Erst )l

ELSEVIER

Journal
of

Hydrology

Journal of Hydrology 257 (2002) 189-211
www_elsevier.com/locate/jhydrol

Multi-criteria validation of a precipitation—runoff model

Stein Beldring™

Department of Hydrology, Norwegian Water Resources and Energy Administration, P.O. Box 5091, Majorstua, N-0301 Oslo, Norway
Received 2 February 2001; revised 31 August 2001; accepted 12 October 2001

Abstract

The multi-criteria calibration procedure MOCOM-UA was used to evaluate the validity of a physically based precipitation—
runoff model by forcing the model to simulate several observed system responses simultaneously. The model is based on
kinematic wave approximations to saturated subsurface flow and saturation overland flow at the hillslope scale in a landcape
with a shallow layer of permeable deposits overlying a relatively impermeable bedrock. The following results were found; (i)
the MOCOM-UA method was capable of exploiting information about the physical system contained in the measurement data
time series; (ii) the multi-criteria calibration procedure provided estimates of the uncertainty associated with model predictions
and parameters; (iii) multi-criteria calibration constraining the behavior of the precipitation—runoff model to observed runoff
and groundwater levels reduced the uncertainty of model predictions; (iv) the multi-criteria method reduced the uncertainty of
the estimates of model parameters; (v) the precipitation—runoff model was able to reproduce several observed system responses
simultaneously during both calibration and validation periods; and (vi) the groundwater table depths exerted a major control on

the hydrological response of the investigated catchment. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Hydrological models are increasingly being used to
solve complex problems and synthesize different
kinds of information in water resources applications
(Sorooshian and Gupta, 1995). Examples include
studies of ungauged areas, environmental impacts of
land use changes, conjunctive use of groundwater and
surface water, and the effects on water resources of
anticipated climate change (Refsgaard and Knudsen,
1996). In several of these cases the data required for
model calibration may not be directly available, and
the required model must perform well under condi-
tions of geographical transposability and non-statio-
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narity as defined by Klemes$ (1986). Precipitation—
runoff models which combine conceptual descriptions
of the flow system with a simplified characterization
of the flow domain have proved quite successful when
used for operational forecasts of runoff. A severe
drawback of these models, however, is that their
structure is not directly related to the physical char-
acteristics of the watersheds. Accordingly, it may be
expected that their applicability is limited to areas
where runoff has been measured for some years and
where no significant change of conditions has
occurred. Considerable effort has therefore been
directed towards the development of physically
based models that provide realistic descriptions of
the land phase of the hydrological cycle (Refsgaard
and Knudsen, 1996). Although these models are
probably the best tools presently available for
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complicated tasks (Bathurst and O’Connell, 1992;
Refsgaard, 1997), several authors argue that the relia-
bility of physically based hydrological models using
effective parameters at the scale of the computational
elements can be questioned (e.g. Bergstrom, 1991;
Beven, 1989, 1993). The non-linear nature of the
processes involved and the structural heterogeneity
of natural systems make it unlikely that the equations
of hydrological theories developed at small space and
time scale can be generalized to larger scales. It is
therefore necessary to evaluate the validity of a
model before it is used for purposes, which require
that physical processes, state variables and fluxes are
correctly described.

Two important aspects of model validation are;
(i) scientific evaluation, i.e. the extent to which the
model’s behavior is consistent with prevailing
scientific theory; and (ii) evaluation of operational
performance, i.e. the degree to which model-predicted
values approach a corresponding set of independently
obtained, reliable observations. While general
methods of operational evaluation using difference
measures are available, scientific evaluation is linked
to the specific model or problem at hand and general
guidelines are harder to find (Wilmott et al., 1985). In
the case of precipitation—runoff models for undis-
turbed watersheds, scientific evaluation must consider
whether the model is able to describe the physical
processes which take place in response to rainfall or
snowmelt events, and their interactions. This means
that model behavior must be examined for each
individual sub-system of the watershed for which
the model is intended to provide realistic descriptions.
A model should therefore only be assumed to be valid,
with respect to outputs that have been explicitly vali-
dated (Mroczkowski et al., 1997; Refsgaard, 1997).
Extended methods of model validation evaluating
multiple objectives have been used in several studies.
Franks et al. (1998) demonstrated that the percentage
of saturated areas in a catchment helped to constrain
simulation and parameter uncertainty in an applica-
tion of TOPMODEL (Beven et al., 1995). Using a
hydrosalinity model, Kuczera and Mroczkowski
(1998) found that groundwater levels helped little to
reduce the parameter uncertainty, whereas stream
salinity data substantially reduced the uncertainties.
Motovilov et al. (1999) calibrated a precipitation—
runoff model using distributed observations of runoff,

soil moisture and groundwater levels, and subse-
quently compared model-simulated values with
spatially distributed observations of runoff and evapo-
transpiration. Gupta et al. (1999) found traditional
single-criterion methods to be of limited value when
calibrating a complex land surface—atmosphere
scheme with many parameters, while forcing the
model to match several observed system responses
simultaneously constrained the parameter estimates
into physically plausible ranges with consequent
improvements in model performance.

In order for a precipitation—runoff model to simu-
late the relationship between input, state variables and
output with minimal uncertainty, it is necessary to
select appropriate values for the model parameters.
Most physically based models have several
parameters, which are effective at the scale of the
computational elements, and therefore must be
calibrated to the observable catchment responses
which are the objectives of model predictions (Mrocz-
kowski et al., 1997). In general, there are many
combinations of model structures and parameter sets
that may be equally good in reproducing observed
data, in particular when only one aspect of model
performance is considered. This problem arises due
to errors in model structure, boundary conditions and
observed data (Beven, 1993). If all precipitation—
runoff models were scientifically acceptable descrip-
tions of catchment water balance dynamics, one
would expect a much smaller set of model structures
and parameter sets (Mroczkowski et al., 1997). Since
the information contained in the rainfall-runoff
relationship is not sufficient to allow identification
of complex models, the representation of state
variables and fluxes other than runoff must be verified
by comparison with the observed data (Jakeman and
Hornberger, 1993). Use of state variables such as
groundwater levels and soil moisture content during
the calibration process may enhance model perfor-
mance and improve the consistency and stability of
parameter estimates (Sorooshian and Gupta, 1995).

