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Abstract

We present results of kinematic and dry-sand analog models of hanging wall folding over an extensional ramp—flat system containing
complementary strike bends. The kinematic models illustrate that differential structural relief is controlled by changes in apparent fault dip in
the displacement direction. Variation in ‘inclined-shear’ angle modifies the magnitude, but not the sign, of this differential relief.

In a novel analog modeling method, we create a weak fault zone by coating the entire rigid footwall (ramps and flat) with a thin layer of
silicone putty below a dry sand hanging wall. At low strain rates, the silicone polymer is weaker than the dry sand and thus provides a good
fault zone analog. A 3° tilt is sufficient to induce displacement, and all deformation is driven by gravity. In the models, we observe that
hanging wall displacements near the oblique segment of the ramp are deflected toward the ramp strike.

Oblique inclined-shear, a new quantitative geometric model, explains the bending of displacement paths towards the strike, rather than the
dip, of oblique ramp segments. The model is conceptually equivalent to 2-D, inclined-shear models in which the hanging wall is imagined to
pull rigidly away from and then collapse against the footwall. Because gravity is the driving force, antithetic collapse is directed normal to the
incipient void, which introduces a component of slip normal to the fault strike. Vector sum of the normal component with the regional

component results in the observed displacement. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Inclined shear is a conceptual deformation mechanism in
which folding is accommodated by simple-shear along
parallel, inclined shear planes (Fig. 1). The inclined shear
concept has been extensively used to model extensional
fault-related folds (White et al., 1986; Dula, 1991; Kerr
and White, 1992; Xiao and Suppe, 1992). Folding strain
in most cases is distributed over a network of variably
oriented faults. Yet motion on these faults can often be
approximated by slip on effective shear planes with a single
orientation. The value of inclined-shear modeling is that it
provides a simple, yet quantitative approximation for relating
hanging wall fold geometry and kinematics to fault shape
(White et al., 1986; Dula, 1991; Kerr and White, 1992).

The majority of studies evaluating inclined shear have
taken a 2-D approach (cross-sectional), with the cross-
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section being parallel to the fault dip and displacement
direction. The third dimension is a cylindrical projection
of the fault and fold along strike. However, a few studies
have evaluated the inclined-shear model in 3-D (Xiao and
Dula, 1989; Kerr et al., 1993; Braun et al., 1994). These
studies model curved or doubly curved fault surfaces. This
smooth curvature creates complex hanging wall folding,
which we believe masks the fundamental processes (Kerr
et al., 1993; Braun et al., 1994).

We present results of kinematic and analog model experi-
ments to test the degree of validity of inclined-shear theory
in non-cylindrical 3-D applications. We model an angular
ramp—flat extensional fault with complementary angular
strike bends (Fig. 2). This simple geometry isolates the
deformation effects of the fault bends. As in the case of
2-D fault-bend folding (Suppe, 1983), isolating these effects
fosters insight into deformation processes and simplifies
quantitative analysis.

This paper is presented in three sections. First, we use
kinematic models to show unambiguously the relationship
between boundary conditions, deformation mechanisms,
and displacements. Second, we present analog model results
which document systematic 3-D displacement patterns over
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2-D Inclined Shear

Fig. 1. Schematic illustration of 2-D inclined shear. Deformable hanging
wall (A) is extended from a rigid footwall (B). During extension, the hang-
ing wall deforms by shear antithetic to the dipping ramp.
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Fig. 2. Bent-ramp model used to evaluate the validity of inclined shear
models for 3-D structures. Angular fault bends serve to localize the strain
effects of the non-cylindrical fault geometry.

oblique fault ramps. Finally, we present a geometric theory
that generalizes inclined shear to three dimensions and
explains the observed displacements.

2. Kinematic models

Though dramatically simpler than nature, analog model

Table 1

results are affected by a variety of material and mechanical
complexities, which are not fully controlled. Therefore,
using GeoSec3D®, we performed a series of kinematic
models to form a baseline for analyzing the analog model
results. These models use a strict homogeneous, pencil-
shear deformation mechanism. This means that particles
are displaced by a constant heave, and then moved differen-
tially along parallel paths to maintain constant volume.
Because of its simplicity, pencil-shear deformation provides
an end-member result with which to compare the analog
results.

