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Compositions of ~ 2500 spinel—olivine pairs and 400 melt n-
clusion—spinel pairs have been analysed from 36 igneous suites
Jfrom oceanie, arc and intraplate tectonic settings. Our data confirm
that Cr-spinel tag-number s largely controlled by melt composition,
but also wnfluenced by octahedral site substitutions, and rate of
cooling. Lavas quenched in submarine environments lend lo have
higher mg-number at a given cr-number than slowly cooled
subaerial lavas and peridotites. Unlike mg-number, Cr-spinel Al, O,
and Ti0, contents show good correlations with melt composition,
with only limited post-entrapment modifications. Our data suggest
that increased activity of Al,Oy decreases the partitioning of Ti0,
wto spinels. The ALO; content of Cr-spinel is a useful guide to
the degree of partial melting of mantle peridotites; however, this
same relationship ts obscured in volcanic rocks. Al,O; contents of
volcanic Cr-spinels are mostly determined by melt composition rather
than mantle source composition. The data also suggest that most
spinels from residual mantle peridotites can be readily differentiated
Jrom those hosted in volcanic rocks. Mantle peridotite spinel tend
to have lower Ti0, and higher Fe** /Fe'* ratios than spinel fiom
volcanic rocks. The spinel compositions in our database can be
subdivided on the basis of lectonic setting and mode of occurrence
using an Al,O; vs Ti0, diagram. A total of seven fields can be
distinguished with varying degrees of overlap. This diagram can
then be used to determine the tectonic setling of spinel from altered
mafic igneous rocks such as serpentinites or meta-basalts, or detrital
spinel in sandstones.
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INTRODUCTION

Roeder (1994) succinctly reviewed detailed studies over
the last 20 years of Cr-spinel in mafic and ultramafic
rocks. These studies have shown that spinel compositions
are a complex function of magma (and source peridotite)
composition (e.g. Irvine, 1965, 1967; Evans & Frost,
1975; Fisk & Bence, 1980; Maurel & Maurel, 1982¢,
1982b; Sack, 1982; Dick & Bullen, 1984; Allan et al.,
1988; Allan, 1992, 1994; Arai, 1992, 19944), fO, (e.g.
Hill & Roeder, 1974; Murck & Campbell, 1986; Ballhaus
et al., 1991; Roeder & Reynolds, 1991), crystallization
temperature and cooling rate (e.g. Fisk & Bence, 1980;
Ozawa, 1984; Sack & Ghiorso, 1991; Scowen et al.,
1991), and perhaps pressure (e.g. Sigurdsson & Schilling,
1976; Jaques & Green, 1980; Ballhaus e al., 1991; Roeder
& Reynolds, 1991). Compared with usually co-liquidus
olivine in primitive magmas, Cr-spinel compositions offer
the potential to decipher important petrogenetic aspects
of such magmas, including information on source peri-
dotite ‘fertility’ (e.g. Dick & Bullen, 1984; Arai, 1987,
1994¢; Clynne & Borg, 1997), early stage magma min-
gling, before or during aggregation of melt batches in
subvolcanic magma chambers (e.g. Allan e/ al., 1988;
Allan, 1992; Danyushevsky et al, 1995; Kamenetsky &
Crawford, 1998; Kamenetsky et al., 1998) and subsequent
shallow-level magma mixing (e.g. Sigurdsson, 1977; Nat-
land et al., 1983; Thy, 1983).
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Many of the studies referred to above reported Cr-
spinel data in isolation from host olivine compositions.
In this study, we summarize a wealth of new com-
positional data for coexisting chromites and olivines from
a diverse range of primitive lavas, including those from
large igneous province (LIP) basalts (flood basalts),
oceanic intraplate basalts, mid-ocean ridge basalts
(MORB), back-arc basin basalts (BABB), intra-oceanic
arc basalts (including those of tholeiitic, calc-alkaline
and shoshonitic affinities), and several primitive boninite
suites. For some suites, we also report analyses of melt
inclusions in olivine and Cr-spinel hosts. Having analysed
a statistically significant number (usually >50) of olivines
from each lava, we are confident that we have identified
the most high-Mg olivines crystallizing from each suite,
so that the data presented are believed to be representative
of the full crystallization range of Cr-spinel in these
suites. To facilitate comparison and interpretation of the
magmatic Cr-spinel data, we also present new data for
several important ophiolitic peridotite suites, including
those from the refractory harzburgitic New Caledonian
ophiolite, and from i situ oceanic crust of Macquarie
Island in the Southern Ocean.

These new data allow us to re-evaluate the spectrum
of chromite compositions recorded from diverse tectonic
settings, and to provide a more robust assessment of the
significance of Cr-spinel composition variations than is
often provided (usually based solely on Cr-spinel Cr/[Cr
+ Al] vs Fe’*/[Mg + Fe’*] values). Following the
suggestion by Arai (1992), we apply the database and
new compositional discriminant plots presented herein
to interpret the origin and significance of spinels in
sandstones and altered rocks from the Palacozoic foldbelt
in eastern Australia.

SAMPLE DESCRIPTION AND
ANALYTICAL TECHNIQUES

Petrological criteria for choosing rock
suites

Chromian spinel (hereafter ‘spinel’) is mainly present as
inclusions in silicate minerals and less commonly it forms
phenocrysts. For this study of spinel compositions we have
chosen samples that satisfy the following requirements:

(1) all rock samples have volcanic origin, i.e. they are
relatively rapidly quenched submarine or subaerial lava
flows and tuffs or thin dykes with chilled margins. The
rocks are fresh to moderately fresh. The choice of samples
eliminates, as far as possible, the effects of post-en-
trapment modification of spinel compositions as a result
of re-equilibration or alteration.
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(2) The volcanics are representative of the different
magma types occurring in well-constrained tectonic en-
vironments, namely, mid-ocean ridges (MORB), back-
arc spreading centres (BABB), ocean islands (ocean-island
basalt; OIB), continental rifts (LIP) and a variety of
island-arc settings. Because of the large geochemical and
petrological diversity of island-arc magmatism, different
subtypes—boninitic, tholeiitic, calc-alkaline and high-K
(shoshonitic) series—are considered separately.

