See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/274842086

A. B. OSIPENKO, E. G. S1DOROV, L G. OS1PENKO. E. N. GRIB CHROMIUM-BEARING GARNETS FROM RODDNGITES OF DLINNOGORSKY MAFIC-ULTRAMAFIC MASSIF, VALIZHGEN PENINSULA, KORYAKIA

Article · January 2001

citations 0		reads 60
1 author	:	
B	Evgeny Sidorov Institute Of Volcanology And Seismology 113 PUBLICATIONS 602 CITATIONS SEE PROFILE	

Some of the authors of this publication are also working on these related projects:

Spatial distribution, typomorphical features and conditions of formation of PGE minerals in concentrically-zonal ultramafic massifs of Epilchik area, Koryak-Kamchatka platinum belt View project

УДК 549.621.95(571.661)

3BMO, № 1, 2001 г. Proc. RMS, N 1, 2001

© А. Б. ОСИПЕНКО,* Е. Г. СИДОРОВ,** Л. Г. ОСИПЕНКО,* Е. Н. ГРИБ*

ХРОМСОДЕРЖАЩИЕ ГРАНАТЫ ИЗ РОДИНГИТОВ ДЛИННОГОРСКОГО БАЗИТ-ГИПЕРБАЗИТОВОГО МАССИВА, п-ов ВАЛИЖГЕН, КОРЯКИЯ

A. B. OSIPENKO, E. G. SIDOROV, L. G. OSIPENKO, E. N. GRIB CHROMIUM-BEARING GARNETS FROM RODINGITES OF DLINNOGORSKY MAFIC-ULTRAMAFIC MASSIF, VALIZHGEN PENINSULA, KORYAKIA

* Институт вулканологии ДВО РАН, 683006, Петропавловск-Камчатский, бульвар Пийпа, 9 ** Камчатский экологический центр, 683006, Петропавловск-Камчатский, бульвар Пийпа, 9

New data are reported on Cr-rich garnet occurrence in calc-silicate contact metasomatic rock — rodingites, located in peripheral zones of Dlinnogorsky mafic-ultramafic massif, Valizhgen Peninsula, SW Koryakia. The following garnet minerals are described: bright emerald-green colored Cr-Ti uvarovite; and two groups of grossularite (1) weak light-green colored Cr-rich; and (2) colorless Cr-free. Chemical composition of uvarovites varies in a wide limit and composed a range of $Uv_{33-62}Gr_{7-64}And_{2-25}$. Mineral is characterized by uncommon composition, concerned with relatively high TiO₂ content (1.3—1.69 wt%). Uvarovite formation is related to process of primary accessory Cr-spinel decomposition during rodingitization of gabbro inclusions in serpentinite. High alkalinity of metasomatic fluids led to increase of Cr and Ti mobility (both are usually immobile) with their release, re-distribution and accumulation in newly formed mineral phases: uvarovite and Cr-chlorite (kemmerente).

Вхождение хрома в гранаты происходит главным образом в виде кноррингитового (Mg3Cr₂Si₃O₁₂) или уваровитового (Ca₃Cr₂Si₃O₁₂) компонентов. В противоположность редко встречаемым в природе кноррингитсодержащим гранатам, описанным только в кимберлитах и в алмазных включениях (Дорошев и др., 1997), уваровиты вместе с гроссуляром и андрадитом образуют уграндитовую серию твердых растворов с неограниченной компонентной смесимостью (Дир и др., 1965). Хотя уваровит не пользуется широким распространением в природе и не образует больших скоплений, щетки и друзы его мелких кристаллов иногда развиты в хромититах ультраосновных магматических пород, испытавших низкобарический метаморфизм (Гурулев, 1992; Атафонов и др., 1993). Обогащенные уваровитовым компонентом гранаты известны в некоторых известково-силикатных скарнах и в метаморфических породах (Seon e. a., 1983; Von Knorring a. e., 1986; Treloar, 1987; Kalamarides, Berg, 1988; Pan, Fleet, 1989; Рябов и др., 1996) в мраморах и в метакарбонатных отложениях (Challis e. a., 1995).