2.1. Model parameters

The pencil-shear technique has two variable parameters:
the extension direction and the inclined-shear angle (Kerr
and White, 1992). We use three values of each for a total of
nine models (Table 1 and Fig. 3). The fault geometry
comprises steep ramps with angular bends above a hori-
zontal ‘regional’ detachment. Two ‘normal’ ramps parallel
the model boundary. Between them lies an ‘oblique’ ramp,
providing both a convex and a concave strike bend. For the
baseline case, we set the extension direction parallel to the
line of intersection of the normal and oblique fault ramps.
The other two cases allow the extension direction to deviate
towards the dip direction of the normal ramps and towards
the dip direction of the oblique ramp. The inclined shear
angle is set to 20° antithetic, vertical, and 20° synthetic to
the normal fault ramp. By design, the shear direction is
always contained in planes parallel to the extension.

2.2. Results

Fault geometry and displacement magnitude are constant
for all the models. Nonetheless, variation in shear angle and
displacement direction produces clear variations in the
resulting horizon geometry (Fig. 3).

For convenience we refer to models in which the slip
direction bisects the map-view bend in the ramp as having
symmetric displacement. Similarly we say that models in
which the slip direction is clockwise of the ramp-bend
bisecting angle have clockwise displacement and that
models in which the slip direction is counter-clockwise of
the ramp-bend bisecting angle have counter-clockwise
displacement. Note that these designations are arbitrary
and tied to the asymmetry of our model.

In symmetric models (d, e, and f) the oblique ramp

Specified displacement directions and inclined-shear angles for the nine kinematic models

Inclined-shear angle

20° Antithetic Vertical 20° Synthetic
Displacement direction Clockwise Model a Model b Model ¢
Symmetric Model d Model e Model f
Counter-clockwise Model g Model h Model i
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Fig. 3. Gray-scale structural-contour maps for the results of nine kinematic models of extension over oblique ramps. Units are arbitrary. The nine models
represent the different permutations of synthetic, vertical, and antithetic inclined shear combined with clockwise, symmetric, and counter-clockwise displace-

ment. See text for discussion.
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Fig. 4. Parameters for computing differential structural relief across differ-
ently striking fault ramps. For any given direction, the apparent dip of the
two planes will be different and thus the structural relief will also differ. The
one exception is the vertical plane containing the line of intersection of the
two ramps.

generates no differential structural relief. Comparison of
model d with model f shows that variation in the inclined-
shear angle modifies the magnitude, but not the direction, of
the fold axis.

In clockwise models (a, b, and c) the oblique ramp
generates positive structural relief relative to the lateral
segments. Comparison of model a with model ¢ shows
that variation in the inclined-shear angle modifies the size,
but not the overall map pattern, of the fold. Antithetic shear
produces a broader, gentler fold. Synthetic shear produces a
smaller, tighter fold.

In counter-clockwise models (g, h, and i) the oblique
ramp generates negative structural relief relative to the
lateral segments. Again, comparison of model a with
model ¢ shows that variation in the inclined-shear angle
modifies the size, but not the general shape of fold.
Antithetic shear produces a broader, gentler fold. Synthetic
shear produces a smaller, tighter fold.

2.3. Analysis

The models show that differential structural relief
is controlled by changes in apparent fault dip in the
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Analog Model Geometries

A. Basal Plate Velocity discontinuity  Rigid plate
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Fig. 5. Drive mechanisms and boundary conditions for extensional analog
models. Note that the fault zone is stronger than the wall rock in both the
flexible sheet and the rigid basement techniques. In contrast, the silicone-
putty fault zone is substantially weaker than the wall rock and deformation
occurs with only a 3° slope.

displacement direction. Given the assumptions of inclined
shear, this phenomena is purely geometric and is described
by:

T,/T; = (cosatand,)/tand, 1)

As shown in Fig. 4, T} and 8, are the throw and dip for a
ramp perpendicular to the displacement direction, and 75