(3) Within each magmatic series the most primitive
compositions (the highest mg-number, i.e. Mg/[Mg +
Fe’*], and Cr and Ni contents) have been studied to
ensure the presence of olivine phenocrysts hosting spinel
inclusions. Although other phenocrysts may enclose spinel
inclusions during cotectic crystallization (orthopyroxene,
clinopyroxene and plagioclase), we favour the study of
spinel trapped in olivine. The reasons are as follows: (a)
olivine is the carliest phase to crystallize from virtually
all mantle-derived melts; (b) olivine remains on the
liquidus at least as long as spinel crystallizes; (c) olivine
compositions (Fo, Ca, Ni) can be used as an indicator
of the degree of magma fractionation; (d) the effects of
olivine—spinel post-entrapment Mg-Fe?* exchange can
be evaluated; (e) olivine effectively armours enclosed
spinel inclusions from other post-entrapment mo-
difications (e.g. Scowen et al., 1991).

(4) For each magmatic suite the compositional range
of olivine was thoroughly studied to guarantee that the
most primitive spinels, as well as spinel compositions
along the liquid line of descent, are included in the
database.

A complete set of rock samples used in this study is
listed in Table 1 and their locations are shown in Fig. 1.
The relevant petrological and geochemical information
on the rock suites may be found in publications cited in
Table 1. The abundance of olivine phenocrysts in these
rocks 1s rather variable (from a few percent to 40-50 vol.
%), and hence the rocks’ MgO contents vary pro-
portionally from ~6 to ~40 wt %. The range in the
composition of olivine cores (Table 1), sometimes very
large (10-15mol % Fo) even within a single sample,
suggests that none of the studied rocks represents a true
melt composition. Therefore, we regard these porphyritic
rocks as a mechanical mixture of olivine and other
silicate phenocrysts when present (e.g. plagioclase and
clinopyroxene in MORB, clinopyroxene in arc volcanics,
and low-Ca pyroxene in boninites) and a residual melt
(groundmass). The most Fe-rich olivines are usually in
equilibrium with the groundmass composition, whereas
more forsteritic olivines crystallized from more primitive
melts at higher temperature, and were incorporated
in the magma not long before the eruption. Olivine
phenocrysts with their spinel and melt inclusions remain
largely unequilibrated with the transporting melt, and
thus offer snapshots of the preceding magmatic evolution.
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Table 1: Geographic locations of studied samples and main composttional features of coexisting olivine and spinel