Известны также находки уваровитов в контактово-метасоматических образованиях, локализованных в периферийных частях базит-гипербазитовых массивов офиолитовых комплексов: в альбититах (Добрецов, Татаринов, 1983; Sakamoto, Takasu, 1996), нефритах (Wan, Yeh, 1984) и в родингитах (Mogessie, RammImair, 1994). Уваровиты хорошо изучены экспериментально (например, Huckenholz, Knittel, 1975). Уваровитовая минерализация установлена в родингитах Длинногорского базит-гипербазитового массива на п-ове Валижген в юго-западной части Корякского нагорья. Базит-гипербазитовый массив г. Длинной (Длинногорский) расположен в Пенжинской ветви Западно-Чукотского гипербазитового пояса (Пинус и др., 1973). Это наиболее крупное из более 100 рассеянных по всему Валижгенскому поднятию тел ультрабазитов, являющихся, по некоторым предположениям (Велинский, 1979), разобщенными фрагментами единого крупного пологозалегающего пластинообразного тела. Гипербазиты и ассоциирующие с ними тектонические блоки габброидов и палеозойских (?) кремнисто-вулканогенных образований, залегают среди слабодислоцированных верхнеюрских—нижнемеловых терригенных отложений мялекасынской и тылакрыльской свит (рис. 1). Контакты гипербазитов с вмещающими аркозовыми песчаниками и алевролитами повсеместно тектонические. На флангах поднятия все эти образования перекрыты терригенными верхнемовыми отложениями.

Длинногорский массив расположен в центральной части Валижгенского поднятия, протяженность его 13 км, общая площадь 42 км². Массив имеет пластинообразную, слабо прогнутую в центральной части форму. Тектонический характер контактов пород массива с вмещающими отложениями подчеркивается развитием мощных зон милонитизации и катаклаза как в терригенных отложениях, так и в гипербазитах. В центральной части массива наблюдается пространственное совмещение монолитных гипербазитов дунитгарцбургитовой формации с катакластическими ультрамафитами, варьирующими по размерности обломочного материала от гипербазитовых брекчий до осадочных серпентинитовых песчаников и алевролитов. Особенности строения Длинногорского массива и состава слагающих его пород неоднократно расматривались в печати (Михайлов, 1962; Пинус и др., 1973, и др.), а генезис экзотических осадочных ультрамафитов является предметом оживленной дискуссии (Белый, 1979; Колясников, Красный, 1981, и др.).

Монолитные гипербазиты массива представлены преимущественно шпинелевыми перидотитами (гарцбургитами и диопсидовыми гарцбургитами) и апогарцбургитовыми серпентинитами. В меньшей степени развиты лерцолиты, дуниты (образующие шлирообразные обособления в перидотитах), а также пироксениты. Породы массива прорваны мелкими дайкообразными телами габброидов, с внедрением которых связано образование гибридных пород. В то же время контакт серпентинизированных гипербазитов с габброидами в северной части массива (истоки р. Бухтовой) тектонический и помимо других признаков маркируется появлением приконтактовых известково-силикатных метасоматитов — родингитов, с которыми связано проявление уваровитовых гранатов.

Рис. 1. Схема геологического строения Валижгенского поднятия (по: Колясников, Красный, 1981 с дополнениями).

1 — палеозойско-мезозойские (?) вулканогенно-кремнистые породы, 2 — нижнемеловые терригенные отложения (а — грубообломочные), 3 — верхнемеловые терригенные образования, 4 — гипербазиты и их брекчии, 5 — габбронды, 6 — разломы; буквой Д обозначен Длинногорский базит-гипербазитовый массив, звездочкой — место находок уваровитсодержащих родингитов; на врезке показано положение Валижгенского поднятия.

Fig. 1. Schematic geological map of the Valizhgen uprise (modified after Kolyasnikov, Krasny, 1981).

Рис. 2. Характер взаимоотношения минералов в уваровитсодержащих родингитах Длинногорского массива, обр. 639/1.

Гр — уваровит, Ди — диопсид, Хлт — хлорит (кеммеририт), Шп — хромшпинелид; микроанализатор Link-850 (МГУ им. М. В. Ломоносова); фото в обратнорассеянных электронах.

Fig. 2. Mineral relationship in uvarovite-bearing rodingite of Dlinnogorsky mafic-ultramafic massif. Sample 639/1.

петрографический состав пород

Уваровитсодержащие родингиты получили развитие в северной периферийной части Длинногорского массива, где в склоновых обнажениях среди катаклазированных и рассланцеванных серпентивитов были обнаружены глыбы и обломки пород белесой светло-серой окраски размером и до 35—50 см. Коренные выходы родингитов неизвестны, но компактное расположение обломков позволяет предполагать жило- или лиизообразный характер их первичного залегания. В некоторых образцах непосредственно наблюдалась резкая граница родингитов с вмещающими серпентинитами, проходящая через маломощную (1—3 мм) хлорито-серпентиновую оторочку. Обнаруженные фрагменты родингитов представлены макроскопически однородными серыми, темно-серыми мелкозернистыми плотными породами с массивной текстурой. Они не обнаруживают следов минеральной зональности, первичной слоистости или сланцеватости. Исключением являются два образца (обр. 639/1 и 639/2), в которых проявлена уваровитовая минерализация.