The purpose of this study was to evaluate the valid-
ity of a precipitation—runoff model which is based on
kinematic wave approximations to hydrological
processes in hillslopes with a shallow soil cover over-
lying a relatively impermeable bedrock. The model is
formulated at the spatial scale of the physical
processes which dominate the conversion of rainfall



S. Beldring / Journal of Hydrology 257 (2002) 189-211 191

or snowmelt to catchment runoff (Beldring et al.,
2000). The ability of the model to describe hydrolo-
gical processes and state variables was evaluated by a
multi-criteria calibration strategy which constrains the
model to several observed system responses simulta-
neously.

2. Model validation

Precipitation—runoff models which are scientifi-
cally valid must employ physical descriptions of the
mechanisms of hydrological response that actually
occur in a particular watershed (Beven, 1989; Beven
and Binley, 1992). For instance, several studies have
shown that runoff from small undisturbed catchments
in humid temperate environments is dominated by
groundwater flow, with a contribution from saturation
overland flow and possibly preferential flow during
rain or snowmelt events (Rodhe, 1989; Bonell,
1993; Nyberg, 1995). Although a model which applies
the concept of infiltration excess overland flow, may
predict a particular storm hydrograph using a suitable
combination of parameter values, rainfall intensities
rarely exceed the infiltration capacity of the soil in
these environments, and the model is therefore not
based on the relevant mechanisms. Another example
of scientifically invalid model structures are those,
which describe point values of state variables using
lumped, conceptual models. Bergstrom and Sandberg
(1983) were able to reproduce observed groundwater
levels with a conceptual model which approximates
the soil profile with several linear reservoirs
connected through vertical percolation. However,
this approach lacks physical realism, as the spatial
distribution and downslope flow of subsurface water
within the catchments were not described. Neither did
this study consider the agreement between model-
simulated and observed catchment runoff.

Given that a precipitation—runoff model predicts
event response by the correct combination of mechan-
isms, a second condition of validity is that it
accurately predicts all state variables and fluxes
which are affected during rainfall or snowmelt events.
This implies that the model’s operational performance
must be evaluated for the relevant aspects of
watershed behavior. Klemes (1986) proposed a
hierarchical scheme for validation of operational

performance, where a hydrological model is subject
to four categories of tests with increasing complexity.
The scheme distinguishes between simulations
performed for the same catchment used for calibration
and for a different catchment, and between stationary
and non-stationary conditions. By stationarity it is
meant that no significant change in climate, land use
or other catchment characteristics occur between the
calibration and validation phases (Refsgaard and
Knutsen, 1996). Mroczkowski et al. (1997) argued
that the lowest level of this scheme (split-sample
test) using only streamflow data at the catchment
outlet is not an adequate test of model structure or
the hypothesis upon which a model is built, while
validation based on the model’s ability to simulate
both catchment runoff and other hydrological
processes is a better strategy. The most powerful
validation strategy proposed by Mroczkowski et al.
(1997) is the use of data from multiple processes in
a catchment experiencing a shift in hydrological
regime due to disturbance or extreme climatic input.

In order to investigate the validity of a model in
terms of its ability to describe watershed behavior,
the parameters of the model must be estimated.
When the agreement between the model and the real
system is close, it may be possible to obtain estimates
of some parameters by direct measurements.
However, when the agreement is less close, the
model parameters can only be viewed as abstract
conceptual representations of physical quantities and
all that might reasonably be specified is approximate
ranges for their values (Gupta et al., 1999). Two
approaches to model calibration are in use. One is
known as the manual approach, where the values of
the model parameters are adjusted in a subjective
manner in order to make simulated values of some
aspect of watershed behavior, e.g. the shape of the
observed hydrograph, resemble observations. The
other is known as the automatic approach, where an
optimization algorithm is used to find those values of
model parameters that minimize or maximize, as
appropriate, an objective function or statistic of the
residuals between model-simulated output and
observed watershed output. Although global optimi-
zation methods which search the entire response
surface formed by the objective function in the para-
meter space have been developed (e.g. Duan et al.,
1992; Gan and Biftu, 1996), most of these algorithms
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have difficulty in locating an optimal parameter set
due to the existence of multiple local optima (Thyer
et al., 1999).

The most commonly used objective criterion of
model performance has been some form of weighted
function of the residuals between model-simulated
output and observed system output (Legates and
McCabe, 1999):

Gle) = > w0, — z(o)f (1
=1

where O, is the observed system response at discrete
times ¢, Z, is the corresponding model output, ¢ is the
vector of model parameters, w, is the weight at time 7,
n is the number of data points to be matched and j is a
positive integer (usually 1 or 2). If j = 2 and all the
weights are equal to n !, G reduces to the mean square
error estimator. According to maximum likelihood
theory, use of the mean square error estimator is
appropriate when the measurement errors of the
observations are uncorrelated and have constant
variance (Sorooshian and Gupta, 1995; Gupta et al.,
1998). The heteroscedastic maximum likelihood
estimator has been developed for measuring the close-
ness between model output and observations when the
variance of the measurement errors is assumed to be
related to the magnitude of the observations
(Sorooshian et al., 1993). Because the structure of
the measurement errors is rarely known with observed
field data (Freedman et al., 1998), the objective
functions selected for this study were not specifically
designed for the properties of the errors. In addition,
the magnitude of model errors may be equivalent to or
even substantially larger than the output measurement
errors, and the model errors do not necessarily have
any inherent probabilistic structure that can be
exploited in the construction of an objective function
(Gupta et al., 1998). It has not been proved possible to
demonstrate that a particular objective function is
better suited for calibration of a hydrological model
than some other. Yapo et al. (1996) found that the
performance of a precipitation—runoff model was
more consistent over all flow ranges when automatic
calibration using the heteroscedastic maximum like-
lihood estimator was performed, whereas the mean
square error estimator resulted in better fitting of
above-mean flows.