Suite no. Locality Referencet Olivine, Fo Spinel (compositional range)
mg-no. crno. TiO, Fe?*/Fe®*t
Mid-ocean ridge basalts (MORB)
1 15°20'N FZ, MAR Dmitriev et al. (1991) 87.3-89-2 65-71 41-51 0-3-0-6 1.8-2.2
2 FAMOUS area, MAR Langmuir et al. (1977); Kamenetsky 88-3-92.0 68-79 28-56 0-1-0-4 2.2-4.4
(1996)
3 54°S, MAR le Roex et al. (1987) 88-.9-91.5 69-81 24-49 0-1-0-5 1-8-4-0
4 43°N, MAR Shibata et al. (1979); Kamenetsky & 87.4-91.6 57-79 33-71 0-2-4.1 1.5-3-6
Crawford (1998); Kamenetsky et al.
(1998)
5% Lamont seamounts, EPR Allan et al. (1988) 88-91 66-84  20-54  0-2-0-9 1.2-1-9
6 Macquarie Island, SW Pacific Kamenetsky et al. (2000) 84.2-90-4 55-77 26-59 0-3-1.5 1-4-31
Back-arc basins (BABB)
7 North Fiji Basin Sigurdsson et al. (1993) 88.2-90.0 72-78  23-37 0-3-0-5 2.0-2-6
8 Manus Basin Dril et al. (1997) 83.2-91.4 45-77 25-84 0-1-0-9 0.7-2-4
9 Woodlark Basin Dril et al. (1997) 88-3-90.0 62-78  25-62 0-3-0-8 1-3-2.0
10 Vanuatu back-arc troughs Maillet et al. (1995) 76.2-91.4 25-77 17-84 0-1-3-2 0.7-3.0
11 Okinawa trough Shinjo et al. (1999) 85.5-86-8 58-63 44-46  0-5-09 1.6-1-8
12 Lau Basin (Valu Fa Ridge) Kamenetsky et al. (1997) 79.1-93.8 37-74 67-86  0-2-0-8 1.4-3-6
Island arc high-K and calc-alkaline series
13 East Kamchatka (Valaginsky, Tumrok) Kamenetsky et al. (1995b) 84.7-94.3 33-74  67-87 0-2-1.0 0-6-1-6
14 Roman Comagmatic Province Kamenetsky et al. (1995a) 89-8-92.6 62-70 63-83 0-4-1-0 1.7-4-0
(Montefiascone, Latium)
15 Aeolian arc (Vulcano, Lipari) Kamenetsky & Clocchiatti (1996); 87-3-90.5 46-60 76-81 0-4-0.7 0-9-2-4
Gioncada et al. (1998)
16 Vanuatu (Ambae) Eggins (1993) 81.9-93.4 34-72 43-81 0-3-1.7 0-8-1-9
17 Vanuatu (Ambrym) Picard et al. (1995) 85.1-93.8  34-71 83-91 0-2-0-5 1-4-3.7
Island-arc boninitic and tholeiitic series
18 Howqua, Victoria (boninite) Crawford (1980) 93.6-94.8 61-78 97-98  0-0-04 2.0-3-3
19 Cape Vogel, PNG (boninite) Walker & Cameron (1983) 92.0-94.-1 65-79  89-95 0-0-2 2:1-4-0
20 Hunter Ridge-Hunter FZ boninites  Sigurdsson et al. (1993) 85.2-92.2 47-69 72-90 0-0-4 1-3-4-1
21 Hunter Ridge-Hunter FZ tholeiites Sigurdsson et al. (1993) 80-5-94.3 38-77 39-87 0-1-0-5 1.0-2-8
22 Troodos Upper Pillow Lavas Sobolev et al. (1993) 88-4-93.4 60-74 67-80 0-2-0-4 1.7-2-9
(boninites)
23 Vanuatu (Tanna) tholeiite Monzier et al. (1997) 82.1-92.3 40-64 82-87 0-2-0-3 1.9-3.8
24 South Vanuatu seamounts high-Mg Monzier et al. (1993) 80-9-94.5 34-79 50-81 0-2-1-4 0.6-2-2
andesites
25 New Caledonia boninites Cameron (1989) 88-5-93.6 56-75 83-87 0-1-0-3 2.2-34
Ocean-island basalts (OIB)
26 Hawaii (Kilauea, Mauna Loa, Mauna Sobolev & Nikogosian (1994) 76-9-90-1 36-68 49-73 1.1-3-3 1.2-2.7
Kea)
27 Reunion Sobolev & Nikogosian (1994) 79-8-88-.9  40-62 57-65 1.5-7-5 1-6-2-9
28 French Polynesia (Tubuai, Mangaia) Maury et al. (1994); Woodhead (1996) 77.-9-86-6 24-56 42-66 1.5-15 0-9-2.2
Large Igneous Provinces (LIP)
29 Karoo, South Africa Bristow (1984) 85.4-88-3 40-54 72-84  3.2-4.4 2.5-3-6
30 Emeishan, SW China Chung & Jahn (1995) 80.4-88-1 30-49 69-76 1.9-6-8 1.4-2.6
31 Central Siberian Plateau Sobolev et al. (1992) 87-0-92.6 49-70 79-86  3-1-5-3 1-0-1-8
32 West Greenland, Disko Island Holm et al. (1993); Lightfoot et al. 86:0-92.7 56-76 44-63 0-7-11 1.4-2.3
(1997)
Mantle peridotites
33 Macquarie Island, SW Pacific Basylev & Kamenetsky (1998) 90-5-91.5 46-72 28-62 0-0-25 2.5-6-6
34* Mid-ocean ridges Dick (1989) 89-3-91.0 54-83 11-53 0-0-8 1.9-8-3
35* lzu-Mariana forearc, Leg 125 Ishii et al. (1992) 90-5-94.0 27-68 31-87 0-06-0-25>2-6
36 New Caledonia Leblanc (1995) 88-4-92.6 38-72 31-74  0-0-3 2.6-9-7

*Suites for which we used published data on mineralogy.

tReferences contain general information on petrology, mineralogy and geochemistry of rocks.

$Fe,0; is calculated on the basis of spinel stoichiometry.
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Fig. 1. Map showing the geographic position of studied suites. (For suite numbers see Table 1.)

The ranges in olivine Fo content in the studied rocks
(Table 1) extend to the highest values recorded for a
given type of magmatism. The presence in our collection
of olivine Fog, (mid-ocean ridges), Foy, (ocean islands),
Fog; (continental rifts), Foy, ; (island arcs), and Fogs.; (back-
arc basins) is good evidence for crystallization from high-
temperature mantle-derived melts. It is worth noting that
the composition of olivine (Fo) may be used as a measure
of liquidus temperature and melt MgO only within a
given magma series (e.g. MORB), whereas across the
various magma series considered here, olivines of similar
forsteritic content crystallize at very different tem-
peratures (see Fo vs temperature plot in Sobolev &
Nikogosian, 1994; Kamenetsky et al, 1995q). For ex-
ample, the liquidus temperature of Fog, in MORB melt
(FAMOUS area) is ~1300°C (Kamenetsky, 1996),
whereas in the Siberian meimechite magma Fog, crys-
tallized at ~1560°C (Sobolev e al., 1992). The MgO
content of their parental melts is, therefore, also different
(13-5 and 27 wt %, respectively), reflecting different melt
Fe’* contents.

To compare compositions of volcanic spinels with those
from mantle peridotites we use published mineral analyses
from oceanic peridotites worldwide (Dick, 1989), from
the Izu—Mariana forearc, Leg 125 (Ishii ez al., 1992), and
our data for Macquarie Island and New Caledonia
peridotites. Information on the composition of melts
parental to spinel in a number of samples was also
obtained from the study of melt inclusions trapped in
either spinel or olivine phenocrysts.

Spinel inclusions in olivine

Spinel inclusions are found in olivine phenocrysts from
all magma types, but the abundance of spinel is highly

variable. Some phenocrysts may contain numerous
swarms of 5—6 to several tens of inclusions (typically in
boninites), but more often they host either only occasional
individual grains (e.g. North Fiji back-arc basalts), or the
majority of olivines are devoid of any inclusions (e.g.
Kamchatka high-K picrites).

Spinel inclusions are always octahedral, varying in size
from several micrometres (in boninites and arc tholeiites)
to 0:5mm (in MORB and OIB). The colour of spinels
in thin sections and brightness in reflected light depend
on chemical composition, e.g. Fe-Ti-rich spinels are
the brightest and almost opaque, Cr-rich spinels are
translucent reddish brown to yellow—brown, and Al-rich
spinels are the least reflective, greenish yellow to dull
green in colour.