Под микроскопом родингиты имеют гетеробластовую структуру. Для изученных метасоматитов характерен относительно простой минеральный состав: клинопироксен (диопсид) + гранат (гроссуляр) + титанит ± хлорит ± пренит ± пектолит ± Сг-шпинель. Клинопироксен (составляет до 60—80 % объема породы), как правило, образует неравномерно распределенные скопления угловатых и субидноморфных призматических зерен. Иногда эти скопления включают также мелкие идиоморфные зерна бесцветного гроссуляра. Интерстиции между скоплениями зерен пироксена слагают хлорит, пектолит и пренит. Титанит проявлен в виде редких мелких клиновидных кристаллов, равномерно рассеянных по всему объему породы. Краснобурая шпинель распределена крайне неравномерно и проявляется лишь в отдельных образцах в виде небольших скоплений, дорожек мелких зерен и вростков в ярко-зеленом гранате.

В местах развития шпинели получили развитие яркоокрашенный зеленый гранат, представленный мелкими (до 80 мкм) зональными идиоморфными кристаллами, реже — их гранобластовыми агрегатами. Цвет минерала изменяется от темно-зеленого, изумрудно-зеленого, светло-зеленого до молочно-белого и бесцветного. Ядро зональных кристаллов, как правило, яркоокрашено, в то же время как периферия — бледно-зеленая, белая до бесцветной. Характерной особенностью зеленых гранатов в исследуемых образцах является наличие в них мелкой пылевидной шпинелевой вкрапленности и появление хромсодержащих хлоритов, развитых по периферии кристаллов гранатов и хромшпинелидов (рис. 2). Аналогичные парагенетические взаимоотношения (Сг-шпинель + Сг-гранат + Сг-хлорит) отмечены в некоторых других проявлениях уваровитовой минерализации (Pan, Fleet, 1989; Агафонов и др., 1993, и др.). Химический состав уваровитосодержащих родингитов Длинногорского массива следующий (мас.%): SiO₂ 43.36, TiO₂ 0.68, Al₂O₃ 10.31, Cr₂O₃ 0.40, Fe₂O₃ 3.48, FeO 6.44, MnO 0.20, MgO 3.80, CaO 30.96, Na₂O 0.32, K₂O 0.12, P₂O₅ 0.15, п. п. п. 0.22 (среднее из 2 определений, анализы выполнены в ЦХЛ ИВ ДВО РАН, г. Петропавловск-Камчатский, аналитик Г. В. Лец). Минеральный и химический состав изученных родингитов подобен известным данным для этих пород из офиолитовых комплексов Восточной Камчатки (Селиверстов, Осипенко, 1999).

МИНЕРАЛЫ

Химический состав минералов родингитов определялся на микроанализаторе Camebax, оборудованном энергодисперсионным спектрометром Кеvex в Институте вулканологии ДВО РАН, г. Петропавловск-Камчатский (аналитики Е. Н. Гриб и Т. М. Философова). Составы минералов измерялись в точке при ускоряющем напряжении 25 кВ и токе образца 10 нА с применением стандартных процедур коррекции. В качестве стандартов использовались составы минералов и синтетических соединений.

Минералы группы граната. По особенностям окраски и химического состава в изученных образцах выделяются яркоокрашенные зеленые хромисто-титанистые уваровиты и две разновидности гроссуляров: светло-зеленые хромистые гроссуляры и бесцветные гроссуляры. Уваровит и первая разновидность гроссуляра ра сосуществуют в зональных кристаллах, где между ними наблюдается резкий переход.

Таблица 1

Химический (мас. %) и катионный составы хромосодержащих гранатов из родингитов Длинногорского базит-гипербазитового массива

Chemical (wt %) and	cation composition of Cr-rich garnets from rodingites
of th	e Dlinnogorsky mafic-ultramafic massif

