä

and the summations are over all nodes connected to node i .
Vector b represents the source contribution to the FE lin-
ear system equation (22). The coefficients (Apxk, Apyk, Apzk)
are prescribed before the calculations begin; for example,
Apxk= Apx(rk) is the x-component of the primary EM poten-
tial Ap evaluated at node k of the mesh, where Ap is given
by equation (13). We assume that Ap varies linearly between
mesh vertices.

The FE matrix 3 is sparse because the nodal basis function
αi (r) vanishes outside the tetrahedra containing node i as a ver-
tex, implying that the integrals in equations (24) and (25) are
zero if node i is not connected to node j . The sparsity of ma-
trix 3 is therefore determined by the node connectivity map.
The sparse system of equation (22) is solved using the QMR
method (Freund et al., 1992) with simple Jacobi precondition-
ing (Newman and Alumbaugh, 1995, 1996) (see Appendix A).

MESH GENERATOR WITH LOCAL REFINEMENT

The 3-D FE analysis of borehole CSEM responses involves
finding an approximate solution to the system of differential
equations (15) defined on the cylindrical domain Ä. To make
this approximation, the EM potentials (As, 9s) are expanded
in terms of nodal basis functions [equations (20) and (21)], de-
fined with respect to a tetrahedral decomposition of the solu-

tion domain Ä. The algorithm used to generate the cylindrical
mesh consists of two distinct steps: (a) quasi-uniform tetra-
hedralization of a solid cylinder and (b) optional local mesh
refinement. Each of these steps is discussed below.

Quasi-uniform tetrahedralization of a cylinder

The first step of the mesh generation algorithm is to construct
a quasi-uniform tetrahedralization of a solid cylinder of finite
radius ρmax and length L . A tetrahedralization is defined as a
set of nonoverlapping tetrahedra that fills a specified region
of 3-D space, along with a list of coordinates of the tetrahe-
dral vertices and an integer array that lists the four vertices, or
nodes, belonging to each tetrahedron. A quasi-uniform cylin-
drical tetrahedralization is one in which the radial node density
is constant thoughout the cylinder and the vertical node density
is also constant except where necessary to conform to layering
in the geoelectrical structure. The cylinder carries a spatially
varying electrical conductivity denoted by σ (r), which reflects
the geology of the formation under study.

Our quasi-uniform tetrahedralization of a cylinder gener-
ates tetrahedra, as described below, that are well shaped (no
long, thin ones to degrade the accuracy of the FE approxima-
tion). The azimuthal distribution of nodes is uniform. The ap-
proach is essentially a deterministic packing of tetrahedra into
a cylinder. Alternative 3-D mesh generation schemes based
on Delaunay tetrahedralizations (Joe, 1991) of randomly or
pseudo-randomly generated point sets are not considered here
because they could generate poorly shaped tetrahedra.

The integrity of an individual tetrahedron is conveniently
measured by its quality factor Q (Liu and Joe, 1996), which is
given by the formula

Q = 12(3V)2/3

{
4∑

i 6= j

L2
i j

}−1

. (27)

In equation (27), V is the volume of the tetrahedron and Li j

is the length of the edge connecting vertices i and j . The qual-
ity factor ranges from Q= 0 for poorly shaped or long, thin
tetrahedra to Q= 1 for well-shaped or regular tetrahedra. In
practice, high-quality meshes exhibit a quality-factor distribu-
tion that peaks near Q∼ 0.8, with few if any tetrahedra falling
below Q∼ 0.6.

The procedure for decomposing the solid cylinder into high-
quality, nonoverlapping tetrahedra begins by triangulating a
single horizontal disk, using the series of refinements outlined
in Figure 1. Once the disk is triangulated to the required level
of refinement, tetrahedralization of the cylinder proceeds with
a vertical stacking of a number of triangulated disks. Corre-
sponding nodes on vertically adjacent disks are connected so
that prisms with two triangular base planes and three quadri-
lateral sides are formed. These pentahedra are readily de-
composed into three subtetrahedra. The uniform cylindrical
tetrahedralization is complete once all the pentahedra are de-
composed into their three constituent subtetrahedra. The num-
ber and vertical separation of triangulated disks, in addition to
the cylinder aspect ratio α= ρmax/L , are adjustable parame-
ters that can be tuned to optimize the quality of the mesh and
the overall number of constituent tetrahedra. The triangulated
disks can be constrained to occupy certain z-positions to ac-
commodate any geoelectrical layering.
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Local mesh refinement

Liu and Joe (1996) have published a paper on high-quality
local refinement of tetrahedral meshes on which we have based
our second step of the mesh generation process. In general, lo-
cal mesh refinement is used in CSEM modeling to create a
fine mesh in regions of the solution domain Ä where the EM