Melt inclusions in spinel and olivine

Melt inclusions, consisting of residual glass and daughter
silicate crystals, are very common in spinel and olivine
phenocrysts. Homogenization experiments with the melt
inclusions were performed using a heating stage designed
in the Vernadsky Institute of Geochemistry, Moscow
(Sobolev et al., 1980). The details of experimental pro-
cedure and compositions of individual inclusions and
their host minerals from some suites that are discussed
in this paper can be found in our (Zlobin et al., 1991;
Sobolev et al., 1992, 1995; Kamenetsky et al., 1993, 19954,
19956, 1997, 1998; Kamenetsky, 1996; Kamenetsky &
Crawford, 1998) and other (Danyushevsky et al., 1987;
Gurenko et al, 1992; Sobolev & Nikogosian, 1994;
McNeill, 1997; Gioncada et al., 1998) publications.
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Sample preparation and analysis

The samples were crushed and sieved, and 50-200 olivine
phenocrysts (0-3—1 mm) from each sample were hand
picked, mounted in epoxy mounts, exposed and polished.
Spinel inclusions in olivine grains in these mounts were
marked for analysis. Similar mounts were prepared with
spinel and olivine grains containing homogenized melt
inclusions. Spinel and glass inclusions were analysed
together with their host minerals by electron microprobe
at the University of Tasmania and University of Paris
VI (Cameca SX-50) and Vernadsky Institute of Geo-
chemistry, Moscow (CGamebax microbeam), using wave-
length-dispersive spectrometry at 15kV. Mineral (San
Carlos olivine USNM 111312/444 and Cr-spinel UV-
126) and glass (VG2—USNM 111249/52) secondary
standards were analysed before and after each run, and
2-5 analytical points were used to calculate average
composition. At least 25 grains of olivine and five spinels
were studied in each sample. Host olivine was analysed
not further than 20 pm from the spinel inclusions. The
large number of analyses of individual olivine grains
allowed determination of the entire range of olivine
compositions, so that analyses of spinels were selectively
performed on grains trapped in olivines over a wide
range of Fo contents.

RESULTS AND DISCUSSION

The main compositional features of studied spinels (mg-
number, ¢-number = Cr/[Cr + Al], TiO,, and Fe’*/
Fe’*) are given in Table 1. The compositions of individual
spinel inclusions trapped in the most primitive olivines
are presented in Table 2. Below we discuss petrological
aspects of the spinel compositional range in the lavas
studied.

Olivine—spinel mg-number compositional
relationships: the effects of crystallization
and re-equilibration

The presence of spinel inclusions in olivine over a wide
Fo range, including the most evolved olivines (e.g. Fos; g
i OIB) within a given sample or magma type, argues
for continuous spinel crystallization together with the
cotectic silicate phases other than olivine (pyroxenes and
plagioclase) over a significant range of temperatures. In
some cases (see Table 1 for the suites with the largest
ranges of Fo) the crystallization temperature interval
may exceed 200-250°C. Given the well-established early
crystallization of pyroxenes in many island-arc (e.g.
Barsdell, 1988; Eggins, 1993; Sobolev & Danyushevsky,
1994; Della-Pasqua et al., 1995; Kamenetsky ez al., 19954,
19956, 1997; Della-Pasqua & Varne, 1997) and some
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MORB magmas (e.g. Kamenetsky ez al., 1998), and early
crystallization of plagioclase in most MORB (e.g. Allan
et al., 1988; McNeill, 1997), as well as presence of spinel
inclusions in pyroxene and plagioclase phenocrysts (this
study), earlier claims that spinel crystallizes over a narrow
temperature interval (Hill & Roeder, 1974; Fisk & Bence,
1980) and ceases to crystallize shortly after the appearance
of clinopyroxene and plagioclase (Irvine, 1965, 1967,
Dick & Bullen, 1984) seem to be unjustified.

Fractional crystallization (decreasing melt mg-number
and temperature) should lead to related change in the
mg-number of co-crystallizing olivine and spinel. For
example, the observed positive correlation between oli-
vine Fo and spinel mg-number in a given sample or suite
(Fig. 2) reflects local equilibrium between these phases.
The temperatures of olivine—spinel equilibria, calculated
using the Ballhaus e/ al. (1991) model, are presented
in the caption to Fig. 2. However, these temperatures
(Taerge = 1067 + 65°C for 650 olivine-spinel pairs
shown in Fig. 2) correlate neither with Fo nor with
real liquidus temperatures, and are in fact the closure
temperatures for the Fe-Mg exchange between host
olivines and spinel inclusions. The decrease in primary
mg-number values of spinel inclusions in olivine as a
result of re-equilibration at temperatures below liquidus
(Irvine, 1967; Dick & Bullen, 1984; Ozawa, 1984;
Ballhaus et al, 1991; Scowen et al., 1991) does not,
however, obliterate correlations between mg-number and
Fo in many volcanic suites (Fig. 2). On the other hand,
the dispersion in spinel mg-number at a given Fo value,
either within a given sample or suite or between suites,
1s controlled by some other factors. One is the dependence
of the Mg and Fe’* partitioning between olivine and
spinel on the relative activities of Cr and Al in spinel
(Dick & Bullen, 1984) or, in other words, the substitution
of Fe’* and Cr for Mg and Al (Allan et al., 1988). For
example, Fig. 2 shows that spinel coexisting with olivine
becomes more Mg rich with decreasing ¢-number. The
distribution coefficient £; = (Mg/Fe) ./ (Mg/ Fe“)spinel
varies significantly from 2-5 (¢~-number 20-30) to 10-12
(er-number 80-90). At a given spinel ¢-number, the
distribution coefficient either remains constant (Iig. 2a)
or varies within up to 30% of its value (Fig. 2c).

