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Abstract

In this paper, missing consecutive streamflows are estimated, using the principles of chaos theory, in two steps. First, the
existence of chaotic behavior in the daily flows of the river is investigated. The time delay embedding method of reconstructing
the phase space of a time series is utilized to identify the characteristics of the nonlinear deterministic dynamics. Second, the
analysis of chaos is used to configure two models employed to estimate the missing data, artificial neural networks (ANNs) and
K-nearest neighbor (K-nn). The results indicate the utility of using the analysis of chaos for configuring the models. ANN model
is configured using the identified correlation dimension (measure of chaos), and (K-nn) technique is applied within a subspace
of the reconstructed attractor. ANNs show some superiority over K-nn in estimating the missing data of the English River,
which is used as a case study. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

During the past few decades, hydrologists have
been conducting comprehensive research regarding
the appropriate type of analysis for the hydrologic
data. Statements such as linear versus nonlinear,
deterministic versus stochastic, black box versus
conceptual models, parametric versus nonparametric
have become part of the common hydrologic vocabu-
lary. Influenced by the fast-advancing research on
chaotic behavior in the physics field, Rodriguez-
Iturbe et al. (1989) have indirectly introduced to
hydrologists, a new topic for comparative analysis.

* Corresponding author.

The last few years have witnessed the birth of the
topic of stochastic versus chaotic time series analysis
(e.g. Jayawardena and Gurung, 2000). The literature
on chaos in water resources is limited and research is
still in its infancy. However, various levels of research
and applications are found among the few available
publications. The only question of whether data are
chaotic or not is addressed by Rodriguez-Iturbe et al.
(1989), Sharifi et al. (1990), Islam et al. (1993),
Angelbeck and Minkara (1994), Sangoyomi et al.
(1996) and Sivakumar et al. (1998). Others (e.g. Jaya-
wardena and Lai, 1994; Lall et al. 1996; Porporato and
Ridolfi, 1997; Sivakumar et al. 1999a,b) have taken a
step forward by trying to predict future values of the
variable under consideration. Also, Puente and
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Obregon (1996) have been able to fit a model to high-
resolution rainfall time series via projections of fractal
interpolating functions.

In many applications, nonlinear modeling tools
have provided better results when used in hydrologi-
cal time series analysis. Few examples, among others,
are the superiority of nearest neighbor technique over
ARMA models for predicting streamflows (Jayawar-
dena and Lai, 1994), ANNs over ARMA (e.g. Hsu et
al., 1995), ANNs over linear regression (Elshorbagy
et al., 2000a; Panu et al., 2000). Further, the super-
iority of ANNSs over nonlinear regression in predicting
river flows has been attributed to the possible
existence of nonlinear dynamics, which are not
captured by the regression technique (Elshorbagy et
al., 2000c). Daily rainfall and streamflows might show
large dispersions from a mean motion similar to those
exhibited by a stochastic process. This behavior might
result either from a random probabilistic structure in
the data or from a nonlinear deterministic system
highly sensitive to the initial conditions (Rodriguez-
Tturbe et al., 1989). In the latter case, the dynamics are
deterministic although the appearance is similar to
that of a stochastic process. Chaotic systems cannot
be distinguished from stochastic processes using
conventional statistical tools. Systems are said to be
chaotic if they are nonperiodic, sensitive to initial
conditions, and long predictability is lost (Grassberger
and Procaccia, 1983; Procaccia, 1988).

It is worth to mention that some doubts have been
raised about the existence of chaos in hydrologic data
(Chilardi and Rosso, 1990). However, the importance
of evaluating hydrologic data from the viewpoint of
nonlinear deterministic dynamics is stressed by others
(Sivakumar et al., 1999a). In reality, describing a time
series as either a totally linear stochastic process or
fully nonlinear deterministic chaos is not a practical
approach. Any time series might have components of
both systems. The analyst has to decide whether the
process to be modeled is linear stochastic or nonlinear
deterministic chaos (Kantz and Schreiber, 1997). On
the basis of impossibility of long-term prediction in
chaotic time series, the chaotic applications in water
resources literature handled only short-term predic-
tion. Cases where lengthy records or consecutive
observations are missing, which are common in
hydrologic data, have not been addressed.