FIG. 1. Various refinement levels of the 2-D disk triangulation
procedure. Refinement level 1 (top left) consists of five nodes
and four triangles. Refinement level 2 (top right) is formed
by subdividing each of the triangles of refinement level 1 into
three smaller triangles. Refinement level 2 is completed by an
arc adjustment procedure, in which those new nodes situated
on a chord connecting two old nodes are projected outward
to the chord radius along a ray emanating from the origin.
All subsequent refinement levels are constructed in this man-
ner. Once the refinement level is specified, the solid cylindri-
cal mesh is constructed by vertical stacking of a number of
these disks along the axis of the cylinder. Nodes on adjacent
disks are joined by vertical edges to form triangular prisms, or
pentahedra.

field gradients are large, such as near sharp electrical conduc-
tivity gradients or discontinuities. Also, a fine mesh might be
required in the vicinity of the receiver (RX) to obtain a solution
of higher accuracy there. Another approach to adaptive mesh
refinement can be found in Travis and Chave (1989).

The first step of the local mesh refinement algorithm is select-
ing a region S1 of the cylinder to be refined. The selection of S1

is done manually so that heterogeneities which generate steep
gradients in the secondary field are more finely discretized.
Once S1 is selected, all tetrahedra inside S1 are identified and
marked for refinement. New nodes, termed split points, are
then placed at the midpoints of each of the six edges of every
marked tetrahedron. Obviously, two adjacent marked tetrahe-
dra will share a certain number of split points: exactly one if
they are joined by an edge or exactly three if they are joined by
a facet. Each marked tetrahedron, along with its six newly ac-
quired split points, is then decomposed into eight good-quality
subtetrahedra by using the SUB8 refinement scheme shown in
Figure 2.

The mesh that results using only SUB8 refinement of the
marked tetrahedra is unacceptable for FE analysis because
the unmarked tetrahedra that share an edge or a facet with
a marked tetrahedron have inherited exactly one or exactly
three split points, respectively. These tetrahedra are improp-
erly formed because they have one or more extra nodes that

FIG. 2. Decompositions of tetrahedra into two, four, or eight
subtetrahedra, depending on the number of split points present
[after Liu and Joe (1996)]. The SUB8 refinement scheme (top)
is used to refine marked tetrahedra (see text for definition),
which always contain six split points. The SUB2 (bottom left)
and SUB4 (bottom right) refinement schemes are used to refine
improperly formed tetrahedra that contain either one or three
split points, respectively.
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are not at the vertices. The improperly formed tetrahedra cause
the mesh to be defective, leading perhaps to large numerical
errors in a FE solution. However, the improperly formed tetra-
hedra are readily refined (Liu and Joe, 1996) into either two
or four high-quality subtetrahedra, according to the number of
split points present. The SUB2 and SUB4 refinement schemes
are shown in Figure 2. Once all the improperly formed tetra-
hedra are so refined, the mesh is no longer defective and can
be used for FE analysis.

In the present implementation of the mesh generator, the
refinement region S1 must be convex, which means that any
line segment connecting any two points in S1 lies wholly inside
S1. If the region S1 is nonconvex, a tetrahedron could possibly
inherit exactly two split points. This case was examined by Liu
and Joe (1996) but is problematic and would require a consider-
able amount of additional computer programming to resolve.
The mesh generator exits with a fatal error if a tetrahedron
with exactly two split points is detected, and the mesh must be
redesigned.

A mesh that has been refined locally according to the above
prescription can be further refined. This procedure starts by
defining a second refinement region, S2. The local refinement
algorithm we have implemented is quite general: region S2

can completely enclose region S1 if required, it can be com-
pletely enclosed by region S1, or the two refinement regions
can overlap partially. Indeed, multiple (more than two) nested
or disjoint refinement regions are permissible, as long as each
refinement region Si is convex. However, the quality factor Q
of SUB2, SUB4, and SUB8 subtetrahedra deteriorate under
several refinements. The worsening quality of the mesh deter-
mines the practical limit to the number of useful refinements
that can be made.

RESULTS

The FE code was checked by computing the CSEM re-
sponses of several 1-D, 2-D, and 3-D geoelectrical models. The
FE-computed responses are compared in this section to equiv-
alent responses computed using other solution techniques.