To further examine the possible effects of low tem-
perature re-equilibration of spinel in terms of its mg-
number we compared the compositions of spinel from
quenched (underwater eruption, e.g. MORB, BABB and
some arc tholeiites and boninites) and relatively slowly
cooled (subaerial eruption, e.g. OIB and high-K arc
series) rocks (Fig. 3a and b). The data (grouped according
to host olivine Fo composition and plotted on the mg-
number—¢-number diagram) demonstrate that at a given
spinel ¢r-number and olivine Fo, spinel mg-number values
from subaerial lavas are slightly lower (by up to 10 mol %).
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Table 2: Representative compositions of spinel inclusions trapped in the most primitive olivines found in the

studied samples (see Table 1)

Suite no. TiO, Al,O4 Fe,0; FeO MnO MgO Cr,04 Total mg-no. cr-no. Fe?*/Fe®** Host
olivine, Fo

2 0-27 26-55 4.31 9:15 0-12 17-63 41-39 99.43 77-44 51.12 2.36 92.0
3 0-19 35.76 3.77 9:48 0-17 18-36 3272 100-44 77-54 3803 2.79 915
3 0-08 46-42 3.72 857 0-11 20-19 2195 101-03 80-78 24.08 2-56 914
4 0-48 17-11 4.93 11-30 0-16 15-15 49-67 98.79 70-49 66-07 2.55 91-3
7 0-30 41.26 4.29 9.51 0-00 19-14 25.58 100-08 78-20 29.37 2.47 90-0
8 0-17 12.59 6-10 12.76 0-11 13.93 54.53 100-19 66:05 74.39 2.32 914
9 0-69 32:15 6-67 10.98 0-16 17.06 30-66 98.37 7348 39.01 1-83 90-0
10 0-40 16-38 8-58 13.07 0-24 1374 46-20 98.61 65-21 65-42 1-69 91-3
12 0-30 6-71 6-75 9-65 0-21 15-04 59.99 98.64 7354 85-70 1-59 93-8
13 0-24 6-56 10-25 9-56 0-20 15-36 57.76 99.93 7412 85-52 1-04 94.3
13 0-47 11.563 2331 12.17 0-14 14.13 37-33 99.08 67:43 68-47 0-58 92.9
14 0-55 16-15 5.33 1234 0-18 14.-66 50-53 99.72 67-93 67-74 2.57 919
16 0-43 12.31 10-26 10.52 0-08 15-54 51.44 100-58 7248 7371 114 934
17 0-46 7-93 8-03 11-80 0-13 14-00 56-64 98-99 67-90 82.73 1-63 93-8
18 0-01 1-05 353 869 0-06 15-45 71-59 100-38 76-02 97-86 2.74 94.8
19 0-02 3-10 353 8.03 0-13 15-60 69-00 99.41 7759 93.73 2.53 94.0
20 0-02 7-53 4.72 12.66 0-05 13.17 60-73 98.88 6496 84.40 2.98 922
21 0-17 10-07 5.96 10-28 0-19 15-47 5773 99.87 72.85 79-36 1.92 941
22 0-22 1183 4.68 10-84 0-20 15-19 56-91 99.87 7141 76-34 2.57 934
23 0-26 7-42 778 13:16 0-18 12.93 57-90 99.63 63-65 83-96 1-88 923
24 0-18 10-22 6-28 9.02 0-25 15.71 57.58 99.25 75-64 79-08 1-60 94.4
25 0-16 7-52 4.33 10.91 0-00 14.46 62-49 99.88 7026 84.79 2.80 93.6
26 1.84 16-95 7-05 13.78 0-21 14.54 45.25 99.62 65-29 64.17 217 90-1
27 1.55 16-19 8:17 14.78 0-15 13-69 45.42 99.95 62:29 65-30 2.01 889
28 1-48 15-49 10-20 1772 0-26 1172 43-89 100-76 5411 65-53 1.93 86-6
29 4.43 11-52 8.34 18:61 0-22 12.11 44.43 99.64 53.72 7213 2.48 88-3
30 1.92 10-67 8-02 19:12 0-15 10-17 48-95 98-99 48-67 75-48 2-65 881
30 4.95 9.01 12.30 22.49 0-25 9-80 41.72 100-53 43.71 75-64 2.03 86-3
31 4.02 679 11.77 14.23 0-13 14.32 48-30 99.56 64.22 82.67 1-34 926
32 0-69 20-59 5.46 9.70 0-09 16-76 46-04 9932 75-50 60-00 1.97 92.7

This is consistent with statistically lower blocking tem-
peratures for olivine—spinel re-equilibration in subaerial
lavas (7 perge = 1050 & 70°C; n = 600) in comparison
with quenched volcanics (7 e = 1077 £ 58°C; n =
871). The effects of even slower cooling and lower closure
temperature (L. = 681 £ 44°C; n = 296) are most
pronounced in the mg-number of spinel from mantle
(ophiolite or abyssal) peridotites. Compositions of spinels
associated with olivine Fogg.5 ¢, from a number of oceanic
(arc- and rift-related) peridotites are significantly offset
to lower mg-number (by up to 25-30mol %) from the
trends observed in pillow lavas (Fig. 3c). This shift in-
creases significantly with increasing spinel ¢~-number.