Компо- нент	Анализ									
	1	2	3	4	5	6	7	8	9	10
SiO ₂	37.59	37.35	37.61	37.66	37.95	36.75	37.78	38.25	37.99	39.22
TiO ₂	1.73	1.65	1.56	1.60	1.46	1.65	1.54	1.69	0.80	0.67
Al ₂ O ₃	6.59	7.33	7.80	7.70	7.99	6.10	8.15	9.03	13.65	18.05
Cr ₂ O ₃	19.09	17.90	16.73	16.34	15.87	18.17	15.65	14.76	10.65	4.39
Fe ₂ O ₃ *	0.93	1.62	1.93	1.89	2.26	2.04	1.89	2.78	0.52	0.68
FeO	0.04	0.08	0.09	0.09	0.11	0.10	0.09	0.13	0.47	0.61
MgO	0.24	0.27	0.22	0.22	0.20	0.33	0.64	1.16	0.07	0.04
CaO	34.73	34.46	34.23	33.97	34.45	34.18	34.59	33.47	35.04	35.82
Сумма	100.85	100.66	100.17	99.47	100.29	99.32	100.33	101.27	99.19	99.48
			а — 2 ж		O = 12					
Si	3.000	2.989	3.017	3.042	3.037	2.941	3.010	3.022	2.994	3.020
AIIV	0.000	0.011	0.000	0.000	0.000	0.059	0.000	0.000	0.006	0.000
AIVI	0.619	0.680	0.737	0.732	0.753	0.532	0.765	0.836	1.261	1.637
Ti	0.104	0.099	0.094	0.097	0.088	0.102	0.092	0.100	0.047	0.039
Cr	1.203	1.131	1.060	1.042	1.003	1.180	0.985	0.916	0.663	0.267
Fe ³⁺	0.056	0.097	0.116	0.115	0.133	0.126	0.113	0.164	0.031	0.039
Fe ²⁺	0.003	0.005	0.006	0.006	0.007	0.007	0.006	0.009	0.031	0.039
Mg	0.029	0.032	0.026	0.026	0.024	0.040	0.076	0.136	0.008	0.005
Ca	2.987	2.955	2.942	2.939	2.954	3.013	2.953	2.818	2.959	2.955
				Мин	алы (мол.	%)				
Alm	0.0	0.0	0.0	0.2	0.2	0.0	0.0	0.0	0.0	0.0
And	3.0	5.1	6.1	5.8	6.7	6.6	6.1	8.6	1.6	2.0
Gr	32.0	34.9	37.6	40.7	41.5	29.7	38.3	38.9	64.3	84.1
Pyr	1.0	1.1	0.9	0.9	0.8	1.4	2.7	4.7	0.3	0.2
Uv	64.1	58.9	55.4	52.5	50.7	62.2	52.9	47.8	33.8	13.7

Примечание. (*) — Fe₂O₃ рассчитано по (Droop, 1987), миналы — по (Rickwood, 1968); ан. 1—9 — уваровиты: ан. 1—5 — индивидуальные кристаллы, ан. 6—9 — крупный зональный кристалл (ан. 6 — центр, ан. 7 и 8 — промежуточная зона, ан. 9 — край), ан. 10 — хромистый гроссуляр; Alm — альмандин, And — андрадит, Gr — гроссуляр, Руг — пироп, Uv — уваровит.

Рис. 3. Тройная диаграмма гроссуляр (Gr)-уваровит (Uv)-андрадит (And) (мол. %) для составов высокохромистых уграндитовых гранатов.

1—10 — составы и поля составов гранатов из: 1, 2 — родингитов Длинногорского массива, п-ов Валижген (1 — уваровиты, 2 — хромистые гроссуляры); 3 — родингитов Ботсваны (Mogessie, RammImaier, 1994); 4 — альбититов Японии (Sakamoto, Takasu, 1996); 5 — рудных хромититов различных массивов (Добрецов, Татаринов, 1983; Seon e. a., 1983; Гурулев, 1992; Агафонов и др., 1993); 6 — нефритов Тайваня (Wan, Yen, 1984); 7 — известковых гнейсов Лабодарора, Канада (Kalamarides, Berg, 1988), 8 — метакарбонатных пород Новой Зеландии (Challis e. a., 1995); 9, 10 — известковых скарнов: 9 — Оутокумпу, Финляндия (Von Контing e. a., 1986; Treloar, 1987); 10 — Хемло, Канада (Pan, Fleet, 1989).

Fig. 3. Ternary diagram grossularite (Gr)-uvarovite (Uv)-andradite (And) (mol. %) for ugrandite garnets.

Рис. 4. Диаграммы Ti—Cr (a) и Cr—Al^{VI} (б) для составов уваровитов из родингитов Длинногорского базит-гипербазитового массива.

Fig. 4. Ti-Cr (a) and Cr-Al^{VI} (6) diagrams for uvarovites from rodingites of Dlinnogorsky mafic-ultramafic massif.

Представительные химические (мас. %) и катионные составы породообразующих минералов родингитов Длинногорского базит-гипербазитового массива (обр. 639/1)

Representative chemical (wt %) and cation composition of rock-forming minerals from rodingites of the Dlinnogorsky mafic-ultramafic massif (sample 639/1)

