ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/257820063
Problem on Formation of Parallel Crack System in Brittle Layer

Article in Journal of Mining Science - March 2001

DOI: 10.1023/A:1012379611347

CITATION READS
1 15
2 authors:
- Alexander Revuzhenko Sergey V. Klishin
‘0 Mining Institute SB RAS, Novosibirsk Mining Institute of the Russian Academy of Sciences
211 PUBLICATIONS 580 CITATIONS 52 PUBLICATIONS 109 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Rock mass as an active block-hierarchical medium: development of theory and methods of modeling of deformation and failure processes under long-term weak natural
Project

and induced impact for the purpose of forecasting rock pressure-related catastrophes. View project

All content following this page was uploaded by Sergey V. Klishin on 26 May 2014.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/257820063_Problem_on_Formation_of_Parallel_Crack_System_in_Brittle_Layer?enrichId=rgreq-dc36f2a41c28ee65c31e4f6a40eb29a9-XXX&enrichSource=Y292ZXJQYWdlOzI1NzgyMDA2MztBUzoxMDExMjU1NTg2MzY1NTJAMTQwMTEyMTYyMDY5Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/257820063_Problem_on_Formation_of_Parallel_Crack_System_in_Brittle_Layer?enrichId=rgreq-dc36f2a41c28ee65c31e4f6a40eb29a9-XXX&enrichSource=Y292ZXJQYWdlOzI1NzgyMDA2MztBUzoxMDExMjU1NTg2MzY1NTJAMTQwMTEyMTYyMDY5Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Rock-mass-as-an-active-block-hierarchical-medium-development-of-theory-and-methods-of-modeling-of-deformation-and-failure-processes-under-long-term-weak-natural-and-induced-impact-for-the-purpose-of-f?enrichId=rgreq-dc36f2a41c28ee65c31e4f6a40eb29a9-XXX&enrichSource=Y292ZXJQYWdlOzI1NzgyMDA2MztBUzoxMDExMjU1NTg2MzY1NTJAMTQwMTEyMTYyMDY5Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-dc36f2a41c28ee65c31e4f6a40eb29a9-XXX&enrichSource=Y292ZXJQYWdlOzI1NzgyMDA2MztBUzoxMDExMjU1NTg2MzY1NTJAMTQwMTEyMTYyMDY5Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander-Revuzhenko?enrichId=rgreq-dc36f2a41c28ee65c31e4f6a40eb29a9-XXX&enrichSource=Y292ZXJQYWdlOzI1NzgyMDA2MztBUzoxMDExMjU1NTg2MzY1NTJAMTQwMTEyMTYyMDY5Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander-Revuzhenko?enrichId=rgreq-dc36f2a41c28ee65c31e4f6a40eb29a9-XXX&enrichSource=Y292ZXJQYWdlOzI1NzgyMDA2MztBUzoxMDExMjU1NTg2MzY1NTJAMTQwMTEyMTYyMDY5Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander-Revuzhenko?enrichId=rgreq-dc36f2a41c28ee65c31e4f6a40eb29a9-XXX&enrichSource=Y292ZXJQYWdlOzI1NzgyMDA2MztBUzoxMDExMjU1NTg2MzY1NTJAMTQwMTEyMTYyMDY5Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergey-Klishin?enrichId=rgreq-dc36f2a41c28ee65c31e4f6a40eb29a9-XXX&enrichSource=Y292ZXJQYWdlOzI1NzgyMDA2MztBUzoxMDExMjU1NTg2MzY1NTJAMTQwMTEyMTYyMDY5Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergey-Klishin?enrichId=rgreq-dc36f2a41c28ee65c31e4f6a40eb29a9-XXX&enrichSource=Y292ZXJQYWdlOzI1NzgyMDA2MztBUzoxMDExMjU1NTg2MzY1NTJAMTQwMTEyMTYyMDY5Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Mining-Institute-of-the-Russian-Academy-of-Sciences?enrichId=rgreq-dc36f2a41c28ee65c31e4f6a40eb29a9-XXX&enrichSource=Y292ZXJQYWdlOzI1NzgyMDA2MztBUzoxMDExMjU1NTg2MzY1NTJAMTQwMTEyMTYyMDY5Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergey-Klishin?enrichId=rgreq-dc36f2a41c28ee65c31e4f6a40eb29a9-XXX&enrichSource=Y292ZXJQYWdlOzI1NzgyMDA2MztBUzoxMDExMjU1NTg2MzY1NTJAMTQwMTEyMTYyMDY5Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergey-Klishin?enrichId=rgreq-dc36f2a41c28ee65c31e4f6a40eb29a9-XXX&enrichSource=Y292ZXJQYWdlOzI1NzgyMDA2MztBUzoxMDExMjU1NTg2MzY1NTJAMTQwMTEyMTYyMDY5Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Journal of Mining Science, Vol. 37, No. 2, 2001