In order to assess model performance more
precisely it is useful to consider two or more objective
criteria. However, several of these measures are
related, suggesting that they measure similar charac-
teristics of the discrepancy between a model and the
modeled quantity. The objective functions used in this
study were the Nash—Sutcliffe and bias statistics of
the residuals, which have a low correlation (Gupta et
al., 1998; Weglarczyk, 1998). The Nash—Sutcliffe
efficiency criterion ranges from minus infinity to 1.0
with higher values indicating better agreement. It
measures the fraction of the variance of observed
values explained by the model (Nash and Sutcliffe,
1970):

>, -2y
NS=1- = 2)

z (Ot - Omean)2
=1

where O,caq 18 the mean of the observed values. Bias
measures the tendency of the model-simulated values
to be larger or smaller than their observed counterpart
(Yapo et al., 1996):

D>z -0)
BIAS=2L (3)

>0,
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Since single-criterion calibration strategies consider
only one component of watershed behavior, they are
unable to find optimal parameter sets for hydrological
models with multiple outputs. Because many models
employ distributed representations of the watershed,
state variables and output fluxes may be simulated and
measured at numerous locations. In this case, it is neces-
sary to consider simultaneously the objective measures
of several aspects of model performance (Yapo et al.,
1998). One classical approach to the problem of using
multiple measures of model performance is to make
some assumption that permits combining them into a
single index, for instance by assigning weights to the
individual measures (e.g. Lamb et al., 1998). In general,
there is no reasonable basis for the assignment of these
weights, and any attempt to convert the objective
measures into a single index involves some degree of
subjectivity (Gupta et al., 1998).
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An algorithm for multi-criteria calibration of
physically based models, which is called the multi-
objective complex evolution (MOCOM-UA) method,
was presented by Yapo et al. (1998) and Gupta et al.
(1998, 1999). Consider a model with a vector of para-
meters ¢ which is to be calibrated using time series
observations collected on r different simulated
response variables (Z;(¢,t), i =1,...,r). A separate
criterion G; is defined to measure the difference
between each model-simulated response Z; and the
corresponding observations O;. The purpose of
multi-criteria calibration is to find the values for ¢
within the feasible set of parameters @ that simulta-
neously optimize all criteria. An important character-
istic of the multi-criteria problem is that in general, it
does not, have a unique solution. Because of errors in
the model structure and data, it is usually not possible
to find a single point ¢ at which all the criteria have
their optimal value. Instead, it is common to have a set
of solutions, with the property that moving from one
solution to another results in the improvement of one
criterion, while causing deterioration in another.
Within the set S of solutions to the multi-criteria opti-
mization problem, no point is superior to any other. A
particular point may be superior to others for one or
more criteria, but it is inferior to them for at least one
other criterion. On the other hand, every point within
S is superior to all points outside S for all G;. The set S
of solutions is called the non-dominated set or Pareto
set. The Pareto set represents the minimal uncertainty
that can be achieved for the parameters via calibra-
tion, without subjectively assigning relative weights
to the individual model responses. The MOCOM-UA
method begins by uniformly sampling the feasible
parameter space @ at a number of locations and
then uses a multi-criteria population evolution
strategy to drive this population of sample points
toward the Pareto set. The final solution therefore
consists of a set of randomly distributed points,
which approximately represents the Pareto set.

The size and characteristics of the Pareto space of
parameters and of model output provide useful infor-
mation about the limitations of the model. A systema-
tic nature of discrepancy between the Pareto space of
model-simulated output and the observed system
output might suggest a deficiency in the model
structure, while a large Pareto range in some of the
parameters might suggest that the deficiency lies

primarily in the structural representation of the
model associated with those parameters. Any para-
meter set chosen from within the Pareto set is a
good solution in the sense that it provides a certain
trade-off between the objectives used to measure
model performance. Any parameter set chosen from
outside the Pareto set is a bad solution in the sense that
it will have worse values for all objectives than any
point within the Pareto set. The Pareto solution space
translates into an uncertainty range in model predic-
tions, where simulations based on different parameter
sets matches the observed data in different ways
(Yapo et al., 1998; Gupta et al., 1998).

In order to use the MOCOM-UA method, it is
necessary to select the criteria that are used to extract
the information contained in the different observed
time series and transform it into estimates for the
model parameters. In this study, the Nash—Sutcliffe
statistic is used as the objective function of MOCOM-
UA during model calibration, and as a test of its
performance, while the bias statistic is only used as
a test of model performance. This approach ignores
the statistical properties of the measurement errors,
while attempting to drive the residuals between simu-
lated and observed system output as close to zero as
possible. Unlike several studies which undertake
some form of Monte Carlo sampling (Melching,
1995) to generate a large number of parameter sets
(e.g. Freer et al., 1996), a subjective threshold in the
objective function values is not required to separate
acceptable and unacceptable model simulations.