1972	Анализ минералов										
Компо-	Сг-шпинелиды			диопсид		титанит	хло	хлорит			
	1	2	3	4	5	6	7	8			
SiO ₂	1.76	1.68	2.16	54.55	55.58	31.42	30.97	31.57			
TiO ₂	0.27	0.53	0.37	0.00	0.00	35.76	0.04	0.03			
Al ₂ O ₃	6.55	10.42	11.49	0.84	0.91	1.08	21.46	19.87			
Cr ₂ O ₃	56.51	49.57	43.14	0.35	0.00	1.81	1.26	3.05			
FeO*	31.23	33.49	39.54	0.93	1.12	0.08	3.08	4.58			
MnO	0.60	1.02	0.73	0.00	0.00	0.00	0.16	0.15			
MgO	0.95	1.12	2.50	16.87	16.31	0.04	29.19	28.47			
CaO	0.62	1.17	0.38	26.07	25.63	29.08	0.16	0.08			
Na ₂ O	0.01	0.03	0.03	0.23	0.03	0.01	0.00	0.01			
K ₂ O	0.04	0.01	0.00	0.00	0.01	0.01	0.03	0.02			
NiO	0.06	0.00	0.00	0.00	0.02	0.00	0.02	0.08			
ZnO	0.41	0.24	0.00	0.00	0.00	0.00	0.07	0.04			
Сумма	99.01	99.28	100.34	99.84	99.61	99.29	86.44	87.95			
Si	0.063	0.059	0.076	1.981	2.031	1.034	5.862	5.951			
AlIV		10000000000		0.019	0.000	0.000	2.138	2.049			
	0.276	0.433	0.474								
AlVI				0.017	0.039	0.042	2.646	2.362			
Ti	0.007	0.014	0.010	0.000	0.000	0.885	0.006	0.004			
Cr	1.599	1.381	1.193	0.010	0.000	0.047	0.188	0.454			
Fe ^{3+**}	0.036	0.095	0.305	0.007	0.000	0.000	0.000	0.000			
Fe ²⁺	0.900	0.893	0.853	0.021	0.034	0.002	0.488	0.722			
Mn	0.018	0.030	0.022	0.000	0.000	0.000	0.026	0.024			
Mg	0.051	0.059	0.131	0.914	0.889	0.002	8.237	8.000			
Ca	0.024	0.044	0.014	1.015	1.004	1.025	0.032	0.016			
Na	0.001	0.002	0.002	0.016	0.002	0.001	0.000	0.004			
K	0.002	0.000	0.000	0.000	0.000	0.001	0.007	0.005			
Ni	0.002	0.000	0.000	0.000	0.001	0.000	0.000	0.010			
Zn	0.011	0.006	0.000	0.000	0.000	0.000	0.008	0.004			
Σ катионов	2.990	3.016	3.080	4.000	4.000	3.039	19.638	19.605			
mg	5.4	6.2	13.3	97.8	96.3		94.4	91.7			
cr	85.3	76.1	71.6			1	1				

Примечание. (*) — все Fe в виде FeO; (**) — Fe³⁺рассчитано по (Galan, Suarez, 1989); катионный состав минералов рассчитан на: 4 атома О для шпинелей, 5 для титанита, 6 для диопсида и 28 для хлорита; $mg = 100 \cdot Mg/(Mg + Fe^{2+}); cr = 100 \cdot Cr/(Cr + Al).$

Представительный состав яркоокрашенных уваровита и хромсодержащего гроссуляра из родингитов Длинногорского массива приведен в табл. 1. Анализ микрозондовых данных показывает, что состав граната варьирует в широких пределах Uv₃₃₋₆₂Gr₇₋₆₄And₂₋₂₅. При этом в подавляющем большинстве проанализированных гранатов содержание хрома в октаэдрической позиции превышает содержание других компонентов, что позволяет отнести их к уваровитам. Несмотря на то что на композиционной диаграмме для уграндитовых гранатов (рис. 3) составы валижгенских уваровитов располагаются в той же области, что и высокохромистые гранаты из известково-силикатных скарнов и метасоматитов по ультрамафитам, изученные минералы имеют необычный химический состав. Его своеобразие заключается в высокой концентрации TiO₂ (1.3—1.69 мас.%) при низкой железистости (FeO_{общ.} = 0.88—2.63 мас.%). Подобные составы известны лишь в уваровитовых гранатах из магнезиальных скарнов Талнаха (Рябов и др., 1996). Пересчеты составов таких гранатов таких гранатов таких гранатов товых и повых гранатах из магнезиальных скарнов Талнаха (Рябов и др., 1996). Пересчеты составов таких гранатов таких гранатов состав изместны и ранатов таких гранатов исс.

Рис. 5. Хромистость и магнезиальность хромшпинелидов Длинногорского базит-гипербазитового массива.

1—3 — составы шпинелей из: 1, 2 — родингитов (1 — идиоморфные кристаллы, 2 — включения в уваровитах), 3 — рудных хромититов (неопубликованные данные Е. Г. Сидорова); 1—Ш — поля составов шпинелей: І — альпинотипных перидотитов, ІІ — зональных массивов аляскинского типа (Dick, Bullen, 1984), ІІІ — оливиновых габбро офиолитовых комплексов (Высоцкий, 1989).

Fig. 5. Cr-numbers vs. Mg-numbers of chromian spinels from Dlinnogorsky mafic-ultramafic massif.