PROBLEM ON FORMATION OF PARALLEL CRACK SYSTEM
IN BRITTLE LAYER

A. Ph. Revuzhenko and S. V. Klishin UDC 539.3

The process is considered for crushing a brittle layer. The finite-element method and a number of
simplified models associated with the averaging are used for calculating the strains and stresses. The chief
aim of investigation is to select such value for the parameter of loading under which the failure condition is
achieved inside the layer. It is shown that its value depends both on the ratio of layer linear-dimension and
the values of material elastic characteristics.

Brittle layer, deformation, failure, fracturing, finite-element method, energy flows

Currently, it is established that rocks are the block medium intersected by cracks of different scale
levels; in addition to it, the position, orientation, and other parameters of every single crack are
stochastic. However, the distinct and determinate regularities have been traced back to all the averaged
characteristics of cracks. Investigation into fracturing of the rock mass is an actual problem for mining,
construction of underground structures, hydraulic engineering, etc. In this connection, an intensive
search is made for the solutions of different problems on fracturing by means of geological methods
and methods of deformable solid mechanics [1—-3]. In [4], the imitative model is considered
for cracking a plane layer subjected to the biaxial nonuniform tension. This model makes it possible
to obtain numerically different polygonal structures according to the prescribed parameters.
The question concerning the role of actual physical parameters of the rock mass requires additional
study.

Let us examine the deformation of thin layer. Assume that its material is ideally brittle and is
deformed elastically prior to failure. As a failure criterion, we take the factor when the highest tensile
stress reaches the given value. We analyze the problem in two statements: in the first simplified
problem, the load is applied to both surfaces (upper and lower) of the layer, and in the second — only
to the lower one. The problems are three-dimensional. However, in order to simplify all calculations,
we can use the fact that the layer thickness is much less than its cross-dimensions. First, let us consider
the problem of uniaxial tension in two-dimensional statement. Then, we reduce it to one-dimensional
by means of averaging with respect to layer thickness and make sure that the solution error is small. Let
us next carry the results of averaging over to more general three-dimensional case.

Consider the Cartesian coordinate system (x, z) and homogeneous isotropic elastic rectangular
domains: —/<x</, —h<z<h (Fig. la) and —-/<x</, 0<z<2h (Fig. 1b), where L =2/ is the layer
length, and H = 24 is its width.

Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia. Translated from
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Assume that the volume forces are absent, the vertical boundaries are free from the stresses, and the
prescribed displacements are applied to the bases. We consider two problems with boundary conditions:

z=-hand z=h u(x,z) =kx, w(x,z)=0 (1)
z=0 u(x,z) =kyx, w(x,z)=0,
z=2) 0..(x,2) =0, (x,2) =0, @

here, u(x,z) and w(x,z) are the displacement vector components; 0,.(x,z), 0..(x,z), and 0. (x,z)
are the stress tensor components; k; and k, are the time functions under quasi-static loading.

Let us introduce dimensionless values: x = Hx, z=Hz, u=Hu, and w=Hw, where H is the
length scale, and the corresponding dimensionless variables are denoted by the over-bar. In order to
choose the scale of stresses, we examine the problem of simple tension when the normal tensile stresses
O, =0*=const are assigned on 4B and CD (Fig. Ic), and the bases AD and BC are free from
stresses. This problem — o, =0* 0, =0, =0 is solved over the whole domain. Let the layer
undergoes a rupture on the z axis at a certain prescribed value of 0 *. We take the value of 0 * as the scale
of stresses: 0,, =0*0 ., 0, =0*0_,, and 0 =0*0 .. Hereafter, we shall omit the bar over the

xx 2

variables.
With new variables, the equilibrium equations and Hook’s law will have the following form:
Jo oo Jo oo
XX + XZ — O , XZ + zZZ — 0 ,
Ox oz Ox oz
axxz/\9+2/,la_u’ o :/\9+2IJO_W’ ax:lJ 6w+6_uﬁ,
o* O*0x = o* 0* o0z * o*0ox 0z
where 6 = ou + 3—W ; A and U are the Lamé parameters.
x 0z