3. Precipitation—runoff model

The most general way to model a catchment’s
response to rainfall or snowmelt events is to use the
complete equations of saturated and unsaturated subsur-
face flows, overland flow and open channel flow. This
involves specification of the governing laws of mathe-
matical physics, the geometry of the system, sources and
sinks and initial and boundary conditions. In general, for
any water resources system the governing equations are
the law of conservation of mass and a flux law (Singh,
1996). In addition, a description of the various hydro-
logical and radiative processes at the land surface—
atmosphere interface is necessary in order to include
evapotranspiration and snow storage in the model.
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Parameters of the precipitation—runoff model

Optimized parameters  Description Lower bound Upper bound ~ Unit
a Determines the rate of decrease of K(u) with depth u —17.0 —0.1 m™!
Cact Actual evapotranspiration factor 0.1 0.99

Coot Potential evaporation factor 107° 1074 m/(h hPa)
Tnax Interception storage capacity 5%x1074 3%x107° m
Ky Saturated hydraulic conductivity at soil surface 10°° 1072 m/s
m Overland flow kinematic wave exponent 1.0 1.9

% Depth of root zone 0.05 0.7 m
B Overland flow kinematic wave friction parameter 20 140 m/h
o Partitions E,, between saturated and unsaturated zones -17.0 —-0.1 m!
€ Storage coefficient of saturated zone 0.03 0.2

A Relates soil moisture content to groundwater level —17.0 —0.1 m™!
Fixed parameters Description Value

A Albedo of snow surface 0.9

Cieeze Refreeze factor of meltwater in snow 0.05

Crud Radiation melt factor of snow (inverse of latent heat of fusion)  (3.34 X 10° J/kgf1

Ciemp Temperature melt factor of snow 5%107° m/(h °C)

D Thickness of soil profile, measured orthogonal to bed 0.8 m

L Hillslope length 300 m

Ryq Relative water holding capacity of the snow 0.08

Toce Threshold temperature of snow accumulation 0°C

Tineit Threshold temperature of snow melt 0°C

@ Hillslope angle 9.4°

Ot Saturation volumetric water content at the soil surface 0.7

Oup Volumetric water content at the wilting point of vegetation 0.06

Kirkby (1988) suggested that satisfactory event models
of small catchments could be developed by considering
vertical unsaturated flow and downslope saturated
subsurface flow and saturation overland flow on a
two-dimensional hillslope strip. A precipitation—runoff
model based on these simplifications was presented by
Beldring et al. (2000). Kinematic wave approximations
were used for describing saturated subsurface flow and
saturation overland flow at the hillslope scale in a land-
cape with a shallow layer of permeable deposits over-
lying a relatively impermeable bedrock. The model
assumes that water infiltrating through the soil surface
reaches the groundwater table as soon as the soil moist-
ure deficit in the root zone is replenished, saturated
subsurface flow occurs as potential flow parallel to the
sloping bed, while saturation overland flow develops
due to water input from precipitation or snowmelt
when the entire soil profile is saturated. Preferential
and return flows are not considered, neither is the down-
slope unsaturated flow. The governing equations of

saturated subsurface flow and saturation overland flow
are solved using the method of characteristics (Singh,
1996). The displacement of points on the groundwater
table or the overland flow profile due to spatially
uniform water input i are described along characteristic
curves in the three-dimensional space of length coor-
dinate, time and saturated depth. The precipita-
tion—runoff model has 23 parameters, 12 of
these were fixed at specified values, while 11
were determined using the MOCOM-UA algo-
rithm. Table 1 defines all model parameters and
their upper and lower bounds if they were subject
to optimization, or fixed values. All other symbols
used in Eqgs. (4)—(27) below are defined in Table
2.

Saturated hydraulic conductivity decreases with
depth measured from the soil surface and orthogonal
to the impermeable bed:

K@) = K, e™ 4)
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Table 2
Symbols other than parameters used for describing precipitation—
runoff model in Egs. (4)—(27)

Symbols Description Unit
E. Actual evapotranspiration m/s
Epo Potential evaporation m/s
Sat Fraction of evapotranspiration
consumed from the saturated zone
Juns Fraction of evapotranspiration
consumed from the unsaturated zone
F Refreeze rate of liquid water in snow m/s
h Vertical depth to the groundwater table m
i Lateral inflow to saturated zone flow or m/s
overland flow
K(u) Saturated hydraulic conductivity at m/s
depth u below soil surface
[ Length coordinate along hillslope m
M Snowmelt rate m/s
P Overland flow discharge per unit width m%/s
of hillslope
Pyt Vapour pressure deficit of the air hPa
q(s) Saturated zone discharge per unit width m?/s
of hillslope
Ogisw Global shortwave radiation W/m?
K Saturated zone depth, measured from m
and orthogonal to bed
t Time S
T Air temperature °C
u Depth below soil surface, measured m
orthogonal to bed
Vet Soil moisture deficit of root zone m
X Length coordinate of overland flow m
y Overland flow depth m
0o Volumetric water content at the soil
surface
00 Equilibrium volumetric water content at

the soil surface

Saturated subsurface flow is described by Egs. (5)—
(11). The time, length coordinate, saturated depth and
discharge of a characteristic curve as it starts traver-
sing the hillslope are given by £, Iy, sy and gy.

S0 =50+ =1~ 1) 5)

s)=D — 11n[e“<D‘f°> Y zo)] (6)
a K, sin

q(s) = %Sin ae®®(1 —e™ ™) (7

o ) »
4(0) = gy + —2om % el w[l - exp(ﬂa - to>)]
a €

®)
qll) = qo + il = ) 9
i 7 .
1) = Iy + ~03 & ga@ -%)[1 - exp(ﬂ(t - to))]
at €
(10)
When i = 0, Eq. (10) is replaced by:
K, si .
1) = Iy + 2L ea@s0) gy (11)

Saturation overland flow is described by Eqs. (12)-
(18). The time, length coordinate, overland flow depth
and discharge of a characteristic curve as it starts
traversing the saturated part of the hillslope are
given by %, xg, yo and py.

y() =y +i(t — 1) (12)
i 1/m

y(x):[E(x_xo) +y6”] (13)

p(y) = By" (14)

p() = po + Blyo + it — 1)1" — Byo (15)

px) =po +ilx — xp) (16)

x() = xo + g[yo + it — 19)]" — ?y@ 17

When i = 0, Eq. (17) is replaced by:
(t— 1) (18)

Precipitation accumulates as snow when the air
temperature is below a threshold value T,.. The rate
of snowmelt for air temperatures exceeding Ty, 1S
calculated by:

M= Ctemp(T = Tpe) + (1 — A)Cranglsw (19)

m—1

x(t) = xo + Bmyy

Meltwater is retained in the snowpack until the
amount of liquid water exceeds the relative water
holding capacity of the snow, Rj;;. When the tempera-
ture is below T, liquid water in the snowpack will
refreeze at a rate:

