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Abstract

There are two basic approaches for estimating flood quantiles: a parametric and a nonparametric method. In this study, the
comparisons of parametric and nonparametric models for annual maximum flood data of Goan gauging station in Korea were
performed based on Monte Carlo simulation. In order to consider uncertainties that can arise from model and data errors, kernel
density estimation for fitting the sampling distributions was chosen to determine safety factors (SFs) that depend on the
probability model used to fit the real data. The relative biases of Sheater and Jones plug-in (SJ) are the smallest in most
cases among seven bandwidth selectors applied. The relative root mean square errors (RRMSEs) of the Gumbel (GUM) are
smaller than those of any other models regardless of parent models considered. When the Weibull-2 is assumed as a parent
model, the RRMSEs of kernel density estimation are relatively small, while those of kernel density estimation are much bigger
than those of parametric methods for other parent models. However, the RRMSEs of kernel density estimation within inter-
polation range are much smaller than those for extrapolation range in comparison with those of parametric methods. Among the
applied distributions, the GUM model has the smallest SFs for all parent models, and the general extreme value model has the
largest values for all parent models considered. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Traditional flood frequency analyses mainly rely on
the parametric methods which are based on the
assumption that an observed sample comes from a
population whose probability density function (PDF)
is known. Hence it is important to select an appropri-
ate PDF and to estimate parameters for a given data. If
the parametric model is properly applied to a random
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variable X, we can describe the behavior of X expli-
citly. However, the best parametric distribution and
parameter estimation methods are still not known
despite extensive research into this subject. If we
choose a parametric model that is not of appropriate
form, then there is a danger of reaching an incorrect
conclusion. On the other hand, the nonparametric
approach does not make any assumptions regarding
a parent distribution. In the event that there is neither
knowledge nor experience gained through analysis of
previous data sets, it may be desirable to use a
nonparametric method.

It was Rosenblatt (1956) and Parzen (1962) who
provided a considerable interest in kernel methodology
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Table 1

PDF and/or CDF of probability distributions and parameter validity conditions (I'(-): gamma function)

Distribution PDF and/or CDF and parameter validity conditions
Gamma 1 X=X ]Bfl [7 X=X
9= 2] e
a>0thenxy =x <oo,a<0Othen —o0 <x=xy, >0
— 1g—1 _ 1B
GEV Foy = 1[1 _ Blx—xp) ] exp{f[l _ Bl —xp) ] }
a a a
B=0:GEV-1 —00 < x < oo,
B<0:GEV-2xy)+ a/f=x<o0o,
B>0:GEV-3 —c0o <x=x,+ a/f
Gumbel Fl) = Cxp{—exp[— (x — xo) ]}’ o0 < x < 0
a
- — B
Log-Gumbel F(x) = explif(U) ], Xg <x<o0, >0
X — X
Lognormal 1 1] G —xp) — ) T
f(x)=7exp{*—|:7' , X =X
V2m(x — x)o 2 )
Log-Pearson _ 1 [ In(x) — yo ]Bil [_ In(x) — yo ]
type III J |a (B)x a xp
a > 0 then exp(yg) = x < 00, @ < 0 then —o0 < x = exp(yg)
. — B—1 — B
Weibull f) = E[x xo] exp{f[x Xo] }
a a a

Xo=x<oo,a>0,B8>0

owing to the asymptotic mean squared error (MSE) and
mean integrated squared error (MISE) calculations for
the kernel density estimator. Since then, there has been a
great deal of theoretical investigation into the kernel
density estimator (Scott, 1979; Bowman, 1985; Terrell
and Scott, 1985; Silverman, 1986; Terrell, 1990; Shea-
ter, 1992; Marron and Wand, 1992). These theoretical
results are, however, of asymptotic nature and it is still
questionable how these methods perform well in small
samples. One way to access the behavior of a small
sample is through simulation experiments. Recent
studies using many of the bandwidth selection methods
were discussed in literature (Sheater, 1992; Marron,
1989; Jones et al., 1992; Park and Turlach, 1992).
However, none of these studies give a clear answer to

which bandwidth selection method is the best. It takes a
lot of time to compute kernel density estimates,
however, a drastic reduction of the computational time
is possible through discretization methods. An intui-
tively easier approach to the idea of discretization is
given by average shifted histogram (Scott, 1985).
Hirdle and Scott (1992) proposed the weighted aver-
aging of around points (WARPing) to make calculations
in kernel density estimation faster.