Solution by the Finite-Element Method

For problem (1), the layer after deformation is shown in Fig. 24, and for (2), it is illustrated in
Fig. 2b at the ratio L/H =2. Triangular elements, a part of which is demonstrated in the figures, were
chosen as a grid for the finite-element method. The number of the grid nodes was taken to be
proportional to the value of L/H.
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Let us formulate the brittle failure conditions for problems (1) and (2). By virtue of symmetry of the
domain and the boundary conditions relative to the z axis, we suppose that the tensile layer undergoes a
rupture at x =0 when the tensile stress 0, (0, z) reaches a certain limit value of o *. We find the
values of k; =k, and k, =k, from boundary conditions (1) and (2), under which the brittle failure
condition is realized. In problems under consideration, k; and k,, unlike simple tension, are not
already constant, and the dependences k, =k, (L/H) and k, =k, (L/H) take place. The graphs of
both functions are depicted in Fig. 3, where the solution of problem on simple tension for £ = 1 is also
given for comparison. It is obvious that as the value of the ratio L/ H increases, the loading parameters
k| and k5 approach more close to the solution of problem on simple tension. Note that for the values
of L/H <2, the stresses 0,, become compressive at the point (0, 2/4) and in its vicinity on the z axis
due to the specific character of the boundary conditions in problem (2), and in problem (1), they
become compressive near the point (0, 0) on the z axis when L/ H <2.

Two independent parameters — Young’s modulus £ and Poisson’s ratio vV affect the stress state of
elastic body. To compare the solutions of problems (1) and (2), the calculation was performed with the
same value of v =0.3. Now changing the value of v, we study the dependence of the stress 0, at the
critical points of layer ((0,—#4) and (0, #) for problem (1) and at (0, 0) for problem (2)) as the function
of v. For this purpose, for different values of L/ H, we formulate boundary conditions (1) and (2) with
the previously found values of k; (L/H) and k; (L/H) and solve the problems, varying the value of
v within the range from 0 to 0.5. The graphs of the functions obtained are shown in Fig. 4. As is seen
from the graphs, the presence of the upper boundary affects substantially both the values of the tensile
stresses O, and the stress state at the critical points of the material layer being tested.

Having considered the influence exerted by the loading parameters, we analyze the energy flows
[6]. We take the prescribed stress-strain state of the body, where the tensor of stresses 0 and the vector
of displacements u are determined for every point, as the definition of the energy flow. For any area
with the normal 7, the stress vector G, =0on by the Cauchy formula; and we introduce

W, =-iG,. 3)

It follows from (3) that W, =—uon =Wn, where W =—-0u, and W, is the energy transferred
through the unit area with the normal 7n. If we introduce one more notion — the stress vector in the
area with the normal directed along u , then

ol 4

where 0, =0u/|u|. From (3) and (4) the mechanical sense of W follows: the direction of W is the

direction of the maximal density of the energy flow, and |VI7| is equal to this density. In any other
direction, the density of energy flow represents the scalar product of W and 7. Hence it appears that
there always exists a certain direction along which the energy is not transferred, it is orthogonal to G ,,.
The lines tangent to d, at each point represent the energy flux lines. Figure 5 shows the energy flux

lines at L/ H =2 for boundary-value problem (1). It is seen from the figure that configurations of these
lines differ, depending on the boundary part, from which each of the lines begins to move. Thus, the
medium element 4B can obtain energy only from the sections 4B, and A4,B, which belong to the
opposite boundaries and exchange energy with each other. On the other hand, the layer element CD
obtains energy only from the sections C\D; and C,D, belonging to the same boundary.
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Fig. 3

Thus, the influence exerted by the boundary sections is distinctly observed. As it is known,
equations of the elasticity theory belong to the elliptic type, and therefore, the result obtained seems
paradoxical at first glance. However, it can be explained in the following way. The equations of the
elasticity theory are similar to the Navier— Stokes equations, if we neglect by the inertial terms. These
equations describe a slow stationary flow of viscous fluid. Let us now imagine that on a certain
boundary part of the region, the entering fluid is colored. In consequence of stationary velocity field,
only the region of influence will be colored within it, but this fact does not depend on the ellipticity of
the equations. A similar situation takes place in the cases previously discussed for the energy flows.