F= Cfreezectemp(Tmelt =7 (20)
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Snow storage and snowmelt are assumed to be
uniform along the hillslope. The fraction of precipita-
tion lost to interception storage evaporates at the
potential rate:

Epot = Cpothef (21)

During dry periods without interception storage, soil
evaporation and transpiration from vegetation occurs
at a rate:

Ep = Epot for 00 = act(esat - pr) (22)

E —FE 0() - ewp
ot pot Cact(esat -

pr) - HWP (23)
for Oy < Cye((Ogec — OWP)

When saturation from below occurs, evaporation is
consumed from the overland flow profile at the poten-
tial rate before water is extracted through soil
evaporation and transpiration. Between precipitation
events, soil moisture in the unsaturated zone is
assumed to be in a state of hydrostatic equilibrium,
which is determined by soil characteristics and depth
to the groundwater table. Due to soil evaporation and
extraction of water by plants, a deficit relative to the
equilibrium state develops in the root zone. Neglect-
ing the tension-saturated zone, a simple expression for
the equilibrium water content at the soil surface is:

6.0 = O €M fora <0 (24)

Assuming, that the difference between the equilibrium
water content and the actual water content is constant
through the entire root zone, the soil moisture deficit
is:

Vaer = (00 — 09z, (25)

The water raised to the soil surface by soil evaporation
and transpiration from vegetation is consumed from
both the unsaturated and the saturated zones, depend-
ing on root water uptake and capillarity. As long as the
groundwater table is within the root zone, water is
extracted from the saturated zone only, and the soil
moisture deficit is zero. Below the root zone, the frac-
tion of water consumed from the saturated zone
decreases with increasing depth to the groundwater
table, while the fraction of water extracted from the

unsaturated zone increases:

far =" forh >z, §<0 (26)

fus=1—e"" forh >z, 6§<0 (27)

The precipitation—runoff model treats evaporation
from interception storage as uniform along the hill-
slope, while a representative value of evaporation
from the overland flow profile, soil evaporation and
transpiration from plants is calculated by integrating
the contributions from the different parts of the hill-
slope. With the groundwater table below the soil
surface, precipitation or snowmelt in excess of inter-
ception loss is assumed to infiltrate. The soil moisture
deficit must be zero before water percolates to the
saturated zone. When saturation from below occurs,
all precipitation or snowmelt in excess of interception
loss contributes to overland flow. Hillslope average
inflow i used in Eqs. (5§)—(18) is given by the mean
of the contributions from the different parts of the
hillslope.

4. Study area

Data from the Seternbekken catchment in south-
east Norway were used in this study. It has an area of
6.32 km” and covers altitudes ranging from 110 to
422 m above sea level. Approximately 90% of the
catchment is covered by coniferous forest, mostly
Norway spruce. The remaining 10% consists of bogs
and a small fraction of cultivated areas. There are no
lakes of significant size in the catchment. The domi-
nating surface deposits are glacial tills with a thick-
ness which varies from approximately one meter in
the valley bottoms to nearly zero on the top of ridges
where exposed bedrock is often found. Some small
areas with glaciofluvial sediments are located near
the catchment outlet. The bedrock is dominated by
intrusive and extrusive igneous rocks of Permian
age (Erichsen and Nordseth, 1985). The shallow
surface deposits of the catchment combined with the
small storage coefficient of the tills lead to rapid
responses of groundwater levels and runoff to rain
or snowmelt events. The till deposits are unable to
maintain permanent groundwater storage during dry
conditions, and in summer the saturated zone may be
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Fig. 1. The S@ternbekken catchment. The triangle shows the catch-
ment outlet (59°57'N, 10°34'E). The hillslope where groundwater
levels and meteorological data were measured is shown by a line.

absent in almost the entire catchment (Udnes, 1991;
Myrabg, 1997).

Mean annual precipitation measured at an altitude
of 205 m above sea level within the catchment is
850 mm, with maximum occurring during the months
August—October and minimum in February and
March. Maximum monthly mean temperature is
+17 °C in July and minimum is —5 °C in January.
Precipitation increases with altitude within the catch-
ment, while temperature decreases (Erichsen and
Nordseth, 1985). The river flow regime of the catch-
ment is characterized by spring snowmelt and autumn
rain high flows and winter and summer low flows
(Gottschalk et al., 1979).

Hourly measurements of hydrological and meteor-
ological data in the Saternbekken catchment were
performed by the Hydrology Department, Norwegian
Water Resources and Energy Directorate. Runoff at

the catchment outlet was calculated from the water
stage measured upstream of a V-notch weir. Depth
to the groundwater table was measured in four piezo-
meters installed to a depth of approximately 0.7 m
below the ground surface at different positions along
a hillslope; two were located in the valley bottom and
two in the middle of the hillslope. An automatic
meteorological station, located in a small clearing in
the forest adjacent to the hillslope with the piezo-
meters provided recordings of precipitation, air
temperature, relative humidity and global shortwave
radiation. Precipitation was measured using a Geonor
vibrating-wire strain gauge (Bakkehgi et al., 1985).
Fig. 1 shows a map of the Saternbekken catchment
with the sites used for data collection.

5. Results and discussion
5.1. Data

Research into data requirements has led to an
understanding that the information contained in the
data is far more important than the amount used for
model calibration. The data should be representative
of the various phenomena experienced by the
watershed (Yapo et al., 1996). Klemes (1986) argued
that three—five years of daily data should be used for
calibration, while Sorooshian and Gupta (1995)
suggested that time series of at least 500—1000 data
points with large hydrological variability are neces-
sary to activate all the operational modes of a model,
resulting in reliable parameter estimates. This implies
that two months of data, including both wet and dry
conditions should be sufficient when calibrating a
model with hourly time steps. The precipitation—
runoff model was calibrated using data from the
period 15 September to 17 November 1996, while
the period 29 August—7 November 1997 was used
for the validation of model performance. The value
of accumulated precipitation for the calibration period
was 307 mm and for the validation period 279 mm.
Moisture conditions in the catchment varied substan-
tially during these periods. In both cases, an initial
period of 20 days with low discharge and a deep
ground water table was used to allow the model to
adjust to observed conditions. Initial conditions at
the start of this spin-up period were zero soil moisture
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deficit and a wedge-shaped saturated zone, rising from
zero to 20% of the soil profile from the upper to the
lower extension of the hillslope.