Analysis of chaotic time series involves calculation

of dynamic invariants or dimensions. These para-
meters are the best available measure to describe
and quantify the underlying chaotic system (Angel-
beck and Minkara, 1994). Hydrologists applying
nonlinear dynamic analysis to their time series use
these invariants as a test for chaoticity. Polynomials
or nearest neighbors technique, used for prediction, do
not benefit from the chaotic invariant measure (i.e.
model parameters or configurations are not influenced
by the chaotic measure). In stochastic modeling, one
can say that type of ARMA models, for example, can
be deciphered from autocorrelation and partial auto-
correlation functions. In that sense, we can say that
stochastic models are available but hydrologic chaotic
models cannot be claimed existing.

In this paper, two issues are addressed, first, estima-
tion of missing consecutive observations (missing
segment of data) of a chaotic time series. This process
has been known and addressed recently as ‘group
approach’ (Panu et al., 2000; Elshorbagy et al.,
2000a,b). Second is the use of chaotic invariants or
dimensions for configuring the hydrologic model. In
our application, the dimensions will be used to config-
ure the artificial neural network (ANN) model (deter-
mining the number of input and output nodes). These
two issues are the contribution of this paper. They
have not been explicitly addressed in the available
chaos-related water resources literature. In order to
address the above-mentioned issues, two steps have
to be followed. First, existence of chaos in the time
series has to be investigated. Second, chaotic
invariants (e.g. correlation dimension) have to be
estimated. Third, information obtained from chaos
analysis, such as the correlation dimension is used
to configure the proposed models. Fourth, missing
data are estimated using the configured models.

2. Characteristics of chaotic behavior
2.1. Definitions

A dynamic system can be described by a phase-
space diagram that depicts the evolution of the system
from some initial state. In fact, what really describe
the evolution are the trajectories of the phase-space.
The construction of such a phase-space for a time
series will be explained in Section 2.2. If the
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trajectories converge to a subspace regardless of the
initial conditions, then it is called an ‘attractor’. An
attractor can lie in an m-dimensional phase-space and
be a multi-dimensional but has a dimension less than
m. Deterministic systems for which long term predict-
ability is possible have attractors of integer dimension
(Embrechts, 1994). When the dynamic system is
sensitive to initial conditions, the attractors have
non-integer or ‘fractal’ dimensions. Such attractors
are called ‘strange attractors’ and systems containing
them are called ‘chaotic dynamic systems’ (Jayawar-
dena and Lai, 1994).

There are several algorithms available for the
analysis of chaotic time series (Casdagli, 1989). The
purpose of these algorithms is to calculate geometric
and dynamic invariants of an underlying strange
attractor, such as correlation dimension and Lyapunov
exponents.

2.2. Reconstruction of the phase-space

The first step in the process of chaotic analysis is
that of attempting to reconstruct the dynamics in
phase-space. A method for reconstructing a phase-
space from a single time series has been presented
by Takens (1981). The dynamics of a scalar time
series {x,x,,...x,} are embedded in the m-dimen-
sional phase-space (m > d, where d is the dimension
of the attractor). The phase-space is defined by:

Yt = {xl’xt—T’xl—ZT’""xl—(m—l)T} (1)

where 7 is the time delay. Usually, the choice of 7 is
made with the help of the auto-correlation function or
the mutual information content (Frazer and Swinney,
1986). It may be chosen as the lag time at which the
autocorrelation becomes zero (Kantz and Schreiber,
1997) or at which the autocorrelation function falls
below a threshold value commonly defined as 1/e
(Tsonis and Elsner, 1988). However, considering
various values of 7 demonstrates that the results do
not show a strong dependence on the actual value
chosen (Porporato and Ridolfi, 1997). In this paper,
as will be explained later, 7 is used also as the maxi-
mum length of missing segment of observations that
can be estimated in one step (i.e. estimation of a miss-
ing value does not depend on the previous missing
one) by the proposed technique.