Spinel mg-number should be interpreted with caution,
as it 1s a complex function of a number of factors, the
most important of which are (1) mg-number of the parental
melt; (2) partitioning of Al and Cr in spinel, and hence
AlLOj in the melt (see below); (3) Fe**/Fe’* in the melt,
and hence fO,; (4) post-entrapment re-equilibration with
silicate minerals, and hence the cooling rate and spinel
grain size. Consideration of the kinetics of olivine—spinel
Mg-Fe?* interdiffusion (Ozawa, 1984) precludes sig-
nificant subsolidus re-equilibration for rapidly cooled,
submarine volcanics, as their cooling rates of
100-100 000°C/h provide insufficient time for re-equi-
libration at near-magmatic temperatures. This contrasts
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Fig. 2. Relationships between host olivine Fo and spinel inclusion mg-number. The compositional trends are presented for 12 populations
(I-XII) of spinel compositions. Each population has a limited range in measured ¢-number and olivine—spinel blocking temperature, calculated
using the Ballhaus e/ al. (1991) geothermometer. (For suite numbers see Table 1.)

| 1] 1] v Y VI
Spinel cr-number 16-30 50-56 65-75 83-90 30-45 55-63
Torsp + 8 (°C) 1122 + 50 1114 + 38 1061 + 28 1066 + 27 1108 + 67 1094 + 32
Suite number 7-10 1,2, 4 8,10, 12 20 1-4 32

VI VIl IX X XI Xl
Spinel cr-number 64-74 75-81 35-45 50-60 70-80 83-90
Torsp + 8 (°C) 1099 + 68 1048 + 71 1096 + 57 1077 + 54 1056 + 49 963 + 37
Suite number 26 24 7-10 8-10 16 17

Distribution coefficient Ky = (Mg/Fe)qjivine/( Mg/Fe?*)gpine Values and isopleths of K (dashed lines) are shown.
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Fig. 3. Relationships between mg-number and ¢-number in spinels
from recent and modern submarine (a) and subaerial (b) rocks, and
mantle peridotites (c). Peridotitic samples: I, Izu-Mariana forearc, Leg
125 (Ishii et al. (1992); II, New Caledonia; III, Macquarie Island; IV,
variety of abyssal peridotites (Dick, 1989). Isopleths of olivine Fo (dashed
lines) are calculated as a linear regression for olivine—spinel data from
recent and modern submarine volcanics shown in (a).

with the rates of 0-1-0-001°C/h for slowly cooled sub-
aerial thick lava flows, lava lakes, dykes and intrusive
rocks, and thus the variable and extensive re-equilibration
observed (Fig. 3b and c; Scowen et al., 1991; Barnes,
1998). With respect to re-equilibration, Fo-mg-number
or mg-number—¢r-number correlations, even in submarine
volcanics (Figs 2 and 3a), are not true liquidus re-
lationships, as spinels trapped in more evolved olivine
are likely to be re-equilibrated to a lesser extent than
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spinels hosted by more primitive, higher-temperature
olivine. However, in this case Mg and Fe’* exchange is
considered to be minimal <5 mol % mg-number (Dick &
Bullen, 1984; Allan et al., 1988; Allan, 1994; Clynne &
Borg, 1997), and the decrease in spinel mg-number,
along with olivine Fo, is still a reflection of fractional
crystallization. Figure 3a shows the 1sopleths of minimal
Fo values of olivines hosting spinel of any ¢-number value.
This provides a useful estimate of olivine compositions in
rocks where olivine is pervasively altered.

Spinel Al,O; vs TiO,: a guide to magma
chemistry and tectonic provenance

Unlike Mg and Fe’* in spinel trapped in olivine, mag-
matic abundances of trivalent (Al, Cr) and tetravalent
('T1) cations experience very little, if any, change during
post-entrapment re-equilibration because of their low
diffusivity in olivine (Roeder & Campbell, 1985; Scowen
et al., 1991; Barnes, 1998). To examine the effects of melt
composition on the abundances of Al,O; and TiO, in
spinel, we use compositional pairs of spinel and glass
coexisting as: (1) melt inclusions in spinels; (2) melt and
spinel inclusions in the same olivine or olivines with
similar Fo content; (3) spinel microphenocrysts in natural
glass (Table 3).

A positive correlation between Al,O; and TiO, contents
in spinel and coexisting melt is demonstrated over sig-
nificant intervals of averaged spinel and melt com-
positions (e.g. 3-39 and 4-6—-18 wt % Al,Os, and 0-04-3-9
and 0-:07-3-9 wt % TiO,, respectively, see Fig. 4a and
b and Table 3) sampled from a variety of magmatic types
and tectonic environments. Similar covariations also exist
even if more restricted compositional intervals rep-
resented by the individual samples or suites are considered
(Fig. 4c and d). Our interpretation, concurring with other
studies of natural rocks (e.g. Crawford, 1980; Dick &
Bullen, 1984; Allan e al., 1988; Arai, 1992; Della-Pasqua
et al., 1995; Kamenetsky, 1996) and compilation of ex-
perimental data (Danyushevsky, 1995), is that these re-
lationships are primarily controlled by magmatic Al,Oj
and TiO, abundances. The correlation of spinel and
basaltic melt Al,O; abundances, similar to that in Iig.
4a, has also been shown by experimental studies (Maurel
& Maurel, 19824; Roeder & Reynolds, 1991). The magma
compositional control on spinel Al;Os, and the presence
of Al-rich rims around Cr-rich cores in some spinel
phenocrysts and inclusions in olivine (this study and Allan
et al., 1988; Allan, 1992; Della-Pasqua et al., 1995) argue
against the relatively high pressure of crystallization,
which has been suggested to explain the rather aluminous
(AL O; >40 wt %) composition of some spinels in MORB
(e.g. Irvine, 1967; Sigurdsson & Schilling, 1976; Si-
gurdsson, 1977; Fisk & Bence, 1980). We also note that
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despite a good correlation between TiO, in coexisting
melt and spinel, low-Al spinel from the island-arc series
and LIP are systematically more T1i rich at a given melt
TiO,. This implies that increasing Al activity in the
system melt-spinel reduces the partitioning of Ti into
spinel.