Thus, the formulation of boundary-value problems (1) and (2) makes it possible to obtain regular
structures, i.e., the systems of parallel cracks. In monotonic increasing the loading parameter, the
deformation has a discrete character; the principal influence is exerted by the value of L/H. When
cracking the material into smaller parts, it is required to assign the greater loading parameter to achieve the
brittle failure condition. Poisson’s ratio V also plays an important role in the problem.

Averaging with Respect to Thickness

We solve boundary-value problems (1) and (2) by averaging with respect to layer thickness.

The loading conditions are so that the equations of the shell and plane theories are not acceptable
here. Using the specific structure of the deformed domain, we reduce two-dimensional problem to one-
dimensional with the help of Kirchhoff’s hypothesis.

Averaging of Problem (1). Let the two-dimensional domain —/<x</, —h<z<h is assigned
(Fig. 1a). If we superimpose the solution for a uniaxial tension of the band on (1), then we can come to
the problem: it is required to find the strain and stress distribution within the band, if the following
boundary conditions are fulfilled:

at z=—-h andz="h u(x,z)=0, w(x,z)=0,

(5)

at x =%/ O.=kE, 0,=0,

where k; is the loading parameter.

O a O b e LIH=1/2
1.10 1 230 1  —— L/H=2
102 1 o84 L/H=4
0.94 166 1 — L/H=10
0.86 1 134
0.78 - 102 -

0 01 02 029 039 049 ¥ 0 01 02 029 039 049 V
Fig. 4
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C,D, C,D,
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Fig. 5

Let us introduce the averaging operation with respect to layer thickness (variable z)
H
f(x)= —J’ f(x,z)dz
0

where 7(x) is the averaged value for the arbitrary function f(x,z). If the averaging is applied to the
derivative of f'(x,z) with respect to z, then we obtain

9/ (x, Z)d = SO H) = f(x0)
HI i

and if it is applied to the equilibrium equations, then the number of unknown functions will increase; in

lieu of the function f(x,z), a few functions, i.e., j?(z), f(x,0), and f(x,H) can arise. Indetermination

can be eliminated, if the mean value of the function is calculated using its boundary values. To do this,
it is enough to follow the rule: one unknown function of two variables must generate only one function
of one variable. It means that for all functions except O0,,, the linear approximation with respect to z

must be accepted. Note that in the given statement due to the domain symmetry relative to the axis
z=0, a lot of information is being lost in averaging from z=-h to z=h, as a result of which the

system is inadequate to the problem under consideration. To recover the information, we formulate the
conditions, which follow from the symmetry, on the x axis, and then perform the averaging from z =0
to z = h. Such approach preserves more information and leads to correct problem.

Loading conditions (5) cause the definite stress and displacement fields within the layer and on its
boundaries. In order to find them, we introduce the following designations:

— on the boundary z =4
0,.=T(x), 0,=pXx)+g),
—at z=0 (6)
0.=0, 0.=pk).

In this statement, four unknown functions, i.e., T(x), p(x), g(x), and u°(x) are to be found.
Linear approximation has the form: u(x,z)=u’(x)(1-z/h), w(x,z)=0, 0O, =T(x)z/h, and
0, = p(x)+g(x)z/h. Hence, for the averaged values

u=u(x)/2, w=0, 0, =1(x)/2, G, =pk)+g(x)/2.
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Using the equilibrium equations, we obtain

xx o4 b 29048 -
O ox h > 20x h 0,
0
S P
Dﬁ:xx :—(/\+2l-1)—u > (7)
D 2 ﬁx
- 0 0
U . g_1,0u T
+S =) —=—U—
HP 5 =2 o 27

The system consists of five equations for five unknown functions: G, T(x), p(x), g(x), and

u®(x).

For x =%/, the boundary conditions are: 0, =k E =0, and T =0. Since at the corner points of

the domain the shear stresses are not couple, then the condition 7 = 0 is required to remove. Equations
(7) can be solved in elementary functions

eax +e—ax _ z _ i eax _e—ax
B =0 al 4 ,-al ’ O —T(x)h— athDeaL +e L [
0
= z _1 e te ™ [Pz A
o, =p(x)+g(x)===a%h? B*HH—+——IH, (8)
B == r(0)tgln) =y Q[]e“L+e'“L[|jh TH
0
O ah? o z
D OEII E— B Hﬁ— E w=0.

hi 2u De“L+e‘“L[]] hg

Formulas (8) describe the stress—strain state of the layer at 0<z<h.