2.3. Correlation dimension

There are few distinct methods for computing fractal
dimensions: rescaled range analysis, relative dispersion
analysis, correlation analysis, Fourier analysis, maxi-
mum likelihood estimator analysis, and the ‘Higuchi’
method. To estimate the fractal dimension of a time
series, the concept of correlation dimension is useful
and often applied (Kantz and Schreiber, 1997).

The method of correlation dimension, as explained by
Embrechts (1994), consists of centering a hyper sphere
around a point in hyperspace or phase-space, letting the
radius (r) of the hyper sphere grow until all points are
enclosed, and keeping track of the number of data points
that are enclosed by the hyper sphere. The slope of the
line on a double logarithmic plot will be an estimate of
the fractal dimension of the set of data points.

For an m-dimensional phase-space, the correlation
integral C(r) is given by Theiler (1986):

2
€= lim w7 =D He - Y- Y @)
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where H is the Heaviside step function, with H(u) = 1
foru > 0, and H(u) = 0 for u = 0; N is the number of
points of the reconstructed attractor, r is the radius of
the sphere centered on Y; or Y;. The most commonly
used norms for |Y; — Y]| are the maximum norm and
the standard Euclidean norm. The maximum norm is
the maximum absolute difference between the
elements of Y; and Y;. The Euclidean norm, which is
the distance between two points in the space, is
adopted in this study, and it has also been used by
others (e.g. Jayawardena and Lai, 1994).

If the phenomenon is chaotic, for a large number of
points, beyond a certain m, the correlation integral
follows the power law:

C(r) ~0 ar’ 3)
16—»00

where « is constant; and v is the correlation dimen-
sion, which represents generally good estimate of the
fractal dimension d of the attractor. The slope of the
log C(r) versus log r plot is given by:

— 1im log C(r)
v =1lim W (4)

r—0
N—oo
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For random process, v varies linearly with increasing
m, without reaching a saturation value, whereas for
deterministic process the value of v saturates (levels
off) after a certain m. The saturation value, d, is the
fractal dimension of the attractor or the time series.

2.4. Lyapunov exponents

The Lyapunov exponents describe the rate at which
close points in the phase-space diverge. There is one
exponent for each dimension. If one or more Lyapu-
nov exponents are positive, the system is chaotic
(Frison, 1994). Therefore, one needs to compute
only the maximal Lyapunov exponent. The Lyapunov
exponents are invariants with respect to initial condi-
tions. Therefore, they constitute another way of iden-
tifying a chaotic system. However, in water resources
literature, Lyapunov exponents have been ignored by
researchers as a necessary indication of chaotic beha-
vior (Sivakumar et al., 1998, 1999a; Porporato and
Ridolfi, 1997).

Consider the representation of the time series data
as a trajectory in the embedding space. Assuming that,
one observes a close return s,/ to a previously visited
point s,,, then one can consider the distance Ay = s, —
s, as a small perturbation, which should grow expo-
nentially in time. Its future can be read from the time
series: A; = s,.; — sy 4;. If one finds that |4, =
Ay e, then A is the maximum Lyapunov exponent.
The routine given by Kantz and Schreiber (1997) is
used to calculate the maximal Lyapunov exponent in
this study.

2.5. Kolmogorov entropy

Entropy is a thermodynamic quantity describing the
amount of disorder in the system. It can characterize
the amount of information needed to predict the next
measurement with a certain precision. The most popu-
lar one is the Kolmogorov entropy. The Kolmogorov
entropy of a time series gives a lower bound to the
sum of the positive Lyapunov exponents. An estimate
of the Kolmogorov entropy (K) is K, (Jayawardena
and Lai, 1994).

1
Kot =l (1og [C,(1] ~ Iog Gy (1)) )

Ky = lim [K;(m)] ©)

where At is the time interval between two successive
observations, K, is expected to be zero for regular
system (e.g. periodic), positive and finite for chaotic
systems and infinite for stochastic process.