A) Model Pilot 4: Top View

Rigid footwall

1cm
—

Fig. 6. (A) Oblique view of model Pilot 4 showing passive grid and surface
deformation. Key features are: (1) the structural low formed over the fault
ramp, and (2) the zone of localized faulting above the base of the fault ramp.
(B) Cross-section view of model Pilot 4 showing passive sand above the
silicone fault zone. Key features are: (1) the structural low formed over the
fault ramp, and (2) the zone of localized faulting above the base of the fault
ramp.

and 0, are the throw and dip for a ramp inclined 90 — «
degrees to the displacement direction. Along-strike changes
in fault shape can thus generate structural highs and lows
and provide lateral fold closure, in the presence of a regional
dip.

Fault heave is sometimes used as a proxy for fault throw.
However, comparison of the models shows that fault heave
is a function of the local fault strike, inclined shear angle,
and the displacement direction. Thus heave bears no clear
relationship to the true slip. However, matching of charac-
teristic shapes between hanging wall and footwall indicates
the true slip. Conversely, complex variations in heave
may indicate unrecognized changes in fault geometry or
kinematics.

3. Analog models
3.1. Previous techniques

Most previous analog models of detached normal faults
have used one of two driving mechanisms to induce
extension on a low-angle ramp. Both mechanisms allow
for valid conclusions about the observed deformation,
given the chosen boundary conditions, but both also include
elements that do not relate to natural fault systems and
distort hanging wall geometries and kinematics.

The basal plate model (Fig. 5A; Cloos, 1968; Withjack et
al.,, 1995) uses a thin, commonly rigid, flat plate that
underlies some portion of the overlying deformable
media. When displaced laterally, the plate imposes a signifi-
cant velocity and stress discontinuity at the trailing edge that
localizes deformation. All active faults are linked to the
plate edge. Because the plate is both rigid and unstretchable,
most of the hanging wall does not deform. The ‘detachment’
boundary at the base of the hanging wall has essentially
infinite strength. Although gravity drives the faulting
above the plate edge, the rigid plate drive itself has no
counterpart in nature.

The second method uses a more flexible sheet that under-
lies some or all of the deformable media (Fig. 5B; McClay
and Ellis, 1987; Kerr et al., 1993). The flexibility of the
sheet allows for some degree of deformation to conform
to the shape of the fault. However, the sheet is also
unstretchable, which allows no extension or contraction at
the base of the hanging wall. This causes deformation to be
minimized near the fault surface, and also induces local
contractional structures in some ramp regions (McClay,
1990). Like the basal plate model, the flexible sheet driving
forces do not correspond to natural forces.

Lastly, both model techniques are inherently 2-D. Some
rigid plate models have used complex shapes for edge
geometry and footwall blocks (Xiao and Dula, 1989), and
some flexible sheet models have attempted to model defor-
mation above 3-D fault shapes by slicing the sheet into
parallel strips (Braun et al., 1994), but in both cases,
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Map-View Displacements
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Fig. 7. Map-view displacements of the bent-ramp, weak-fault model in a footwall reference frame. Key features are: (1) rigid motion of bulk hanging wall
down the regional dip, and (2) local deflection of the displacement vectors adjacent to the oblique ramp fowards the strike of the ramp.

deformation in the hanging wall is still constrained by the
mechanics of the driving elements, especially the strong
boundary at the base of the hanging wall.

3.2. Weak fault technique

To overcome some of the limitations of previous models,
we use a technique that creates a weak fault zone and relies
only on gravity. Thus body forces drive both the fault
displacements and the internal deformation of the hanging
wall, which can accommodate 3-D strains.

We create a weak fault zone by coating the footwall
ramps and flat with a 3-mm-thick layer of silicone putty
(Rhone—Poulenc Silbione gomme; Fig. 5C). This particular
batch of putty displays somewhat non-Newtonian proper-
ties, but at low strain rates has a viscosity of 3 X 10* Pa-s.
The hanging wall consists of about 3 cm of dry, rounded
quartz sand (Clemtex #5) with a density of 1.7 g/cc,
coefficient of internal friction of 0.9, and minimal cohesive
strength (Krantz, 1991).