1-D modeling: FE versus analytic

The FE code was first tested against the analytic solution for
a two-layer geoelectrical structure having an electrical conduc-
tivity profile

σ (z) =
{
σ1 z< 0

σ0 z> 0
(28)

corresponding to two semi-infinite homogeneous beds with the
bed interface at z= 0. The transmitter loop is located on the z-
axis, or ρ= 0, at a distance zS> 0 beneath the interface. The
vertical magnetic field along the z-axis is given analytically
(Nabighian, 1988) by

Hz(z) = I a
∫ ∞

0

λ2 exp(α1z− α0zS)
α0 + α1

J1(λa) dλ z≤ 0,

(29)

Hz(z) = I a

2

∫ ∞
0

λ2

α0
[exp(−α0|z− zS|)

+ Rexp[−α0(z+ zS)]J1(λa) dλ, z≥ 0, (30)

where α2
j = λ2 − iµ0ωσ j for j = 0, 1 and

R≡ α0 − α1

α0 + α1
(31)

is the reflection coefficient.
The secondary vertical magnetic field Hsz(z) is defined as the

difference between the total field component given by equa-
tions (29) and (30) and the primary field component Hpz(z)
from the same excitation of a homogeneous formation of elec-
trical conductivity σ0. The primary component Hpz(z) is ob-
tained either by setting σ1= σ0 in equations (29) and (30) or
alternatively by taking the z-component of the curl of equation
(13) and dividing by µ0. The secondary vertical magnetic field
in either case is

Hsz(z) = I a

2

∫ ∞
0

λ2

α0
exp(−α0zS)[T exp(α1z)

− exp(α0z)]J1(λa) dλ z≤ 0, (32)

Hsz(z) = I a

2

∫ ∞
0

λ2

α0
Rexp[−α0(z+ zS)]J1(λa) dλ,

z≥ 0, (33)

where T ≡ 1+ R.
Figures 3–5 compare the analytic solution given by equa-

tions (32) and (33) against equivalent finite-element numerical
results for three different conductivity contrasts: σ1/σ0= 10,
100, and 105. In all three cases the lower half-space conductiv-
ity is σ0= 0.1 S/m. Conductivity contrasts of these magnitudes
are often encountered during petroleum well logging, although
in such cases σ0 is normally lower than 0.1 S/m.

The FE code computed the secondary EM potentials
(As, 9s) which were then postprocessed into the format Hsz(z)
using the moving least-squares interpolation (MLSI) algo-
rithm described in Appendix B. The complex analytic solu-
tions are represented in the figures by the solid (real part)
and dashed (imaginary part) curves, while the circles corre-
spond to the FE/MLSI solutions computed on a mesh with
four nested local refinements in the vicinity of the interface
z= 0. To demonstrate the effectiveness of the local mesh re-
finement, the FE/MLSI solutions without any local refinement
(calculations were made at refinement level 6; see Figure 1) are
shown by the triangles. These solutions clearly exhibit poor
agreement with the analytic solution. The excellent perfor-
mance of the FE/MLSI code with local mesh refinement, par-
ticularly for the high-contrast model (σ1/σ0= 105), is the result
of preconditioning of the sparse linear system. Precondition-
ing improves the matrix condition number and enables con-
vergence of the iterative QMR solver for very high-contrast
electrical models. However, the QMR solver can diverge for
high-contrast models if preconditioning is not used. Conver-
gence is achieved in about 300–800 iterations, and the CPU
time is between 40 minutes to 2 hours on an SGI Origin 200
workstation with 512 Mb of RAM.

2-D modeling: FE versus hybrid code

The case of a vertical borehole embedded in a double half-
space formation was considered as a 2-D axisymmetric test
problem. Figure 6 shows the problem geometry. The volume
ρ ≤ ρbh could represent a vertical, conductive mud-filled bore-
hole or fluid invasion zone. The two semi-infinite beds have
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contrasting electrical conductivities given by σ0 and σ1, respec-
tively. The EM fields are generated by an oscillating current
loop of radius a and frequency ω placed at a distance zS below
the interface z= 0.

The problem is two dimensional because the geoelectrical
structure is axially symmetric, i.e., σ = σ (ρ, z). The borehole
in this case behaves like an open waveguide structure, so that
a mode spectrum can be defined as consisting of a discrete
part in the radial direction in addition to a continuum in the
vertical direction. Chew et al. (1984) present a semianalytic
mode matching, or hybrid, method for approximating the mode
spectrum and hence determining the EM response of axially
symmetric structures.