In order to compare model-simulated groundwater
levels to observations, some assumptions about the
location of the piezometers relative to the hillslope
described by the model had to be made. This was
based on a subdivision of the landscape into hydro-
logical response units, i.e. landscape elements with
broadly similar responses in terms of runoff produc-
tion and evapotranspiration (Beven, 1995). Krasovs-
kaia (1985) and Beldring et al. (1999) used a
classification of catchment topography based on
Hack and Goodlett (1960) to differentiate between
three types of hydrological response units in a catch-
ment: (i) nose, the driest part, including the ridge crest
and the nearby slopes where the contours are convex
outward; (ii) hollow, the central part of the basin along
the stream with favorable moisture conditions, an area
in which the contours are concave outward; (iii) slope,
the zone between nose and hollow with transitional
moisture conditions where the contours are straight or
nearly so. Following this classification, the two piezo-
meters located in the valley bottom were assumed to
represent the hollow topographical unit, and a time
series of mean groundwater levels observed in these
were compared to simulated values at the lower exten-
sion of the model’s hillslope. The two piezometers
located in the middle of the hillslope were assumed
to represent the slope topographical unit, and mean
values of groundwater levels observed in these were
compared to simulated values halfway between the
upper and lower ends of the model’s hillslope.

5.2. Calibration strategies

Multi-criteria parameter estimation with the
MOCOM-UA method was performed with the aim
of optimizing the Nash—Sutcliffe statistics of runoff
and groundwater levels. Two different multi-criteria
calibration studies were performed; both used catch-
ment runoff and groundwater levels from one type of
hydrological response unit. In the first case ground-
water data from the hollow topographical unit was
used, the other used groundwater data from the
slope topographical unit. A population size of 250
parameter sets was used to estimate the Pareto solu-
tion space with respect to the 11 model parameters.

Yapo et al. (1998) used a population size of 500 points
to approximate the Pareto space, however, solving the
multi-criteria problem for populations larger than 250
points appeared to be extremely demanding in terms
of computing time with the precipitation—runoff
model and data used in this study. In order to elim-
inate any dependence of the results on the initial
sample of points in the parameter space, the
MOCOM-UA procedure was run 20 times with differ-
ent initial values. This resulted in 5000 parameter sets
for each of the two calibration cases. Although each of
the 20 solutions is a non-dominated set, it does not
necessarily follow that the entire population of 5000
parameter sets constitutes a Pareto set.

Results from the multi-criteria calibration studies
were compared to results from a single-criterion
calibration procedure where the Nash—Sutcliffe statis-
tic of catchment runoff was used as a measure of
model performance. A Monte Carlo procedure was
used to generate parameter sets by drawing values
of each of the 11 parameters randomly from uniform
distributions between the lower and upper bounds, in a
manner similar to Beven and Binley (1992). The
model was executed and the Nash—Sutcliffe statistic
of runoff was calculated. This procedure was repeated
2% 10° times and the 5000 best parameter sets in
terms of model performance were retained, while
the remaining were rejected. This resulted in values
of the Nash—Sutcliffe statistic of runoff in the range
0.80-0.91 for the calibration period. Values obtained
for the Nash—Sutcliffe statistic of runoff for the same
period during multi-criteria calibration were in the
range 0.77-0.83 when groundwater levels in the
hollow topographical unit were used, and in the range
0.75-0.84 when groundwater levels in the slope topo-
graphical unit were used.

The parameters chosen for optimization were those
which were considered most critical for the perfor-
mance of the model with regard to describing runoff
and groundwater levels. The ranges of values for
parameters which were subject to optimization and
the fixed parameter values were based on field inves-
tigations and samples from the till deposits of the
Saternbekken catchment (Udnes, 1991; Tallaksen
et al.,, 1996; Myrabg, 1997), previous experience
with the precipitation-runoff model (Beldring et al.,
2000), and a digital elevation model with horisontal
resolution 10 m by 10 m.
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Fig. 2. Observed data (black) and the range of model-simulated values (gray) for the calibration period 15 September—17 November 1996.
Multi-criteria calibration using catchment runoff and groundwater levels in hollow topographical unit.

5.3. Model performance

Figs. 2—4 show observed data and ranges of model-
simulated values during the calibration period.
Results from multi-criteria calibration using catch-
ment runoff and groundwater levels in the hollow
topographical unit are shown in Fig. 2, results from
multi-criteria calibration using catchment runoff and

groundwater levels in the slope topographical unit are
shown in Fig. 3, while results from single-criterion
calibration using catchment runoff are shown in Fig.
4. Results from applying the parameter sets deter-
mined from the three calibration procedures to the
validation period are shown in Figs. 5-7. It is impor-
tant to note that the ranges of model-simulated values,
presented as sequences of minimum and maximum
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Fig. 3. Observed data (black) and the range of model-simulated values (gray) for the calibration period 15 September—17 November 1996.
Multi-criteria calibration using catchment runoff and groundwater levels in slope topographical unit.

values, are not the results of some particular para-
meter set, but represents the extreme values at each
time step.