на формульные количества показали, что практически все железо в них находится в форме Fe^{3+} . Учитывая, что содержание кремнезема в изученных гранатах близко к стехиометрическому, не вызывает сомнения то, что Ті находится в октаэдрической позиции, где прямая зависимость между Cr и Ti, отрицательные корреляции между Cr и Al^{VI}, а также между Ti и Al^{VI} свидетельствуют об изоморфизме типа Cr + Ti \rightarrow Al^{VI} (рис. 4, *a*, *б*).

Хромистые гроссуляры содержат от 3.5 до 13.7 мол.% уваровитового компонента. Компонентный состав этой разновидности граната находится в пределах Uv₃₋₁₄Gг₈₂₋₉₅An₁₋₅ Титанистость хромистых гроссуляров существенно ниже, чем в уваровитах (TiO₂ = 0.24—0.69 мас.%). Состав бесцветных гроссуляров из гранатоклинопироксеновой основной массы родингитов близок к стехиометрическому. Присутствие Cr₂O₃ в этих гранатах микрозондовым анализом не устанавливается, титанистость минералов — предельно низкая (TiO₂ = 0.02—0.09 мас.%).

Хромшпинелиды. В родингитах находятся в виде гранобластовых агрегатов и сыпи мелких кристаллов, заключенных в уваровит. В шлифах хромшпинелиды непрозрачны (иногда полупрозрачны) и имеют краснобурый до черного цвет. Минерал в шлифах имеет ромбические и квадратные сечения, а также образует сростки и гранулополобные зерна со сглаженными вершинами. Размер кристаллов изменяется от первых микрометров до 0.1—0.15 мм. Распределение минерала в родингитах крайне неравномерное, а редкие скопления хромшпинелидов различны по размерам и формам.

Микрозондовые анализы показали, что изученные хромшпинелиды характеризуются высокими значениями Cr/(Cr + Al) (cr = 0.70—0.87) и крайне низкой магнезиальностью (mg = 0.04—0.15). При этом часть зерен имеет однородное строение, в то время как другие отчетливо зональны: от центра и краю кристалла уменьшается содержание Cr₂O₃ и сопряженно увеличиваются концентрации Al₂O₃, TiO₂ и MgO (табл. 2). Включения хромшпинелидов в кристаллах уваровита имеют минимальную глиноземистость и максимальную хромистость. Во всех проанализированных хромшпинелидах в значительных количествах присутствуют ванадий и цинк (содержание ганитового минала достигает 9.0 мол.%). По особенностям химического состава эти минералы близки к акцессорным хромшпинелидам из оливиновых габбро офиолитовых ассоциаций (Высоцкий, 1989). В то же время они заметно отличаются от более магнезиальных и менее хромистых шпинелидов из рудных хромитовых обособлений в перидотитах Длинногорского массива (рис. 5).

В шлифах под микроскопом раздробленные и корродированные зерна хромшпинелида, находящиеся в окружении зерен пироксена и уваровита, имеют неравномерную окраску. Блочное (мозаичное) строение и гетерогенность химического состава таких зерен подтверждают микрозондовые профили концентраций Cr, Fe, Al, Zn и Si, отражающие процессы растворения и замещения хромшпинелида уваровитом. Крайне неравномерное распределение по площади зерна обнаруживают содержания Al₂O₃ и в особенности SiO₂ кривая распределения концентраций Si обладает несколькими максимумами, которые коррелируют с минимумами концентрации Al. Равномерный характер распределения и высокий уровень концентраций ZnO свидетельствуют о вхождении этого элемента в кристаллическую решетку хромшпинелида наряду с Al, Fe и Cr. Хлорит. В типичной родингитовой ассоциации диопсид + гроссуляр + хлорит представлен клинохлором, что является обычным для родингитов офиолитового типа (Селиверстов, Осипенко, 1999). Установлен также мелкочешуйчатый высокохромистый (Сг₂О₃ до 3.05 мас.%) хлорит — кеммерерит. Он образует срастания с уваровитами и хромшпинелидами, образует реакционные каймы вокруг агрегатов хромшпинелидов (рис. 2). Образование кеммерерита связано с разрушением хромшпинелидов в шелочной среде. По химическому составу (табл. 2) и характеру взаимоотношений с сопровождающими минералами изученные Сг-хлориты подобны кеммереритам других гипербазитовых массивов (Велинский и др., 1983; Агафонов и др., 1993).