2.6. Method of surrogate data

Another way of supporting the argument that a
specific data set is coming from a nonlinear determi-
nistic system might be by rejecting the hypothesis that
it is coming from a linear process. The method of
surrogate data (Theiler et al., 1992) makes use of
the substitute data generated in accordance to the
probabilistic structure underlying the original data.
The null hypothesis consists of a candidate linear
process and the objective is to reject the hypothesis
that the original data have come from a linear stochas-
tic process. A null hypothesis is formulated, for
example, that the data have been created by a station-
ary Gaussian linear process. Then, it is attempted to
reject this hypothesis by comparing results for the data
to appropriate realizations of the null hypothesis.
Sivakumar et al. (1999a) follow the algorithm
provided by Theiler et al. (1992) and the significance
of a discriminating statistic obtained for surrogate
data is judged. In Theiler et al. (1992), it is mentioned
that a value of ~2 of the statistic cannot be considered
significant whereas a value of ~10 is highly signifi-
cant. It is not explained how the authors made an
inference from these values and on what statistical
basis they derived the conclusion.

Since the primary interest is to give a support to the
identification of chaos, in time series, provided by the
previous invariants, one of the discussed invariants
would be used for visual inspection and comparison.
In this study, the correlation dimension for different m
of both original and surrogate data will be plotted and
inspected. Since the null assumption leaves room for
free parameters, the process of generating the surrogate
data has to take these into account (Hegger et al., 1999).
One approach is to construct constrained realizations of
the null hypothesis. This approach of constrained reali-
zations is adopted, for generating the surrogate data,
using the algorithm provided by Kantz and Schreiber
(1997). Constrained realizations are obtained by
randomizing the data subject to the constraint that
an appropriate set of parameters remains fixed (e.g.
random data with a given periodogram can be made).
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Table 1
Structure of the reconstructed time series data

1 2 m—1 m
1 X1 X471 Xl+m-2)r X1+(n—1)r
2 X2 Xo4r X2+(m—-2)7 X2+(m—1)7
{< X X+ Xe+(m—2)7 Xhet-(m—1)r
%C +r-1 Xt 11 Xg—1(m—1)r Xt 7=1+(m—1)r
.n —tm—1) Xn—r(m—1) Xn—r(m—2) Xn—r Xn

More details of this technique can be found in Kantz
and Schreiber (1997) and Hegger et al. (1999).

3. Estimation of missing data

Researchers have been tackling the problem of miss-
ing data in different ways and from different perspec-
tives as well. Even their definitions of ‘missing data’
and the expressions that they have used to describe the
in-filling process are no less diversified than the differ-
ent techniques that they have used. A group of
researchers tackled the problem of intermediate miss-
ing data where data or observations before and after the
missing observations are available (e.g. Bennis et al.,
1997). Others consider the cases in which data are
available only from one side of the gap or the gap is
so lengthy that the data set is considered bounded from
one side only. Generally, the in-filling process in this
case is called ‘extension’ (e.g. Hughes and Smakhtin,
1996). This paper explores the first type, where data
before and after the gap are available. Extensive litera-
ture review on the existing techniques for estimation of
missing data can be found in Elshorbagy et al. (2000a)
where the problem of estimation of missing groups
(consecutive observations) in streamflow records has
been reported and explained.

Following the traditional approach for estimating
missing values will lead to the use of previously
estimated observations to estimate the successive
one. This approach, which is similar in concept to
prediction of flows for few steps ahead, contradicts
with the concept of chaotic behavior. When a time
series is investigated and proved to be chaotic, such
type of long-term prediction or estimation of missing
segments should not be valid.

Using the technique of reconstruction of attractor,
the time series is presented as shown in Table 1. A
segment of missing consecutive data can be confined
to the last column, m. The data set will be structured
so that each observation in column m can be estimated
based on the previous m — 1 columns. The missing
segment, indicated in Table 1 inside a rectangle, can
be as lengthy as 7. In this way, the missing 7 observa-
tions can be estimated using the values from x; till
Xg—1+(m—1)r» Which do not include any of the observa-
tions from X4,y Gl Xgqr—j4@uo1), (that are
supposed to be missing).