The general impression is that the precipitation—
runoff model reproduced observed runoff during the
calibration period (Figs. 2—4) in a realistic manner
with all parameter sets from all the three calibration
procedures, while model performance deteriorated

during the validation period (Figs. 5-7), in particular
for parameter sets based on single-criterion calibra-
tion. Although observations were generally enclosed
between the minimum and maximum of model-simu-
lated values, the ranges of model predictions based on
multi-criteria  calibrations were constrained to
narrower intervals than the ranges of predictions
based on single-criterion calibration. This was
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Single-criterion calibration using catchment runoff.

particularly evident during the validation period. The
performance of the physically based model with
regard to runoff was best for the parameter sets
based on the multi-criteria calibration strategies, indi-
cating that groundwater levels exert a major control
on the hydrological response of the investigated
catchment. This result is in agreement with previous
experience from small undisturbed catchments in
humid temperate environments (e.g. Rodhe, 1989;

Bonell, 1993; Nyberg, 1995), thereby supporting the
validity of the model structure.

Model-simulated and observed groundwater levels
agreed well for the topographical units used for multi-
criteria calibration during the calibration period (Figs.
2 and 3), although the ranges of simulated values
showed a tendency of systematic deviations from
the observations. There were larger discrepancies
between the levels of the simulations and the
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Fig. 5. Observed data (black) and the range of model-simulated values (gray) for the validation period 29 August—7 November 1997. Model
parameters determined by multi-criteria calibration using catchment runoff and groundwater levels in hollow topographical unit.

observations from the topographical units not used for
calibration. Results from the validation period (Figs. 5
and 6) were similar, however, the performance of the
model was not as good. In particular, there was one
event in the beginning of October 1997 where a rapid
rise of the groundwater table was not described by the
parameter sets determined by multi-criteria calibra-
tion using data from the slope topographical unit.

The ranges of model predictions using the parameter
sets from single-criterion calibrations were too wide,
both during the calibration and the validation periods
(Figs. 4 and 7). Nevertheless, simulated values
followed the oscillations of observed data, indicating
that the physically based model must describe some of
the dynamics of groundwater levels in order to predict
the runoff correctly. Although the minimum values of
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groundwater levels in Figs. 4 and 7 are close to zero
during both the calibration and validation periods,
individual simulations were more dynamic.

5.4. Sensitivity of model performance

Cumulative distribution functions of the Nash-—
Sutcliffe and bias statistics of catchment runoff and

groundwater levels are presented in Figs. 8—10.
Results from all three calibration procedures for
both calibration and validation periods are
shown. The cumulative distribution functions of
the Nash—Sutcliffe statistic of runoff did not indi-
cate a difference in model performance, while the
cumulative distribution functions of the bias statis-
tic showed a tendency of larger deviations
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between model-simulated and observed runoff for
parameter sets based on single-criterion calibra-
tions. The cumulative distribution functions of
the Nash—Sutcliffe statistic of groundwater levels
were generally steeper and shifted further to the
right for the simulations using parameter sets from
the multi-criteria calibrations, indicating reduced
sensitivity to selection of parameter sets and better
model performance. Although the cumulative

distribution functions of the bias statistic of
groundwater levels showed the same tendency of
discrepancy  between  model-simulated  and
observed groundwater levels as the time series
plots, these results are also indicative of better
performance for the parameter sets determined
by the multi-criteria calibrations.

The behavior of a hydrological model is determined
by the performance of each combination of parameter
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values. Several studies have demonstrated that inter-
actions between individual parameters result in accep-
table simulations of runoff over a wide range of values
for each parameter for a particular model structure
(e.g. Freer et al., 1996; Uhlenbrook et al., 1999).
This was also the result of the single-criterion calibra-
tion procedure applied in this study; parameters varied
approximately uniformly over the initial ranges of
values given in Table 1. In contrast, the multi-criteria
calibration procedures constrained most parameters to
intervals, which were small compared to the initial
ranges. This is shown in Fig. 11 which presents
cumulative distribution functions of parameter values
determined by the three calibration strategies. The
results are given as normalized values relative to the
initial ranges between the lower and upper bounds. A

parameter can be described as well-defined or sensi-
tive with respect to the chosen measures of model
performance if increasing information in the calibra-
tion data results in steeper cumulative distribution
functions covering a small range of values (Freer et
al., 1996; Yapo et al., 1996). The sensitivity of model
performance was particularly evident for some of the
parameters which describe groundwater levels and
downslope saturated subsurface flow and saturation
overland flow; m, €, Ky, a, A and z. Parameter
uncertainty was largest for I,,,x and C,y, most likely
because no information was available for separating
evaporation of intercepted water, soil evaporation and
transpiration from plants, resulting in parameter inter-
actions. The two multi-criteria calibration studies
resulted in different cumulative distribution functions



206 S. Beldring / Journal of Hydrology 257 (2002) 189-211

NS runoff

0.8 1996
0.6 — 1997

CDF

0.4
0.2
0.0

-1 -0.5 0 0.5 1

NS groundwater hollow

1.0
0.8
0.6
0.4
0.2
0.0

CDF

-1 -0.5 0 0.5 1

NS groundwater slope
1.0

0.8
0.6
0.4
0.2
0.0

CDF

-1 -0.5 0 0.5 1

BIAS runoff

1.0
0.8

w 06

[m)]

© 0.4
0.2
0.0

-1 -0.5 0 0.5 1

BIAS groundwater hollow

0.8
0.6
0.4
0.2
0.0

CDF

-1 -0.5 0 0.5 1

BIAS groundwater slope

0.8
w 06
[a]
O 04
0.2
0.0

-1 -0.5 0 0.5 1

Fig. 9. Cumulative distribution functions of Nash—Sutcliffe (NS) and bias (BIAS) statistics of catchment runoff and groundwater levels. Model
parameters determined by multi-criteria calibration using catchment runoff and groundwater levels in slope topographical unit.

for several parameters. This was most likely due to
uncertainty about the location of the piezometers used
for groundwater observations relative to the model’s
hillslope, forcing model behavior to match the
observed data in different ways. Beldring et al.
(2000) showed that model results should be inter-
preted as the spatial distribution of moisture condi-
tions in a catchment and not as the exact values at
specific points. This being the case, the multi-criteria
calibration procedure should be based on comparing
model results with one or more statistics summarizing
the characteristics of observations from a net of piezo-
meters located in different types of hydrological
response units in the catchment. Although this
would require an extensive data collection program,
it is the only way to obtain realistic estimates of

groundwater table depths in catchments in forest
environments.