Преобладающий минерал родингитов — клинопироксен состава днопсида Woll48-52 En44-47Fs1-3 (табл. 2). Химический состав изученного диопсида близок к составам пироксенов из родингитов других офиолитовых комплексов (Селиверстов, Осипенко, 1999). Значительное сходство с составами минералованалогов из типичных родингитов проявляют и другие изученные минералы: пренит, пектолит и титанит (табл. 2).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Типоморфными минералами уваровитсодержащих родингитов массива г. Длинной являются краснобурый хромшпинелид, зеленый титано-хромовый гранат и хромистый хлорит. Ассоциация хромсодержащих минералов такого состава обычна в известково-силикатных скарнах (Treloar, 1987), но сравнительно редка в метасоматитах, сопровождающих ультрамафиты офиолитового типа. И хотя масштабы обогащения хромом родингитов Длинногорского массива не сопоставимы со вторичным насышением Cr₂O₃, наблюдавшимся в некоторых карбонатных скарнах и метаморфизованных хромистых осадках (Von Knorring e. a., 1986; Treloar, 1987; Challis e. a., 1995, и др.), особенности миграции и распределения хрома в минералах из разных типов пород, как правило, совпадают и отражают общие закономерности поведения этого элемента при метасоматозе и, следовательно, могут быть применены к изученным породам.

Среди главных причин, приводящих к формированию хромсодержащих минералов (и уваровитов в частности) в метасоматитах, ассоциирующих с ультраосновными породами, отметим следующие: 1) воздействие на первично-магматические породы щелочного метасоматического флюида, существенно обогашенного Cr₂O₃, и 2) локальное перераспределение хрома в результате метасоматической переработки первичных Cr-содержащих минералов (хромшпинелидов).

Установлено, что в родингитах Длинногорского массива обогащение Cr₂O₃ носило локальный характер, связанный не с привносом хрома, а с его перераспределением в процессе разрушения зерен акцессорных хромшпинелидов. Анализ большого количества кристаллов Cr-гранатов выявил значительную изменчивость в содержании Cr₂O₃ как в разных зернах одного образца, так и в пределах зерна. В отдельных зернах разница между минимальными и максимальными содержаниями Cr₂O₃ может достигать 10.2 мас.%. При этом установлено закономерное изменение хромистости (и глиноземистости) в направлении от центра зерен к периферии. Эти наблюдения можно интерпретировать как доказательство подвижности хрома при метасоматозе.

Известно, что в общем случае росту хромистости минералов благоприятствует повышение щелочности процесса минералообразования. Это положение согласуется с представлениями о нарастании щелочности минералообразующих растворов в процессе родингитизации (Селиверстов, Осипенко, 1999) и с проявление м вторичных высокохромистых минералов на заключительных стадиях метасоматоза в офиолитах в приповерхностных условиях (Осипенко, 1998; Осипенко и др., 1999). По-видимому, в случае изученных пород повышенная щелочность метасоматического флюнда при родингитизации габброидных включений на контакте с серпентинитами привела к разрушению акцессорных хромшпинелидов, выносу и перераспределению хорома и титана, обычно инертных при метасоматических процессах (Сазонов, 1978), и к формированию обогащенных хромом минералов — уваровита и кеммерерита.

ЗАКЛЮЧЕНИЕ

Формирование в родингитах Длинногорского массива парагенезиса высокохромистых минералов Сгшпинель + Сг-гранат (уваровит) + Сг-хлорит (кеммерерит) происходило при участии щелочных флюндов в высокотемпературную стадию метасоматического процесса. Источником хрома для высокохромистых минералов — уваровита и кеммерерита — являлись акцессорные хромшпинелиды тектонизированных габброидов. Широкие вариации хромистости гранатов и хромшпинелидов позволяют предполагать дифференциальную подвижность хрома в ходе метасоматического процесса.

Благодарности. Авторы признательны Л. П. Аникину, Т. М. Философовой (ИВ ДВО РАН, г. Петропавловск-Камчатский) и Н. Н. Коротаевой (МГУ им. М. В. Ломоносова) за помощь в проведении аналитических исследований.

Список литературы

Агафонов Л. В., Кужугет К. С., Ойдуп Ч. К., Ступаков С. И. Самородные металлы в гипербазитах-базитах Тувы. Новосибирск: ОИГТиМ СО РАН, 1993. 86 с.

Велинский В. В. Альпинотипные гипербазиты переходных зон океан—континент. Новосибирск: Наука, 1979. 263 с.

Велинский В. В., Архипенко Д. К., Банников О. Л. Новые данные о хромовых хлоритах в гипербазитах # Геол. и геофиз. 1983. № 8. С. 88—95.

Высоцкий С. В. Офиолитовая ассоциация островолужных систем Тихого океана. Владивосток, 1989. 195 с.

Гурулев С. А. Хромиты метасоматитов гипербазитовых массивов Восточного Саяна // Геол. рудн. месторожд. 1992. № 5. С. 112—117.

Дир У. А., Хауи Р. Н., Зусман Дж. Породообразующие минералы. Т. 1. М.: Мир, 1965. 287 с.

Добрецов Н. Л., Татаринов А. В. Жадент и нефрит в офиолитах. Новосибирск: Наука СО, 1983. 124 с.