When assembled, the model is tilted about 3° to induce
deformation. Smaller tilt angles may be sufficient, but we
did not attempt them. A typical experiment lasted about 2 h,
during which time the hanging wall slid down-dip about
6 mm. Within the fault zone, the resulting shear strain rate
was about 3 X 10~*/s. Based on the viscosity of the putty,
the shear stress was about 10 Pa. In contrast, the deviatoric
stress required to induce faulting within the base of the sand

pack is roughly 200 Pa. Thus, the fault is weaker by a factor
of about 20, compared with the sand.

3.3. The bent-ramp model and results

Using the weak-fault technique, we modeled the bent-
ramp geometry shown in Fig. 2. Model dimensions are
35 cm in the strike direction and 22 cm in the dip direction.
The ramp height is 3.2 cm. Rigid walls confine the lateral
sides of the model; the resulting boundary effects cause
narrow zones of shear that do not extend into the central
part of the hanging wall. The down-dip free edge also
reveals additional strain, produced by gravitational collapse
of the sloping free face of the sand pack. However, this
artifact was minimized and isolated from the ramp region
by precutting a 20° slope adjacent to the free edge (Fig. 5C).

A passive grid on the surface (Fig. 6A) allowed us to track
horizontal displacements, recorded by sequential photo-
graphs from a fixed position every 4 min. Comparison of
grid nodes yielded displacement vectors (Fig. 7). The sand
pack also included passive marker layers of garnet sand.
When complete, each experiment was soaked with water
and sliced in serial sections to provide views of internal
deformation in the final state (Fig. 6B).

Hanging wall deformation typically produces three
domains. The bulk of each model deforms by rigid trans-
lation down the inclined detachment, except for edge
effects (Fig. 7). The second domain includes synthetic and
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Oblique Inclined-Shear Concept

Fig. 8. Oblique inclined-shear model is conceptualized as a two step process. First the hanging wall translates rigidly down the regional dip. This translation
opens a void parallel to the fault ramp. Second, gravity drives collapse of the hanging wall normal to the void. The regionally-oblique direction of collapse

imparts the out of plane component to the slip.

antithetic faults that develop immediately down-dip of the
ramp-flat intersection, and comprise the ‘inclined-shear’
domain. The third domain includes the material that slid
semi-rigidly down the ramps.

Along the sections of the model where the ramp strikes
perpendicular to the regional dip, displacement vectors for
all three domains point down dip (Fig. 7). In contrast, above
the oblique part of the ramp, the vectors are deflected
towards the strike of the oblique segment. The magnitude
of the deflection in the experiment shown varies from 5 to
25°, with an average of 15°. The deflection is greatest near
the center of the oblique segment and decreases towards
either end. This lateral gradient implies that, at the concave
ramp-bend there is a component of horizontal extension
perpendicular to regional dip. Similarly, at the convex
bend there is a component of horizontal contraction perpen-
dicular to regional dip.

The direction of the deflection in the oblique-ramp region
and lateral-strain distributions are opposite to our intuitive
expectations. We had expected a local down-dip component
above the oblique ramp, leading to a deflection toward the
local dip direction. To explain this, we develop a geometric
model that generalizes inclined shear to three dimensions.

4. Oblique-inclined theory
4.1. Derivation

The model is conceptually equivalent to 2-D, inclined-
shear models in which the hanging wall is imagined to pull
rigidly away from the footwall and then to collapse into the
resulting void (Fig. 8). The geometry of the fault bend
requires a kinematic system that includes shear along planes

Oblique Inclined-Shear
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Fig. 9. (A) Analytical relationship is derived from the geometry of oblique inclined shear. Two vertical planes are key: (1) the extension plane that contains the
extension vector, and (2) the true dip plane that is perpendicular to the fault ramp. Three angular parameters control the out-of-plane slip component. The
obliquity () is the angle between the extension direction and the normal to the ramp strike. The dip of the fault plane is 6. The inclined-shear angle («) is
measured from the intersection of the two vertical planes. From these three parameters, the map-view deflection (vy) of the slip vector from the extension
direction is determined. (B) Graphical solution of the inclined-shear equation for a constant fault dip of 45°. Solution is plotted as curves of constant inclined-
shear angle. Negative shear angles represent synthetic shear. Note that antithetic shear produces strike-parallel deflection, vertical shear produces no
deflection, and synthetic slip produces strike-perpendicular deflection. Parameters of the study are indicated by the square.
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Table 2