The dependence of spinel ALO; and TiO, con-
centrations on the parental melt composition (Fig. 4)
suggests the use of an AlLO; vs TiO, diagram to dis-
criminate between spinels that crystallized from different

magmas in different geodynamic settings (Fig. 5). Com-
positions of spinel coexisting with primitive olivine (Fo
>84mol %) from LIP, OIB, MORB [excluding un-
common for MORB high-Ti spinel from 43°N, Mid-
Atlantic Ridge (Kamenetsky & Crawford, 1998)] and
island-arc magmas form distinct fields with little overlap
(Fig. 5a). The exception is spinel from modern back-
arc environments, such as Valu Fa Ridge (Lau Basin),
Vanuatu and Okinawa troughs, North Fiji, Manus and
Woodlark basins. As expected by their transitional and
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transient setting, back-arc spinel compositions spread
across island-arc and MORB fields (Fig. 5b), reflecting
the presence of subduction-related and MORB mantle
and magma components and diverse melting conditions
in this complex setting.

Island-arc spinels show far more significant overall and
intra-sample variations in TiO, content than spinels in
other magmas (Fig. 5¢c). These variations probably reflect
the fact that parental magmas are also variable in TiO,
as a result of mixing [e.g. with high-Ti OIB melts
(Danyushevsky et al., 1995)]. In general, arc spinel TiO,
systematics is consistent with whole-rock chemistry and
helps to distinguish between boninites—arc tholeiites, and
calc-alkaline—high-K series, using a boundary at ~0-3—
0-4 wt % TiO, (Fig. 5c¢).

Spinel AL,O; (cr-number): inferences for
mantle source and melting

Spinel ¢-number (or Al O;) values are commonly used
to constrain the nature of the mantle peridotite source
and the degree of partial melting (e.g. Jaques & Green,
1980; Duncan & Green, 1987; Bonatti & Michael, 1989).
Although this is largely correct for mantle peridotites, as
the compositional features of other minerals (e.g. olivine
Fo, AL,O; in pyroxenes) support trends in the spinel ¢~
number, the inferences for the parental mantle based on
the ¢-number of liquidus spinel could be misleading.
The projection of ¢r-number in volcanic spinels onto the
so-called Olivine—Spinel Mantle Array (Fo vs ¢-number
diagram; see Arai, 1987, 1994a) has been used in a
number of petrological studies (e.g. Sigurdsson et al., 1993;
Arai, 1994b; Sobolev & Danyushevsky, 1994; Sobolev &
Nikogosian, 1994; Kamenetsky & Clocchiatti, 1996).
However, if this method is applied to compare mantle
sources of magmas from flood basalt provinces with
boninites or intraplate ocean-island magmas with island-
arc tholeiites that all crystallized spinel with similar low
AlLOj (high ¢r-number), the conclusion should be that
they have similar refractory, harzburgitic sources. On
the other hand, mid-ocean ridge magmas that crystallize
high-Al spinel, and are interpreted as products of multi-
stage high-degree partial melting (Danyushevsky e al.,
1987; Sobolev & Shimizu, 1993), should, according to
Arai’s method, be derived from an undepleted lherzolitic
mantle source. This is clearly in conflict with other

Fig. 5. AL,O; vs TiO, compositional relationships in spinel inclusions
trapped in primitive olivine Fo >84: (a) discrimination between mid-
ocean ridge basalt (MORB, grey circles), ocean-island basalt (OIB,
grey squares), large igneous province (LIP, &) and island-arc magmas
(ARC, A); (b) spinels from modern back-arc settings show both island-
arc and MORB affinities; (c) discrimination between lower-T1i (boninites
and tholeiites) and higher-Ti (calc-alkaline and high-K) island-arc series.
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petrological and geochemical data, including TiO,
abundances in spinel. Spinel Al,O; abundances depend
on the melt composition (Fig. 4), which is a function of
pressure, temperature, and degree of partial melting, as
well as source chemical and phase compositions. We
emphasize here that the compositions of spinel from LIP,
OIB and MORB form a continuum on Al,O; vs TiO,
diagram (Fig. 5a), which extends from the high-Ti, low-
Al corner (LIP) to the low-Ti, high-Al end (MORB).
This trend is coincident with pronounced changes in the
mantle petrological-geochemical characteristics (fertile—
enriched to refractory—depleted) and conditions (pressure
and temperature) of mantle melting. Pressure and tem-
perature vary from high [e.g. >60kbar and >1800°C
for Siberian meimechites (Sobolev et al., 1992)] through
moderate [e.g. 2040 kar and 1450-1600°C for Hawaiian
and West Greenland magmas (Eggins, 1992; Sobolev &
Nikogosian, 1994; Gill ¢t al., 1995)] to low values [e.g.
2-22 kbar and 1200-1450°C for mid-ocean ridge prim-
ary melts (Danyushevsky et al., 1987; Falloon & Green,
1988; Kinzler & Grove, 1992; Sobolev & Shimizu, 1993)].
As expected, these variations in conditions of melting
coincide with changes in magma chemistry, with abund-
ances of Mg, Fe and Ti decreasing, and Si and Al
increasing along the trend.

Using the analogy with LIP and OIB spinel, low Al,O4
abundance in island-arc spinels may suggest that their
parental magmas were also high-Mg high-temperature
liquids formed at elevated pressures. This is in agreement
with estimates of pressure and temperature of the mantle
source for a number of island-arc magmas: for example,

East Kamchatka [30-50 kbar, 1500-1700°C (Ka-
menetsky et al, 19954)], Tonga [20-25kbar,
1450-1550°C  (Sobolev & Danyushevsky, 1994)],

Troodos Upper Pillow Lavas [20-30 kbar, 1380-1550°C
(Sobolev et al., 1993)], and Vanuatu [30 kbar, 1300°C
(Eggins, 1993)].