Дорошев А. М., Брай Г. П., Гирнис А. В., Туркин А. И., Когарко Л. Н. Гранаты пироп-кноррингитового ряда в условиях мантин Земли: экспериментальное изучение в системе MgO—Al₂O₃—SiO₂—Cr₂O₃ // Геол. и геофиз. **1997**. Т. 38. № 2. С. 201—215.

Колясников Ю. А., Красный Л. Л. О тектонической позиции массива ультрабазитов горы Длинной (Северо-западная Камчатка) // Геотектоника. 1981. № 1. С. 121-125.

Михайлов А. Ф. Геолого-петрографическая характеристика гипербазитов и гипербазитовых брекчий юго-западной части Пенжинского кряжа // Тр. ВСЕГЕИ. Петрограф. сб. 1962. Т. 13. № 4. С. 44—56.

Осиленко А. Б. Хромсодержащие щелочные пироксены из офиолитового комплекса острова Карагинского, Восточная Камчатка // Докл. РАН. 1998. Т. 360. № 2. С. 232—235.

Осипенко А. Б., Кононов В. В., Чубаров В. М. Геохимические и минералогические аспекты проявления хромсодержащих амфиболов в родингитах п-ова Елистратова, Корякия // Геохимия. 1999. № 6. С. 605-613.

Пинус Г. В., Велинский В. В., Леснов Ф. П., Банников О. Л., Агафонов Л. В. Альпинотипные гипербазиты Анадырско-Корякской складчатой системы. Новосибирск: Наука, 1973. 320 с.

Рябов В. В., Шевко А. Я., Симонов О. Н., Аношин Г. Н. Состав платиноносных высокохромистых скарнов Талнаха (Норильский район) // Геол. и геофиз. 1996. Т. 37. № 7. С. 60—75.

Сазонов В. Н. Хром в гидротермальном процессе. М.: Наука, 1978. 287 с.

Селиверстов В. А., Осипенко А. Б. Петрология родингитов Камчатки. Владивосток: Дальнаука, 1999. 124 с.

Challis A., Grapes R., Palmer K. Chromian muscovite, uvarovite, and zincian chromite: products of regional metasomatism in Northwest Nelson, New Zealand // Canad. Miner. 1995. Vol. 33. P. 1263-1284.

Dick H. J. B., Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpinatype peridotites and spatially associated lavas // Contrib. Miner. Petrol. 1984. Vol. 86. P. 54-76.

Droop G. T. B. A general equation for estimating Fe³⁺ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria # Miner. Mag. **1987**. Vol. 51. P. 431-435.

Galan G., Suarez O. Corthlanditic enclaves associated with calc-alkaline granites from Tapia-Asturias Hercynian Belt, northwestern Spain // Lithos. 1989. Vol. 23. P. 233-245.

Huckenholz H. G., Knittel D. Uvarivite: stability of uvarovite-grossularite solid solution at low pressure # Contrib. Miner. Petrol. 1975. Vol. 49. N 3. P. 211-232.

Kalamarides R. I., Berg J. H. Coexisting Cr-rich and Cr-poor garnet from a calc-silicate gneiss, Labrador // Canad. Miner. 1988. Vol. 26. P. 335-342.

Mogessie A., Rammlmair D. Occurrence of zoned uvarovite-grossular garnet in a rodingite from the Vumba Schist Belt, Botswana, Africa: implications for the origin of rodingites # Miner. Mag. 1994. Vol. 58. N 3. P. 357-386.

Pan Y., Fleet M. E. Cr-rich calc-silicates from the Hemlo area, Ontario // Canad. Miner. 1989. Vol. 27. P. 565-577.

Rickwood P. C. On recasting analyses of garnet into end-member molecules # Contrib. Miner. Petrol. 1968. Vol. 18. P. 175-198.

Sakamoto S., Takasu A. Kosmochlor from the Osayama ultramafic body in the Sangun metamorphic belt, southwest Japan // J. Geol. Soc. Japan. 1996. Vol. 102. N 1. P. 49-52.

Seon G. C., Imura K., Imai N. Occurrence and chemical composition of green garnet from the Ulsan mine, Republic of Korea # J. Japan. Assoc. Miner., Petrol. and Econ. Geol. 1983. Vol. 78. N 11. P. 428-440.

Treloar P. J. The Cr-minerals of Outokumpu — their chemistry and significance # J. Petrol. 1987. Vol. 28. Pt 5. P. 867-886.

Von Knorring O., Condlife E., Tong Y. L. Some mineralogical and geochemical aspects of chromium-bearing skarn minerals from Nothern Karelia, Finland // Bull. Geol. Soc. Finland. 1986. Vol. 58. Pt 1. P. 277-292.

Wan H. M., Yeh C. L. Uvarovite and grossular from the Fengtien nephrite deposits, eastern Taiwan // Miner. Mag. 1984. Vol. 48. Pt 1. N 346. P. 31-37.

> Поступила в редакцию 9 июня 1999 г.