Specified, measured, and calculated model parameters for testing oblique inclined-shear theory

Experiment Specified

Fault dip (°) Obliquity (°)

Measured

Deflection (°)

Calculated from theory

Effective inclined-shear angle (°)

Extensional sand

This study 45 30
Extensional clay

Dula and Xiao 1 30 0
Dula and Xiao 2 30 30
Dula and Xiao 3 33 30
Dula and Xiao 4 33 60
Compressional sand

Wilkerson et al. 1 20 30
Wilkerson et al. 2 20 50
Wilkerson et al. 3 30 30
Wilkerson et al. 4 30 50

14.7 34
0.5 na
5 20
35 13
4 15.5
4 25
4 24
6.5 26
6 23

that contain the ramp—flat intersection line (Suppe, 1983;
Hardy, 1995). In this case, the line is parallel to the fault
strike.

Although synthetic and vertical shear are geometrically
possible, antithetic shear is observed. The antithetic shear is
normal to the incipient void (i.e. perpendicular to the fault
trace), thus introducing a component of slip normal to the
local fault strike (Fig. 8). Vector sum of the normal com-
ponent with the regional component results in the observed
displacement paths.

From the geometry of the conceptual model (Fig. 9A), an
analytical relationship can be derived in three dimensions,
which predicts the deflection of particle motion from the
regional dip direction. This relationship, derived in the
appendix, is presented here as Eq. (2). Eq. (2) shows that
the deflection angle () is a function of three parameters:
fault dip (6), ramp obliquity (8), and the effective inclined-

shear angle (@):
sindsina
_ 2
cos(6 — a) ]) @)

vy=90-p8— tan_l<cot,8[1 -

Fig. 9B shows this solution graphically for the case of a
45° ramp. The graph shows three key features of the rela-
tionship: (1) vy is zero if B is zero (2-D case), (2) vy is zero if
a is zero (vertical-shear case), and (3) antithetic and
synthetic shear create opposite senses of deflection.

4.2. Comparison with previous work

Apotria et al. (1992) developed similar kinematic models
of deformation at an oblique ramp. Rather than using
arbitrarily inclined shear, these authors modeled com-
pressional ramps using vertical and layer-parallel shear. In
fact, both of these cases can be treated as special cases of the
oblique inclined shear.

Vertical shear can clearly be treated by setting o = 0.
Less obvious is that the layer-parallel shear case is
equivalent to inclined shear where the shear plane bisects

the dihedral angle between the folded bedding (Hardy,
1995). The specific angle required is a function of the
fault-cutoff angles and can be calculated using trigono-
metric (Suppe, 1983) or algebraic formulations (Hardy,
1995).

4.3. Evaluation

Of the four parameters in the theory, two (fault dip and
obliquity) are known model boundary conditions, one
(deflection) is measurable, and one (inclined-shear angle)
is unknown. In fact, the inclined-shear angle is an abstract
model concept and cannot be measured. Were hanging wall
deformation to occur by slip on closely spaced planes with
uniform direction, we might directly measure the orien-
tations of these slip planes. However, even in these rela-
tively simple models, deformation occurs on a more
complex array of slip planes. Thus, the inclined-shear
angle is more precisely an effective inclined-shear angle,
which is related to the net movement of the complex system.
Given this complexity, a precise test of the theory is not
possible. Instead, we use the three known and measured
parameters to calculate the inclined-shear angle. By com-
paring the calculated values with similar experiments, we
test the theory’s consistency and predictive value.

We use three sets of analog models for our comparison:

1. the oblique-ramp, weak fault model (this study),

2. four stiff-sheet extensional clay models by Xiao and Dula
(1989), and

3. four dry sand compressional models by Wilkerson et al.
(1992).