Averaging of Problem (2). We carry out a similar analysis for the boundary conditions in
two-dimensional domain: =/ < x </, 0<z<2h (Fig. 1b).

On the boundaries

z=0
u=kyx, w=0, 9)
0..(x,0)=p(x), 0.(x0)=17(x), (10)
z=2h
o,.(x,2h)=0, 0_(x,2h)=0, (11)
u(x,2h)=kx+u(x), w(x,2h)=wo(x). (12)

Functions (9) and (11) are assigned, and functions (10) and (12) are to be found. Linear
approximation gives

O, (x,z2)=T(x)(1-z/2h),  0.(x,2z)=px)(1-z/2h),
u(x,z) =kx +u®(x)z/2h, w(x,z) =w(x)z/2h.
Hence, for the averaged values

~ T ~
g =T 5 _p()
2 2

(13)
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Using (9)—(13) and the averaging operation with respect to the equilibrium equations, we obtain

200, T _, 101 _p() _

O =0, 0,

0 ox h 20x h

O

6, = (1 +24) Ok, + a—H+ v (14
O 0" 2dxpg  h

O

Op _ Lou? " I, pelow

H?”@kﬁz Ox @"L(“z“)h 2 “E%Ua El

Expressions (14) form the closed system of five equations for five unknown functions:
0., T(x), p(x), u°(x), and w°(x). The conditions on the lower (z=0) and upper (z=2h)
boundaries are already examined. The boundary conditions on the vertical boundaries remained unused

F.(x1)=0, T1(x))=0. (15)

Relations (14) are easily reduced to the system of four equations of the first order relative to four
functions. Therefore, problems (14) and (15) will be correct.

From (14) we obtain the system of the second order consisting of two equations for two unknown
functions u#%(x) and wO(x):

Dl(A+2u) o (x)- u’ (x)+4 (A uw® (x)=0,
D (16)

D
H_W (X)- HLHWO(X)“(H A)u’ (x)‘ZAk

The fact that system (16) decomposes into two independent equations at A = (v =1/4) is of
great interest. Let us consider this case in detail. From Eqgs. (16) we have

u’(x)=C,e™ +C,e >, wo(x)=Cye®™ +C e™ —%, (17)
where a? :3hi2’ b? 2}11—3, and C,, C,, C5, and C, are the unknown constants that are required to
determine. We find them, using boundary conditions (15)

c =, = V3AN(B? -1) o =c, = BN (42 -1) ’ a18)

2(A*(B?=2)+2B?-1) 2(A%?(B?* -2)+2B?% -1)
here, A=e*, B=e", and N =-8/3k,h. Now knowing the expressions for the displacements u? (x)
and wO (x), i.e., formulas (17) and (18), and using (14), we obtain the final expressions of the
functions desired.

Figure 6 shows a relative error of the loading parameters k; (found by means of numerical
solution, and then by means of averaging) depending on the ratio L/H (i = 1, 2 — the problem
number): 0, =90,(L/ H). In the graph, the dashed line illustrates the error for boundary-value problem (1),
and the solid line — for problem (2). The comparative analysis of the expressions for tensile stresses
0., shows that the relative error of the solutions found by averaging for both problems is not more than
0.08 of the solutions obtained numerically for the plane problem. It is seen from the graph that with
increase in L/ H , the relative error decreases.
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Thus, proceeding from small deviations of numerical and approximate solutions, we can conclude
that the arguments cited above can be used for the problem on layer deformation and crack system
formation in three-dimensional case.

Three-Dimensional Statement

We study the three-dimensional formulation of the problem for an arbitrary layer bounded by the
contour L (Fig. 7).

Let u=0, v=0, and w=0 on the boundary z = &, and u=u’(x,y), v=v°(x,y), and w=0 on
z=0.

Similar to (6), we assign 0,, =T(x,y), 0,,=i(x,y), and 0_ = p(x,y)+g(x,y) on z=h; and
0, =0,0,=0,and 0_ =p(x,y) onz=0.