In this study, ANNSs, as global approximators, are
used for estimating the missing data. The number of
input nodes will be m — 1, output nodes will be equal
to one, and the hidden nodes will be obtained using
trial and error. A conceptual advantage of this config-
uration is that the information obtained about ‘m’
from the correlation dimension computation is used
for configuring the ANN model. Therefore, correla-
tion dimension is not only used as an invariant indi-
cator of chaos. The theoretical possibility of
predicting the mth dimension, using the previous m —
1 dimensions, is indicated by Kantz and Schreiber
(1997).

Another technique for making nonlinear prediction
or estimation of missing data is the K-nearest neighbor
(K-nn) algorithm. It is a representative of the local
approximation method, which uses only nearby states
to make prediction. The local approximators are
always believed to provide good results in chaotic
time series. Therefore, it is widely used in chaos
literature (e.g. in water resources, Porporato and
Ridolfi, 1997; Sivakumar et al., 1999a). To estimate
X;;, based on Y; (m-dimensional vector) and historical
observations, K-nearest neighbors of Y; are found
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Fig. 1. Variation of daily flows of the English River.

based on the minimum distances |Y; — Yj|. For K
number of neighbors, the estimation of x;;, can be
taken as the average of the K values of x;.
Considering the data structure shown in Table 1,
the subspace estimation method is employed here.
The m-dimensional points are projected on the first,
completely known, m — 1 dimensions. The nearest
neighbors to the vectors in the rows from (k) to (k +
7 — 1) can be calculated using Euclidean norm. Note
that the mth dimension of the vectors from (k) to (k +
7 — 1) is the missing segment. A similar technique is
used in pattern recognition problems and is known as
subspace classification (Querios and Gelsema, 1988).
In pattern recognition, the objective is only to classify
objects, therefore the problem is projected on m — 1
dimensions (features) and objects are classified based
on the complete features regardless of the incomplete
one. In our application, once the nearest neighbors are
identified, their mth dimension (which is known) is

used for estimation of the missing mth dimension of
the vectors from (k) to (k + 7— 1).

It is reported by Casdagli (1991) that when smaller
number of neighbors give the most accurate estima-
tion or short-term prediction compared to that of
larger number of neighbors, then this may be consid-
ered as a strong evidence for low-dimensional chaos
in the data.

4. Analysis and results

In this paper, the streamflow data from English
River at Umferville, Ontario, Canada is used and
analyzed to investigate the possible existence of chao-
tic behavior. The average daily flow is 124.3 m*/s and
the standard deviation is 92.3 m*/s. Fig. 1 shows the
variation of daily flows obtained from Umferville
station. The issue related to length of the data record
that is considered sufficient for chaos analysis has
been addressed by many authors. While Frison
(1994) suggests a minimum of ~10,000 data points
for reliable results, others accepted number of points
as low as 1200 observations (Jayawardena and Lai,
1994) and 1500 observations (Sivakumar et al.,
1999a). In our application, 11,000 observations are
used.

It should be noted that the complete data record of
the English River is available. However, an intermedi-
ate data section of 1100 observations length (110
segments, each of 10 observations length) is arbitrary
chosen to test the proposed models and the modeling

Log (Cr)

Log (r)

Fig. 2. Correlation integral of the English River.
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Fig. 3. Correlation exponent of the English River.

approach. The 110 segments are removed, each at a
time, and assumed missing. After estimating the
missing segments, each at a time, the accuracy of
estimating the missing data is calculated by averaging
the error over the 1100 estimated observations.