The model parameters and results are summarized in Table
2.

For this study 6 = 45°, B = 30°, and v, varied from 5 to
25° with an average of 15° (Fig. 7). For these values, « is
predicted to be 34°, which corresponds to a fault dip of 56°
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(Fig. 9B). Individual faults observed in the bent fault model
are considerably steeper that this prediction. However, this
dip closely approximates that of the down-dip boundary of
the zone of hanging wall faulting.

Xiao and Dula (1989) performed a series of four exten-
sional ramp analog models using a similar bent ramp model.
They used a stiff-sheet drive and a wet clay hanging wall
over a rigid footwall with smooth strike bends. A range of
model parameters were used: & = 30-33°, B8 =0, 30, and
60°, v =3.5-5° Predicted « values range from 13 to 20°,
which is typical for wet clay experiments (Dula, 1991).

Wilkerson et al. (1992) performed oblique-ramp com-
pressional experiments with dry sand. They observed an
equivalent deflection of particle motion adjacent to the
oblique ramp. Parameters in their models were: 6 =20
and 30°, B =30 and 50°, and y = 4-6°. Predicted « values
cluster tightly from 23 to 26°, similar to values for
equivalent extensional, dry-sand experiments (Kerr and
White, 1992).

From these examples, the oblique inclined-shear model
appears to be applicable in both compression and extension
across a range of model parameters and material properties.
This is so because the model is based on the geometry of
the fault bend. Therefore, so long as the hanging wall defor-
mation is homogeneous, it is this geometry that domi-
nantly controls the material displacements adjacent to
fault bends.

4.4. Implications

Lateral deflection of particle motion at 3-D fault bends
potentially impacts the conventional assumption of plane
strain used in 2-D cross-section construction and restora-
tion. However, inspection of Fig. 9B reveals that the
deflection magnitudes are generally low. For the 45° case,
typical inclined-shear values of 10-30° (Dula, 1991) result
in maximum lateral deflections of 4—14°. For a given fault
dip, the maximum deflection values occur at fault obliquity
angles of 30—60°. As fault bends angles approach 0 or 90°,
lateral deflections rapidly approach 0° (Fig. 9B). For the
purpose of cross-section balancing, lateral displacements
less than 10° are generally considered acceptable
(Woodward et al., 1985). Thus, only rarely would we expect
oblique-shear processes to be a significant factor for cross-
section construction.

Perhaps of more importance are implications for distri-
buted strain at 3-D fault bends. Eq. (2) predicts convergent
flow at convex bends and divergent flow at concave bends.
This counter-intuitive pattern is observed in the sand model
(Fig. 7). This non-parallel flow is presumably accommo-
dated by increased vertical and/or volumetric strains at the
fault bends. We would expect such strains to be dilatational
at concave bends and compressive at convex bends.
Whether or not these strains materially impact fluid flow,
rheology, or other fault zone properties is unknown.

5. Conclusions
From this study we make four main conclusions.

1. Along-strike changes in fault shape can generate local
structural highs and lows and produce lateral fold closure
in the presence of a regional dip.

2. Fault heave varies as the fault strike and dip change and
bears no clear relationship to the true slip. Matching of
characteristic shapes between hanging wall and footwall
indicates the true slip.

3. A component of strike-parallel motion adjacent to
oblique ramps is observed in this and other studies.
The oblique-inclined shear model, based on geometric
analysis, explains this observed motion. The quantita-
tive theory reduces to the planar 2-D solution in the
orthogonal and vertical shear cases. Predicted 3-D
strains are generally small. We would expect them to
rarely be a significant factor for cross-section con-
struction.

4. The weak-fault analog-modeling technique provides a
less restrictive and more natural drive mechanism than
the basal plate or flexible sheet techniques commonly
used for modeling extensional ramp systems.
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Appendix A. Derivation of oblique inclined-shear

We derive Eq. (2) for oblique inclined shear from the
geometry of the fault and from the assumed deformation
mechanism. Fig. Al and Table Al show the geometry
of the fault and define angles and distances used in the
derivation. Note that we designate points with lower case
letters, distances and vectors with capital letters, and angles
with Greek letters. We assume that the hanging wall defor-
mation due to motion over an oblique fault can be divided
into two discrete steps:

1. a rigid translation parallel to the regional extension
direction
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Definition of Lines and Angles
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2. inclined shear in a plane perpendicular to the strike of the

local fault segment.