The FE/MLSI-computed solution for the secondary verti-
cal magnetic field Hsz(z) along the symmetry axis is compared
to the equivalent mode-matching semianalytic solution. The
solid and dashed lines in Figure 7 correspond to the com-
plex mode-matching solution. The circles correspond to the
FE/MLSI solution computed on a mesh containing six nested

FIG. 3. A comparison of the finite-element solution against
the analytic one for the two-layer geoelectric model. The
field is caused by a finite-loop horizontal transmitter of ra-
dius a= 0.01 m carrying a current of 1010 Å oscillating at
2.5 MHz. The solution is linear in terms of the TX current,
so any value chosen will only scale the numerical result. The
loop is placed at zs= 1.5 m below the interface. The cylindrical
domain over which the FE response was performed has a radius
ρmax= 9 m and length L = 20.35 m. The skin depth in the lower
half-space is about 1 m. The conductivity contrast is 10. The
first mesh refinement was made in the region 0≤ ρ ≤ 4.0 m and
−4.0≤ z≤ 4.0 m. This region was subsequently reduced during
the remaining three nested local refinements. The final mesh
refinement region was 0≤ ρ ≤ 0.5 m and −1.0≤ z≤ 1.0 m.

FIG. 4. Same as Figure 3 except for a conductivity contrast
of 100.

FIG. 5. Same as Figure 3 except for a conductivity contrast
of 105.
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local refinements in the vicinity of the interface z= 0. The
agreement is very good. The FE/MLSI solution without any
local mesh refinement (refinement level 6) is shown by the tri-
angles; it is in poor agreement with the hybrid solution.

The FE-computed responses are relatively insensitive to the
choice of the whole-space electrical conductivity σp used in
equation (13) to generate the primary vector potential Ap.
Figure 8 uses three different choices for the primary conductiv-
ity to illustrate FE/MLSI-computed responses for the axially
symmetric model shown in Figure 6. In the figure, the CSEM
response is plotted using three different primary vector poten-
tials, each of the form of equation (13) but with different σp

values. All three results indicate very good agreement with the
hybrid solution. The robustness of the FE solutions with re-
spect to the choice of σp constrasts with certain other methods,
such as the successive approximation technique of Zhang and
Zhang (1998), which imposes restrictions on the selection of
σp to achieve convergence.

3-D modeling: FE versus FD

The performance of the FE code was also tested for a fully
3-D problem. The geometry is shown in Figure 9 and consists
of a conductive 90◦ sector of σ1= 1 S/m placed in a homoge-

FIG. 6. The axisymmetric geoelectrical model of a borehole
embedded in two semi-infinite beds. The electrical conduc-
tivity of the upper bed is σ1= 1 S/m, while that of the lower
bed is σ0= 0.1 S/m. The axial loop transmitter is located at
zs= 1.5 m below the interface at z= 0.0. The borehole radius
is ρbh= 0.5625 m, which is unrealistically large, but this is just a
test problem used for validating the algorithm. The ac driving
current has a frequency of 500 kHz and an amplitude of 1010 Å.
The borehole is assumed to be filled with conductive mud of
electrical conductivity σmud= 3 S/m.

neous formation characterized by σ0= 0.1 S/m. The conducting
sector eliminates any axial symmetry and enforces electric cur-
rents to flow in the vertical, azimuthal, and radial directions.
The primary conductivity is assigned as σp= σ0 so that the con-
ducting sector acts as a spatially distributed current source for
the secondary EM potentials. As before, the primary source is
the transmitting coil, which is placed at zS= 1.5 m on the z-axis
and is energized by a 2.5-MHz ac current of 1010 A.

The accuracy of the (As, 9s) FE analysis depends strongly
on mesh size and quality. Therefore, careful attention must be
paid to the mesh design to achieve good results with reasonable
computational effort. Because the conducting sector behaves
like a secondary current source, sharp gradients in EM fields
are expected near its boundaries. Consequently, our efforts at
local mesh refinement were focused in that region. Figure 10
shows vertical and horizontal projections of a small but other-
wise typical mesh containing two local refinements. The coarse
mesh has the same basic topology but contains far fewer nodes
than the fine mesh with three local refinements, which was
eventually used to generate accurate EM responses.

The FE/MLSI-computed responses for the 3-D sector model
are compared against those computed by a FD method
(Newman and Alumbaugh, 1995). Figure 11 shows the results

FIG. 7. A comparison of the FE/MLSI-computed solu-
tion (circles) with six local mesh refinements and the hy-
brid mode-matching solution (solid and dashed lines) for
the 2-D axisymmetric problem shown in Figure 6. The
FE/MLSI-computed solution (triangles) without any local re-
finement behaves poorly. In this example, the primary EM po-
tential Ap is defined for a homogeneous whole-space formation
described by σp= σmud. The field along the z-axis is shown.
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FIG. 8. The sensitivity of the finite-element-computed responses (symbols) to the choice of primary whole-space electrical conduc-
tivity σp for the axisymmetric model. Very good agreement is obtained in all cases with the hybrid-computed solutions (curves.)