4.1. Correlation dimension

Daily flows comprising of 11,000 observations of
the English River are considered for investigating the
existence of chaotic behavior in the streamflow. Value
of lag time 10 (i.e. 10 days) is considered in the analy-
sis with the purpose of estimating (in-filling) 10
consecutive missing observations. The correlation
integral (sum) C(r) and the correlation exponent v
are computed, as explained earlier, from the data
set. The relationship between the correlation integral
C(r) and the radius r for various values of embedding
dimensions m is shown in Fig. 2. The correlation
exponent increases with the increase in the embedding
dimension up to a certain point (1 = 8) and saturates
beyond that point (see Fig. 3). The saturation value of
the correlation exponent (dimension) is ~2.4. The

nearest integer above the correlation dimension
value (d = 3) is taken as the minimum dimension of
the phase-space that can embed the attractor. The
value of m at the saturation point (m = 8) is supposed
to provide the sufficient number of variables to
describe the dynamics of the attractor.

4.2. Lyapunov exponent

Using the algorithm of Kantz and Schreiber (1997),
the largest Lyapunov exponent is found to be positive
9.1x 1073). It should be noted that it can be positive
also for some random and ARMA processes as
observed by Jayawardena and Lai (1994) and Rodri-
guez-Iturbe et al. (1989), when calculated using the
algorithm of Wolf et al. (1985). Therefore, results of
Lyapunov exponent computation are not recom-
mended to be taken as a sole indication of chaotic
behavior.

4.3. Entropy

A positive finite K, value can be found for the data
set under consideration. Fig. 4 shows the relationship

log (r)

Fig. 4. Estimate of correlation entropy of the English River.
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Fig. 5. Correlation dimensions of both English River data set and its surrogate.

between the correlation entropy and log (r) for
various m. A plateau can be observed at K, value
~0.2. This type of visual inspection of K, entropy is
used and reported by Kantz and Schreiber (1997).

4.4. Method of surrogate data

Several realizations of surrogate data sets can be
generated according to the probabilistic structure
underlying the original data and also according to
the null hypothesis as discussed earlier. The major
aim of this step is to detect nonlinearity. Fig. 5
shows the relationship between correlation dimension
and embedding dimension for the original data and
one of the surrogate data sets. The purpose of this
process is to demonstrate the difference in behavior
between the two data sets. In the case of the original
data of the English River, the correlation exponent

curve levels off at a certain point (i.e. m = 8) whereas,
the correlation exponents computed for the surrogate
data continue increasing monotonically with the
increase in embedding dimension. In this paper, the
visual difference between the two data sets is consid-
ered sufficient to indicate that original data might not
come from a linear stochastic process.

4.5. Estimation of missing segments

Two techniques are employed in this paper for
estimating the missing data, ANNS as a global approx-
imator and K-nearest neighbors (K-nn) as a local
approximator.

4.5.1. Artificial neural networks
Feed forward neural networks that employ the back
propagation technique, for training the network, are

400
Actual
- 1
Q 300 L Estimated
£ 200
2
B
L 100 -
0 T T T T T
0 200 400 600 800 1000

Time (days)

Fig. 6. Actual and estimated data using ANN technique.
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Fig. 7. Actual and estimated data using K-nn technique.

used. The structure of the input and output data of the
ANNSs is as shown in Table 1, seven (m — 1) inputs
and one (mth) output. Around 90% of the data are
used for training and 10% for testing the results of
the network. Many network configurations are tried
and satisfactory results are achieved with the (7-3-1)
configuration (i.e. seven input nodes, three hidden
nodes, and one output node). Fig. 6 shows the actual
and estimated flows using the ANN model. Note that
the objective is to estimate 10 consecutive missing
observations.

4.5.2. K-nearest neighbor (K-nn) technique

The K-nearest neighbors technique is used to esti-
mate the missing data in the same way explained
earlier. Many values of K can be tried, and a satisfying
value of K is usually obtained by trial and error. In this
paper, our purpose is to show the effect of increasing
the value of K on the results rather than obtaining the
optimum K. Therefore, three values of K are arbitra-
rily considered: 1, 5, and 10. Other values can be
assumed but the selected three values are believed
to be sufficient for representing the K-nn technique.
Fig. 7 shows the actual and estimated flows using the
K-nn technique. A segment of 100 observations are

Table 2
Mean squared and mean relative error of estimated data

Technique Mean squared error Mean relative error
ANNs 80.2 0.06
K-nn (K = 1) 255.5 0.08
K-nn (K =5) 365.9 0.12
K-nn (K = 10) 441.5 0.14

selected for the graphical illustration in Fig. 7. The
estimated values using the K-nn technique may appear
in the figure as broken line with consecutive points of
constant magnitude that form a segment. The reason
for such appearance is that K-nn estimates a value
based on the closest point or points in space. Those
points, which are the closest to consecutive observa-
tions, might be constant giving the appearance of that
horizontal segments.