5.5. Model validation

The confidence that can be placed in model simula-
tions depends largely on the uncertainty remaining
after the model has been calibrated (Freedman et al.,
1998). In the context of multiple measures of model
performance, the Pareto solution space represents the
minimal uncertainty that can be achieved for the para-
meters via calibration, without subjectively assigning
relative weights to the individual model responses
(Bastidas et al., 1999). Since it is not possible to select
a specific parameter set as being superior to any other,
this parameter uncertainty translates into a trade-off
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range in the model predictions (Gupta et al., 1998).
Although the 5000 parameter sets determined for each
calibration problem cannot be expected to constitute a
non-dominated set, they are an approximation to the
Pareto solution space. The ranges of model predic-
tions are therefore indications of model uncertainty.
Although some systematic differences between
model-simulated output and observed system output
were found, results from the multi-criteria calibration
strategies generally supported the validity of the
model structure. This conclusion can also be drawn
from the result that parameters describing processes
included in the multi-criteria calibration procedures
were well-defined.

The precipitation—runoff model described in this
study is based on simplified physical descriptions of

the characteristic features of runoff formation in
shallow till deposits overlying a relatively imperme-
able bedrock. Three flow processes are considered;
vertical unsaturated flow, saturated subsurface flow
parallel to the impermeable bed, and saturation over-
land flow. The model does not explain flow paths and
residence times of water particles in detail, and its
structure includes simplified boundary conditions
and several conceptual descriptions. In spite of these
limitations, results from this work and a previous
study by Beldring et al. (2000) have shown that the
model provides realistic predictions of the spatial and
temporal variations of depth to the phreatic zone. The
results confirm the important role of soil moisture and
groundwater conditions in controlling the dynamic
nature of hydrological processes in undisturbed
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gies. Results are presented as normalized values relative to the ranges between the lower and upper bounds given in Table 1.

catchments with shallow till deposits. Characterizing
the distribution of hydrological state variables and
responses in the landscape is a prerequisite for
realistic predictions of discharge and evapotranspira-
tion fluxes within heterogeneous terrain (Beven,
1995).

The strategy of model validation performed in
this study can be classified as ‘undisturbed-catch-
ment multiple-response split-sample’-tests in the
hierarchy proposed by Mroczkowski et al. (1997).
The purpose of this strategy is to demonstrate that a
model is capable of making accurate predictions of
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multiple processes for periods outside the calibra-
tion period. Stream-flow data at the catchment
outlet, are supplied with time series data observed
at different locations within a catchment, e.g. soil
moisture, groundwater levels, chemical stream
loads, or subcatchment streamflow. Refsgaard and
Knudsen (1996) used a similar definition of model
validation, although they argued that only site
specific validation is possible. Nevertheless, the
following facts support the idea that the precipita-
tion—runoff model is generally valid in small undis-
turbed catchments with shallow till deposits
overlying a relatively impermeable bedrock; (i) it
is based on physical descriptions of the processes
linking precipitation and runoff; (ii) it has been
demonstrated that constraining the model to both
runoff and ground water levels during calibration
improved model performance; (iii) the model was
able to reproduce multiple time series during
periods not used for calibration in a satisfactory
manner; and (iv) previous results from Beldring et
al. (2000) have demonstrated the geographical
transposability of the model.

6. Conclusions

In order to describe the hydrological processes in a
watershed, a suitable model structure must be selected
and values for the parameters must be specified so that
the model closely simulates the behavior of the study
site. However, model results are only as reliable as the
model assumptions, inputs and parameter estimates
(Sorooshian and Gupta, 1995). Any precipitation—
runoff model, no matter how sophisticated, is a simpli-
fied representation of the physical structure of a
watershed, and therefore cannot be expected to
provide a perfect fit to observed data. Even if the
model was a perfect representation of the system,
errors in observations of input and output data
would prevent the residuals between model-simulated
and measured system output from being zero (Gupta
et al.,, 1998). In order to have confidence in a
physically based hydrological model, it must be
based on a description of the relevant mechanisms
linking precipitation and runoff in a particular envir-
onment, its operational performance with regard to all
relevant aspects of model behavior should be

validated, and model parameters should be well-
defined (Sorooshian and Gupta, 1995).
This study has demonstrated that:

e Given a physically based hydrological model that
simulates several aspects of watershed behavior,
the multi-criteria calibration procedure MOCOM-
UA was capable of exploiting information about
the physical system contained in the measurement
data time series.

e The multi-criteria calibration procedure provided
estimates of the uncertainty associated with
model predictions and parameters.

e Multi-criteria calibration constraining the precipi-
tation—runoff model to observed runoff and
groundwater levels simultaneously reduced the
uncertainty of model predictions compared to
single-criterion calibration constraining the model
to observed runoff only.

e The multi-criteria calibration procedure reduced
the uncertainty of the estimates of model para-
meters.

e The investigated precipitation—runoff model was
able to reproduce several observed system
responses simultaneously during both calibration
and validation periods.

¢ Groundwater table depths exert a major control on
the hydrological response of an undisturbed catch-
ment in a landscape with shallow till deposits over-
lying a relatively impermeable bedrock.

The precipitation—runoff model considered in this
study is based on a simplified physical characteriza-
tion of runoff formation in undisturbed catchments in
a landscape with shallow till deposits overlying a
relatively impermeable bedrock. Results from
applying the model in this and the previous study
(Beldring et al., 2000) were found to be consistent
with the physical properties of the environments in
the experimental catchments, thereby supporting the
validity of the model formulation. Although an objec-
tive framework for model validation was used, the
results were obviously influenced by the specific test
conditions, including the particular climate, catch-
ment characteristics, data quality and availability, as
well as the selected measures of model performance.
To arrive at firm conclusions regarding a model many
validations would usually be required.
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