The use of spinel chemistry: examples
from volcanisedimentary and ancient rocks

Volcaniclastic rocks may have multiple and variable
sources. In these rocks detrital spinel may be the only
primary igneous mineral not affected by alteration and,
therefore, it can provide valuable petrological in-
formation. Compositions of detrital spinel may help to
recognize and identify the chemical affinity and tectonic
provenance of the source rocks.

The discrimination between ‘mantle’ and volcanic
spinel is the first step in constraining the spinel com-
positional populations. We have shown above that spinels
from mantle peridotites tend to have statistically lower
mg-number than spinel coexisting with primitive olivine
(Fo >88) from volcanic rocks (Fig. 3c). However, this

CHEMISTRY OF MAGMATIC SPINEL

criterion is effectively irrelevant for sediments, as olivine
is rarely preserved. The more useful variables are TiO,
and Fe’*/Fe’* in spinel. ‘Mantle’ spinels have statistically
lower TiO, (<0-2 wt %) and higher Fe’* /Fe** (>2) over
the whole interval in Al;O3 (6-56 wt %) than volcanic
spinels, though low-Ti compositions (T10, <0-2 wt %)
high Fe?* /Fe’* (up to four) compositions also exist among
volcanic boninitic and arc tholeiitic spinels (Fig. 6).
Compositions of ‘mantle’ spinels can be subdivided into
two broadly overlapping fields (Fig. 6) represented by
spinel from suprasubduction zone peridotites (lower
AlLO;) and spinel from MORB-type peridotites (higher
ALO;). The compositional affinities of volcanic spinel
can be evaluated using the data from Figs 4 and 5.

To demonstrate how spinel composition can be used
to unravel the tectonic evolution and petrogenesis of
altered volcanic and sedimentary rocks in ancient fold
belts we present a summary of a study where spinel
chemistry has provided valuable information. The Lach-
lan Fold Belt (LFB) in southeastern Australia contains
Cambrian to Devonian volcanic and sedimentary rocks
mntruded by Silurian and Devonian granitoids (Coney,
1992). The Ordovician rocks of the LFB consist of two
contrasting assemblages, quartz-rich continental-derived
turbidites, and medium- to high-K volcanics and vol-
caniclastics. The genetic relationship between these two
sequences has long been a problem as the majority of
their contacts are fault bounded. The Snowy Mountains
terrain is located in the central LFB. It contains a thin
block of Ordovician volcaniclastic rocks interbedded with
minor volcanics in faulted contact with Ordovician
quartz-rich sandstones. The faults on either side of the
volcaniclastic rocks contain ophiolitic fragments. The
fault to the east contains altered pillow basalts, cherts,
meta-dolerite and hyaloclastites. The fault to the west
contains serpentinite, meta-dolerite and altered basalts.

The chemistry of spinels from the ophiolitic fragments
and volcaniclastic rocks provides important constraints
on the relationship between the Ordovician quartz-rich
and volcaniclastics sequences. Spinels from a hyaloclastite
from the eastern fault have high Al,O; similar to those
from MORB or MORB-type back-arc rocks, indicating
that they crystallized from a melt containing between 14
and 16 wt % ALO; (Fig. 7). In contrast, spinels from
serpentinites in the western fault zone are low in both
TiO, and Al,Os, indicating that these rocks are fragments
of suprasubduction zone mantle peridotites. It is therefore
unlikely that the rocks in both fault zones could be derived
from a single ophiolite. Spinels from the volcaniclastic
sequence have low AlL,O; and moderate TiO, (Fig. 7),
indicating that they crystallized from a melt containing
between 10 and 11 wt % Al,O;. This melt composition
is similar to that of the most primitive shoshonitic basalts,
which are interbedded with the volcaniclastic rocks. The
spinels were therefore derived locally from the erosion
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of the basalts and not from erosion of the ophiolitic rocks
within the fault zones on either side.

The chemistry of the spinels from the Snowy Mountains
shows that the Late Ordovician volcaniclastics are sep-
arated from the Early Ordovician quartz-rich turbidites
by both MORB-type and SSZ-type ophiolites. This sug-
gests that the sedimentary rocks originated from sho-
shonitic volcanics in a separate tectonic environment to
the continental turbidites and were juxtaposed during
either strike-slip tectonics and/or the closure of major
oceanic basins.
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compositional fields of spinel from volcanic rocks and mantle peridotites
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CONCLUSIONS

At magmatic conditions, spinel mg-number is a function
of melt mg-number and Al,Os, whereas at near- and post-
magmatic conditions it is controlled by the rate of cooling
and re-equilibration with the silicates. Within a given
volcanic suite, spinel mg-number can be used as a measure
of the extent of crystal fractionation. The mg-number—cr-
number relationships in spinel from altered volcanic rocks
or sediments can help to approximate compositions of
olivine, which once coexisted with spinel.

Abundances of Al,O; and TiO, in magmatic spinel
are mainly controlled by contents of these oxides in the
parental melts, and thus can be used to discriminate
between different magma types, their tectonic affinities
and mantle sources. The application of spinel AL,O; (¢~
number) alone to directly constrain the mantle source
composition is not confirmed in this study.

The compositional features of spinel and the differences
in TiO, and Fe’*/Fe** between magmatic and mantle
spinel can be used in characterizing altered magmatic
rocks, and the sources of detrital spinels in clastic sed-
mmentary rocks, thus contributing to the understanding
of the tectonic development of source geological terrains.
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