4.5.3. Discussion

The results shown in Figs. 6 and 7 are summarized
in Table 2. This table indicates that the lower the K-
value, the better is the estimate of the missing obser-
vations (lower mean squared error and mean relative
error). This result may give another support to the
previously discussed invariants (e.g. correlation
dimension) that indicates the existence of chaos.
Fig. 8 shows the actual streamflows and those
estimated by ANN and K-nn (using K = 1) models.
Both, Table 2 and Fig. 8 indicate that ANN’s are super-
ior to K-nn for estimating the missing observations.
Such superiority of ANN may be problem-related and
need extensive applications on various data sets to be
generalized. However, one can say that the superiority
of ANNSs might be attributed to the ability of ANNs to
capture the nonlinear dynamics of the data. Such a
characteristic of ANNSs is indicated by others (Panu
et al., 2000; Elshorbagy et al., 2000a,b,c). Further-
more, the way ANNs are used in this paper makes
use of the identified embedding dimension, which
means that the attractor is modeled directly using its
first seven dimensions. It seems that the ANNs are
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100

able to generalize the structure of the attractor
throughout the whole data set.

On the other hand, the subspace technique used
with the K-nn could not benefit significantly from
the information related to the embedding dimension
(m = 8). This could be due to the aggregation that
happens when the first seven dimensions of the attrac-
tor are represented by one number (Euclidean norm).

It should be noted that some recent studies have
indicated that the noise that exists in hydrologic data
may limit the performance of many modeling techni-
que. Some methods have been proposed to reduce the
level of noise in the data set (Sivakumar et al., 1999b;
Sivakumar, 2000), which may lead to improvement in
the accuracy of the estimation of missing data. The
issue of noise in chaos analysis has been extensively
discussed in Elshorbagy et al., (2001), where it is
shown that the raw data should always be used for
the hydrologic analysis.

5. Conclusion

In this paper, the existence of chaotic behavior
(nonlinear deterministic dynamics) in the daily
flows of the English River is investigated. The corre-
lation dimension, the Lyapunov exponent, the
Kolmogorov entropy, and the method of surrogate
data are used in the analysis. There are sufficient
indications to believe that the streamflows have
some chaos and the data could be modeled by the
time delay embedding method. On the basis of the
attractor dimension, the minimum number of vari-
ables essential to model the dynamics of the daily

flows of the English River is identified as three and
the number of variables sufficient is eight. The suffi-
cient number of variables is used to configure the
ANN model. Seven input nodes (first seven dimen-
sions) are used to estimate the output (eighth dimen-
sion). The data are structured in a way that facilitates
the estimation of 10 consecutive missing observa-
tions in one step (previously estimated value is not
used for estimating the following one). Also, the K-
nearest neighbor technique is used, with K =1, 5,
and 10, to estimate the missing data. A subspace
modeling approach is adopted by projecting the
reconstructed attractor on a lower dimension scale
(i.e. projecting the eight-dimension attractor on its
first known seven-dimension space). The eighth
dimension is estimated using the previous seven
dimensions. The ANN model shows superiority in
the accuracy of estimating the missing data, which
is attributed to the capability of the ANNS to capture
the nonlinear dynamics and generalize the structure
of the attractor on the whole data set. Finally, this
work is considered as an endeavor towards establish-
ing hydrologic chaotic modeling by using the chaos
indicators (correlation dimension) directly in the
process of modeling or configuring the data model.
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