FIG. 9. Geometry of the 3-D test problem. The loop is posi-
tioned at zs= 1.5 m, has a radius a= 0.01 m, and is fed by a
1010-Å current at a frequency of 2.5 MHz. The loop excites
the conducting 90◦ sector (shaded.) The inner radius, outer ra-
dius, and height of the sector are 2.25, 2.8125, and 1.078125 m,
respectively. The sector is centered on z= 0. The background
formation conductivity is σ0= 0.1 S/m, while the conductivity
of the sector is σ1= 1.0 S/m. The skin depth in the background
medium is ∼1.0 m.

for both Hsz(φ) and Esφ(φ) along an azimuthal path passing
through the center of the sector. The shapes of the response
curves make sense on physical grounds. For example, if the
sector is replaced by a full 360◦ annulus excited by the same
horizontal loop transmitter, symmetry arguments imply that
the direction of the induced eddy currents is strictly azimuthal.
However, when the 90◦ sector is considered, the induced eddy
currents retain a strong azimuthal component in the interior of
the sector, in addition to a vertical component. This is shown
in Figure 11 by the almost constant values of both Hsz(φ) and
Esφ(φ) for 0<φ<π/2. The azimuthal discontinuity of the elec-
trical conductivity in regions close to the edges of the sector
forces eddy currents to flow into the radial and vertical direc-
tions. Consequently, apart from these edge effects, there should
be a reduced signal over the full range of azimuths outside of
the sector. This lack of signal can be observed in Figure 11 by
the small values of the secondary EM fields over the range
π/2<φ< 2π . The discrepancies between the FE and the FD
responses may be from differences in the underlying numeri-
cal algorithms. The FD response averages the E field across the
boundary of the sector; therefore, we should expect some dif-
ferences between the two numerical methods. The secondary
field is plotted in the figure because it better reveals the un-
derlying physics of the induction process rather than the total
field, which is dominated by the primary component.

3-D modeling: Logging format

A practical 3-D problem of interest to the petroleum log-
ging industry was considered. The conductivity model, shown
in Figure 12, includes a borehole, fluid invasion zones, and three
parallel dipping (tilting) beds. The outer beds are semi-infinite.
A compensated logging tool formed by one TX loop and two
in-line RX loops (see Figure 13) was modeled. The tool output
is expressed in terms of apparent resistivity, which is a func-
tion of the RX-induced voltages (Moran and Kunz, 1962). The
tool descends within the borehole, and apparent resistivity is
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displayed as a function of true vertical depth in Figure 14. For
zero dip, the FE-computed induction log compares very well
against the same log computed using the 2-D mode-matching
method (Chew et al., 1984). For the nonzero tilt cases, a coordi-
nate transformation is performed so that the tetrahedra of the
finite-element mesh conform to the dipping bed boundaries.
The FE-computed logs are presented for tilt angles of 30◦, 45◦,
and 60◦ from the horizontal.

DISCUSSION

We introduce the (As, 9s) formulation of CSEM induction
for geophysical prospecting applications and develop a 3-D
numerical solution using the FE method. Good agreement has
been found between the FE-computed responses and certain
1-D analytical, 2-D hybrid, and 3-D FD finite-loop responses
of simple geoelectrical models.

FIG. 10. Horizontal cross-section of a small but otherwise typi-
cal finite-element mesh for the plane z= 0 passing through the
center of a conducting sector like that shown in Figure 9, along
with a typical vertical cross-section of the same mesh. The mesh
has been locally refined twice in the vicinity of the conducting
sector, which in this case is centered just below z= 0. Trian-
gular facets of SUB2 and SUB4 subtetrahedra can be seen in
both views, bordering the refinement regions. The mesh does
not have to be refined in the vicinity of the TX because only
secondary fields are being computed.

Realistic EM induction problems are three dimensional in
nature, largely because of the complexity of subsurface geology.
In induction logging applications, causes of three dimension-
ality include a tilting or deviating borehole, washouts, dipping
beds, and heterogeneous fluid invasion zones. Thus, model-
ing of 3-D effects is fundamental for accurate quantitative
interpretation of wireline induction and measurement-while-
drilling (MWD) logs (Anderson et al., 1996). The FE algorithm
we describe, with certain modifications, can be adapted to han-
dle all these problems.

Another important complication is the occurrence of
anisotropic electrical conductivity because of cross-bedded and
vertically stratified formations. This issue can be addressed us-
ing the existing FE code with the inclusion of a conductivity
tensor in the governing FE equations, which is not difficult
to implement and requires no specialized programming tech-
niques. Also, the performance of the FE code should be tested
for a range of frequencies on a single mesh. This will be ad-
dressed in a future publication.