Our goal is to determine the throw (T'), horizontal slip
(Sp), and the angle between horizontal slip and extension

directions (y) in terms of the extension vector (E),
dip (8), inclined-shear angle («), and obliquity (3).

fault

We do this in four steps: some preliminary derivations, a
solution for 7, a solution for Sy, (in terms of ), and finally a

solution for 7.

A.l. Preliminary derivations
From definition of B:

E,, = Ecosp
Law of sines yields:

sin 6 sin(90 — 6+ a)

1 Ey

sind _ sin(90 — (8 — a))

I Ey

E,,sind
cos(6 — a)

(AD)

(A2)
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Table Al
Definition of parameters used to derive Eq. (2) (see Fig. Al)
E Extension vector
E, Apparent extension (horizontal component in dip direction)
S Net slip
Sh Horizontal slip
Sq Dip slip
S, Strike slip
1 Inclined-shear displacement
Iy Horizontal component of inclined-shear displacement
H Heave
T Throw (equals vertical slip or vertical component of
inclined-shear displacement)
a Inclined-shear angle
B Obliquity
b% Angle between horizontal slip and extension directions
y Angle between fault strike and horizontal slip direction
o Fault dip
O * Apparent fault dip in horizontal slip direction
Combining Egs. (Al) and (A2):
_ Ecosfsind
cos(6 — a)
Note: same as 2-D when 8 =0.
Similarly:
sin(90 — @) sin(90 — 8 + a)
Sd Eap
_ EcosBcosa (A3)
d cos(6 — )
By definition:
H=E, —I (Ad)
From elementary trigonometry:
I, = Isina = Ttana (AS5)
T = Htané (A6)
and
S, = Esinf (A7)
From triangles ASHS,, and AL S E
4 H
y=90—(,8+tan 1[7]) (A8)
Ss
Law of sines for triangle AS,FEl:
Iysin
= h_B (A9)
sinvy

A.2. Solution for T

Substitution of Eqgs. (Al), (A2), (A4), and (AS) into
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Eq. (A6) gives:

sindsinaEcosf ])
——— | |tand
cos(é — a)

T= (ECOSB - [

(A10a)
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T= Ecos,BtamS[l _ SHmosma ]

cos(8 — @)
Alternately, from triangle AITI:
T = Icosa
Substituting Eq. (A2):

_ Ecospsindcosa (A10b)
cos(8 — a)

Egs. (A10a) and (A10b) can be shown to be identical using
the laws of trigonometric sums.

A.3. Solution for S, (in terms of y):

Substitution of Eqgs. (A5) and (A10b) into Eq. (A9) gives:
Sy = Ttana[ % ]

siny

5, = [ EcosBsindécosa ]tana[ s%nB ]
cos(é6 — «) siny
S — EcosBsinécosatanasin
=

cos(6 — a)siny

5, = E[ sindsinacosBsin ] (Alla)

cos(6 — a)siny
Alternately, elementary trigonometry yields:
S,
cos(y")
Substitution of Eq. (A7) gives:
Esinf
cos(y*)
From triangle AEE,,S;:
Y +vy+B=9o0ry =90 (y+p)
Thus:
_ Esing
~ sin(y + B)

Sy =

(A11b)

A.4. Solution for vy

Substitution of Eqs. (Al), (A2), (A4), and (A7) into
Eq. (A8) gives:

E
Ecosf3 — sinﬁ{ % }sina

=90 — | B+ tan”!
Y B+ tan Esinf3

cosf3 — sinésina{
sinf3

cosf }

y=90—-| B+ tan ! cos( — a)

sindsinacot ]

— - -1 _
=90 — B — tan [cotB cos(6— @)

y=90— B — tan“(cotﬁ[l _ _sindsina_ ]) (A12)
cos(6 — )
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