The operation of averaging gives

h h
~ 1 1 ﬁd’(?@y,z) ¢(xay>h)_¢(xaya0)
s =— s Vo d: 5 - dz = .
Jn) =g [Sonaie, [ TG mds -
Applying the average to the equilibrium equations, we obtain
000, %9y Ty)_ o 99 99, toy)_ o 10T 10: g(ny)_
0 o« oy h T ox dy h © 20x 20y h ’
0
0~ 2 0u? 2000 2 0u® 20v0 200u’  ov O
G =aram 20l 200 s j2000 )20 20 000D ()
B w = “)3 Ox 3 oy e 3 0Ox ( IJ)3 dy ad 30y Ox
0
0 g 2 0u® 2 0v° T u® ot v?
+2=A=2"""+(A S —=-U—, —=—U—
T 3o “)3ay 2 RS TR,
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System (19) consists of nine equations relative to nine unknown functions: 0., G,,, 0,,, T, t, p,

XX Xy

u% v, and w°. We can easily exclude a number of functions. As a result, we have

0 dd oo, 2 oG, 00 2

0 2R e o) R S R
O ok oy h? Ox oy h?

O

O 0 0 0

Dﬁxx ZEA%*_OV %‘gzuau )

= 3 Ox dy 3 Ox

5 (20)
0 0 0

05, =3/\ +av %'22“0\}

0 3 %é’x dy 3 dy

O

85 _%u[BuO_'_OVOB

H Y3 goy Ox D‘

Expressions (20) coincide with the equations of the plane elasticity theory. The principal difference
is in the presence of “body forces” proportional to displacements.
Consider the second problem. We assume that on the boundary z =0

u(x,y,0)=kx, v(x,»,0)=kyx, w(x,y,0)=0,
0..(x,y,0)=p(x,y), 0.(x,»,0)=T(x,y), 0,(x,y,0)=1(x,y);
on the boundary z =24
u(x,y,2h) =k x+u®(x,y), v(x,»,2h)=k,x+v°(x,y), w(x,»2h)=w’(x,y),
0. (x,»,2h)=0, 0, (x,»,2h)=0, 0 _ (x,y,2h)=0.

Applying the averaging operation to the equilibrium equations, we obtain

006, , 99, t(xy)_ 9y 90, t(xy)_, 10r 10 _p(xy)
Ox dy h © Ox dy h © 20x 20y 2

1ove  w' O

tAk, t———+—

2 ox 209, hH
0 0

=A 1+16L+W_D+(/\+2“) ld_

2 0xr i H 2 dy

_ o 100D
Biay 26xH’
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Fig. 8

~

The system consists of nine equations relative to the following nine unknowns: G, 0,,, 0 ,,, T, 1,

p, u®, v and w.
Further, taking A = 1, we obtain the system of the second order

O.0%u® 9200 920 4
3 - +2

D __MO 207

0 O0x? dy? ox0y  h?
2,0 2,0 2,0
02%v +36 u +26 u —ivozo, (22)
Ox? dy? Oxdy  h?

Oooogooood

02w0  0%w0 2 u? 2 y 0 w?o
+ +/\E’_1 +A%_1 _6/\_:2A(k1+k2).
Ox? dy? h Ox h dy h

The first two equations of (22) are the equations of the plane elasticity theory in case of equality of
the Lamé parameters (A=p). The difference is in the presence of “body forces” proportional to
displacements.

Consider the boundary conditions. In our statement, for the contour L (Fig. 7), the outward normal
n ={n,,n,,0}, consequently, the boundary conditions will be

0G,.n +0,,n, =0,
00, n +0,n, =0, (23)
Htn, +m, =0.

For simplicity, let us discuss the case when the layer cross-section with the plane z = 0 is the unit
square with the center at the point (0, 0). Using (23), we solve systems (20) and (22) numerically by the
finite-element method. As an example, Fig. 8 presents the energy flux lines for the loading conditions:
k, =2k, . It is seen that the energy entering from the left and right boundaries of the layer “returns” to
the same boundary, while the upper and lower boundaries exchange the energy with each other.

Thus, it is obvious from the numerical solution for the problem of uniaxial tension of the layer that
both the ratio of linear dimensions of the layer and the values of the material elastic-constants influence
the character of formation of the parallel crack system. The energy flux line configuration depends on
the dimensions of the region deformed and the values of the loading parameters. Proceeding from small
deviations of numerical and approximate solutions of boundary-value problems (1) and (2), we can
assert that the assumptions accepted in averaging the two-dimensional problem can be used for the
problem on layer deformation in three-dimensional statement.
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