Finally, with attention to improving the efficiency, the FE
code could further serve as the forward driving module inside a
larger software package for multidimensional inversion of dif-
ferent types of CSEM data, including induction and MWD logs.

FIG. 11. The secondary vertical magnetic field Hsz(φ), and sec-
ondary azimuthal electric field Esφ(φ) responses computed us-
ing the FE/MLSI (circles) and Sandia FD (triangles) methods
along an azimuthal path passing through the center of the con-
ducting sector, i.e., (ρ= 2.53 m; 0≤φ≤ 2π ; z= 0). Lines are
drawn through the symbols for clarity. Dark symbols corre-
spond to the real component, while open symbols correspond
to the imaginary component.
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FIG. 12. The geoelectrical structure used for the logging format
example. A borehole of radius 3.4 inches (8.6 cm) and con-
ductivity of 1.0 S/m (e.g., resistivity of 1.0 ohm-m) intersects a
three-layer formation. The two outer beds are semi-infinite and
have a conductivity of 1.0 S/m. The middle bed is more resistive,
with a conductivity of 0.1 S/m, and is 72 inches (1.82 m) thick.
Fluid-invaded zones are present in the model. For the outer
beds, the invaded-zone conductivity is 0.5 S/m and 10.0 inches
(25 cm) thick. For the middle bed, these values are 0.333 S/m
and 6.75 inches (17.1 cm).

FIG. 13. The compensated logging tool, consisting of one loop
transmitter (T1) of N0= 1 turn oscillating at 20 kHz and two
oppositely wound receivers (R1 and R2) with N1= 100 turns
and N2=−237 turns, respectively. The receivers are so con-
figured to cancel the primary component of mutual coupling.
The equation at the right of the figure is the condition for tool
compensation. Receiver R1 is located 30 inches (76 cm) above
the transmitter, while R2 is located 40 inches (102 cm) above
the transmitter. The tool center is the midpoint between the
two receivers.

FIG. 14. The computed induction log corresponding to the geo-
electric formation shown in Figure 12, as sensed by the com-
pensating logging tool described in Figure 13. The apparent
resistivity is evaluated at the tool center as the tool descends
down the borehole. Four different dip (tilt) angles were consid-
ered. The FE-computed logs are shown by the solid lines. For
the zero tilt case, a log computed using the 2-D mode-matching
(hybrid) method is shown by the dashed curve with symbols.

ACKNOWLEDGMENTS

The authors thank M. S. Haugland, G. A. Merchant, and C.
Weiss for their valuable assistance during the preparation of
this article.

REFERENCES

Anderson, B., Barber, T., Druskin, V., Lee, P., Dussan, E., Knizhner-
mann, L., and Davydycheva, S., 1996, The response of multiarray
induction tools in highly dipping formations with invasion and in ar-
bitrary 3-D geometries: 37th Ann. Logging Symp., SPWLA, Paper
A, 1–14.

Avdeev, D. B., Kuvshinov, A. V., Pankratov, O. V., and Newman, G. A.,
1997, High performance three dimensional electromagnetic model-
ing using modified Neumann series: Wide band numerical solution
and examples: J. Geomag. Geoelectr., 49, 1519–1539.

Barton, M. L., and Cendes, Z. J., 1987, New vector finite elements for
three-dimensional magnetic field computation: J. Appl. Phys., 61,
3919–3921.

Biro, O., and Preis, K., 1989, On the use of the magnetic vector potential
in the finite element analysis of three-dimensional eddy currents:
IEEE Trans. Magn., 25, 3145–3159.

——— 1990, Finite element analysis of 3-D eddy currents: IEEE Trans.
Magn., 26, 418–423.

Boyse, W. E., Lynch, D. R., Paulsen, K. D., and Minerbo, G. N., 1992,



798 Badea et al.

Nodal-based finite element modeling of Maxwell’s equations: IEEE
Trans. Ant. Propag., 40, 642–651.

Chang, S. K., and Anderson, B., 1984, Simulation of induction logging
by the finite-element method: Geophysics, 49, 1943–1958.

Chew, W. C., Barone, S., Anderson, B., and Hennessy, C., 1984, Diffrac-
tion of axisymmetric waves in a borehole by bed boundary discon-
tinuities: Geophysics, 49, 1586–1595.

Doll, H. G., 1949, Introduction to induction logging and application to
logging wells with oil-based mud: Trans. AIME, 186, 148–162.

Druskin, V., and Knizhnermann, L., 1994, Spectral approach to solv-
ing three-dimensional Maxwell’s diffusion equations in the time and
frequency domains: Radio Sci., 29, 937–953.

Everett, M. E., and Schultz, A., 1996, Geomagnetic induction in a het-
erogeneous sphere: Azimuthally symmetric test computations and
the response of an undulating 660-km discontinuity: J. Geophys. Res.,
101, 2765–2783.

Freund, R. W., Golub, G. H., and Nachtigal, N. M., 1992, Iterative so-
lutions of linear systems, in Iserles, A., Ed., Acta Numerica 1992:
Cambridge Univ. Press, 57–100.

Golub, G. H., and van Loan, C. F., 1996, Matrix computations, 3rd ed.:
Johns Hopkins Univ. Press.

Guptasarma, D., and Singh, B., 1997, New digital filters for Hankel
transform J0 and J1 transforms: Geophys. Prosp., 45, 745–762.

Joe, B., 1991, Geompack: A software package for the generation of
meshes using geometric algorithms: Adv. Eng. Software Worksta-
tions, 13, 325–331.

Kaufman, A. A., and Keller, G. V., 1989, Induction logging: Elsevier
Science Publ. Co., Inc.

Lanczos, C., 1958, Linear systems in self-adjoint form: Am. Math.
Month., 65, 665–679.

Liu, A., and Joe, B., 1996, Quality local refinement of tetrahedral
meshes based on 8-subtetrahedron subdivision: Math. of Comp., 65,
1183–1200.

Moran, J. H., and Kunz, K. S., 1962, Basic theory of induction logging
and application to study two coil sondes: Geophysics, 27, 829–858.

Mur, G., 1993, The finite-element modeling of three-dimensional elec-
tromagnetic fields using edge and nodal elements: IEEE Trans. Ant.
Propag., 41, 948–953.

Nabighian, M. N., Ed., 1988, Electromagnetic methods in applied geo-
physics 1, theory: Soc. Expl. Geophys.

——— 1991, Electromagnetic methods in applied geophysics 2, appli-
cations: Soc. Expl. Geophys.

Newman, G. A., and Alumbaugh, D. L., 1995, Frequency-domain mod-
elling of airborne electromagnetic responses using staggered finite
differences: Geophys. Prosp., 43, 1021–1042.

——— 1996, three-dimensional electromagnetic modeling and inver-
sion on massively parallel computers: Sandia Nat. Lab. Report
SAND96-0582.

Omeragic, D., and Silvester, P. P., 1996, Numerical differentiation in
magnetic field postprocessing: Internat. J. Num. Mod.: Elect. Net.,
Dev., Fields, 9, 99–113.

Paulsen, K. D., and Lynch, D. R., 1991, Elimination of vector para-
sites in finite element Maxwell solutions: IEEE Trans Micro. Theory
Tech., 39, 395–404.

Silvester, P. P., and Ferrari, R. L., 1996, Finite element methods for
electrical engineers: Cambridge Univ. Press.

Smith, J. T., 1996, Conservative modeling of 3-D electromagnetic fields:
Geophysics, 61, 1308–1324.

Sugeng, F., 1998, Modeling the transient EM responses of complex
3-D geological structures using the 3-D full-domain hexahedral
edge-element finite-element technique: Presented at the 14th Work-
shop on Electromagnetic Induction in the Earth, Internat. Assn.
Geomagnetism and Aeronomy.

Tabbara, M., Blacker, T., and Belytschko, T., 1994, Finite element
derivative recovery by moving least squares interpolants: Comp.
Meth. Appl. Mech. Eng., 117, 211–223.

Travis, B. J., and Chave, A. D., 1989, A moving finite-element method
for magnetotelluric modeling: Phys. Earth Planet. Internat., 53, 432–
443.

van den Berg, P. M., and van der Horst, M., 1995, Nonlinear inversion
in induction logging using the modified gradient method: Radio Sci.,
30, 1355–1369.

Wait, R., and Mitchell, A. R., 1985, Finite element analysis and appli-
cations: John Wiley & Sons, Inc.

Wang, T., and Hohmann, G. W., 1993, A finite-difference time-domain
solution for three-dimensional electromagnetic modeling: Geo-
physics, 58, 797–809.

Xiong, Z., and Tripp, A. C., 1995, Electromagnetic scattering of large
structures in layered earths using integral equations: Radio Sci., 30,
921–929.

Zanoubi, M. R., Jin, J. M., Donepudi, K. C., and Chew, W. C., 1999,
A spectral Lanczos decomposition method for solving 3-D low-
frequency electromagnetic diffusion by the finite-element method:
IEEE Trans. Ant. Propag., 47, 242–248.

Zhang, G. J., and Zhang, Z. Q., 1998, Application of successive ap-
proximation method to the computation of the Green’s function in
axisymmetric inhomogeneous media: IEEE Trans. Geosci. and Re-
mote Sens., 36, 732–737.

Zhdanov, M. S., and Fang, S., 1997, Quasi-linear series in three-
dimensional electromagnetic modeling: Radio Sci., 32, 2167–2188.

APPENDIX A

SPARSE LINEAR ALGEBRAIC SOLVER

The determination of potentials (As, 9s) requires solving
equation (22), which is a large, sparse complex symmetric lin-
ear system of equations. The quasi-minimal residual (QMR)
approach described by Freund et al. (1992) is an iterative pro-
cedure designed to solve such problems and has been used
in geophysical CSEM modeling by Newman and Alumbaugh
(1995, 1996).

The QMR algorithm is based on the concept that a rapidly
convergent iterative method for solving equation (22) should
try to minimize the residual vector rn≡ b−3un at each step
of the process. A fundamental study of linear algebra reveals
that iterates un which tend to make rn small at every step can
be constructed from a set of basis vectors v1, v2, . . . , vn for the
nth Krylov subspace Kn(r0,3), where

Kn(r0,3) = span
{
r0,3r0,3

2r0, . . . , 3
n−1r0

}
. (A-1)

In equation (A-1), r0= b−3u0 is the residual vector corre-
sponding to an initial guess u0 for the solution of equation
(22). Thus, in the so-called Krylov subspace methods (Golub

and van Loan, 1996), the iterates un will satisfy

un = u0 + Vnzn, (A-2)

where zn is a vector of unknown coefficients and

Vn ≡ [v1 v2 . . . vn] (A-3)

is an N× n rectangular matrix whose columns are the Krylov
basis vectors.

The QMR method is a Krylov subspace method in which
the basis vectors v1, v2, . . . , vn at each iteration are generated
by a Lanczos-type procedure (Lanczos, 1958). Once the ba-
sis vectors for the current iteration are found, the vector zn of
unknown coefficients is determined by a linear, rank-deficient
least-squares analysis designed to make rn as small as possible
while keeping CPU time and storage requirements low. Refer
to Freund et al. (1992) and the references in that paper for com-
plete details about the QMR method. We also implement sim-
ple Jacobi preconditioning (Newman and Alumbaugh, 1996) of
the finite-element matrix3 in equation (22) to further enhance
the convergence rate of the QMR iterates.
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APPENDIX B

MOVING LEAST-SQUARES INTERPOLATION

The physically significant Es or Hs fields must be recov-
ered from the finite-element-computed potentials (As, 9s) by
means of numerical differentiation. Several good algorithms
exist for this purpose (Omeragic and Silvester, 1996). The prob-
lem is not trivial: simple first-order differencing of the nodal
potential values is likely to cause serious errors, especially on ir-
regular meshes. We differentiate the FE-computed potentials
(As, 9s) using the moving least-squares interpolant (MLSI)
scheme originally proposed by Tabbara et al. (1994). In our
implementation of this method, each Cartesian component of
the vector potential As and the scalar potential9s are approx-
imated by linear functions of the form ax+ by+ cz+ d. The
spatial derivatives of the potentials are therefore just the first
three coefficients (a, b, c) of the linear function. The MLSI de-
termination of the spatial derivatives of (As, 9s) at an arbitrary
test point rt ≡ xt x̂+ yt ŷ+ zt ẑ in Ä is made in a weighted least-
squares sense. Specifically, (a, b, c, d) are found by minimizing
the sum of the weighted squared residuals between the linear
function and the finite-element-computed values of the EM
potentials at the nearest N∼ 30 nodes to the test point (see
Figure B-1.) The weighting function has a positive exponential
form which is maximum at the point rt and decreases mono-
tonically with increasing distance away from rt . The method
is called a moving least-squares interpolant because the set of
nodal EM potential values used in the least-squares analysis
depends on the position of the test point rt .

At conductivity interfaces, the MLSI method forces a non-
physical continuity of the normal component of the elec-
tric field. However, for most applications the method works
well close to interfaces, as illustrated by the results presented
throughout the paper. Other algorithms, such as nodal differen-
tiation, that correctly define the discontinuity in normal electric
field may perform better near high-conductivity contrasts.

FIG. B-1. The MLSI differentiates the finite-element-com-
puted EM potentials As, 9s to obtain the direct fields E and
B. The spatial derivatives of the potentials are obtained at a
given test point rt (the solid dot) by fitting a linear function to
the FE-computed potential values on the N mesh nodes lying
closest to the test point (within the shaded region). The spatial
derivatives of the computed EM potentials can be estimated
along an arbitrary trajectory, as shown, by moving the test point
and the corresponding shaded region along the trajectory. The
generalization to three-dimensions is straightforward.