The applications of kernel density estimation for
the estimation of flood quantiles have been investi-
gated recently (Adamowski, 1985, 1989, 1996,
2000; Labatiuk and Adamowski, 1987; Guo, 1991,
1993; Guo et al., 1996; Kim et al., 1999; Lall et al.,
1993; Moon et al., 1993). Although those papers were
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applied to several bandwidth selectors, new band-
width selectors have not been applied in the areas of
hydrology and water resources as of yet.

In this study, annual maximum flood data of Goan
gauging station in the Han River basin in Korea are
used for data applications. For the kernel density esti-
mates, the Gaussian kernel function is employed and
the bandwidth is selected based on seven data driven
methods such as Silverman’s rule of thumb (ROT)
(Silverman, 1986), least squares cross-validation
(LSCV) (Rudemo, 1982; Bowman, 1985; Stone,
1984; Hall and Marron, 1987), bandwidth factorized
smoothed cross-validation (JMP) (Hall et al., 1992),
smoothed cross-validation (SCV) (Hall et al., 1992),
biased cross-validation (BCV) (Scott and Terrell,
1987), Park and Marron plug-in (PM) (Park and
Marron, 1990), and SJ (Sheater and Jones, 1991).
And a computational cost for kernel density estima-
tion is reduced by using the WARPing method
(Hérdle and Scott, 1992).

The predictive abilities of the kernel density
estimates are compared with those of the probabil-
ity distributions through Monte Carlo simulation
experiments based on the two types of parent
distribution. One is the probability distribution
that is selected as an appropriate model for
Goan gauging station and the other one is a
mixture distribution of two normal distributions.
The flood quantiles are estimated based on the
assumed probability distributions and kernel
density estimates. In addition, the uncertainty
analyses are carried out based on Monte Carlo
simulation experiment and kernel density estimates
in order to consider the effects of data and model
erTors.

2. Parametric method

The probability distributions used in this study for
flood frequency analysis are as follows: the gamma,
general extreme value (GEV), Gumbel (GUM), log-
Gumbel, lognormal, log-Pearson type III, and Weibull
distributions. Table 1 shows the PDF and/or cumula-
tive distribution function (CDF) of each distribution,
and gives the validity conditions of the parameters and
the ranges of random variables for the PDF and CDF,
respectively.

3. Nonparametric method

Kernel density estimations may provide a bridge
between making no assumptions on formal structure
(a purely nonparametric approach) and making very
strong assumptions (a parametric approach). By
kernel density estimation it is possible for the data
to show the analyst what the pattern truly is.

3.1. Kernel density estimation

The idea of kernel estimators was introduced by
Rosenblatt (1956). He proposed to smooth kernel
weights on each of the observations. The merits of
the kernel estimation are flexible formation and math-
ematical tractability. The general form of the kernel
function is given by (Hérdle, 1991)

K, (x) 1K(x) (1)

x = — p—

" ho\h

where & is a bandwidth and K the kernel function.
The kernel density estimates are given by averaging

over these kernel functions in the observations
(Hérdle, 1991)

A 1 & 1 & X — X
nm:;;m&<m=%:f(h ) @)

13

where 7 is the number of observed data and f,(x) is the
kernel density estimates.

3.2. Bandwidth selectors

The practical implementation of the kernel density
estimator requires the selection of the bandwidth .
One strategy for selecting the density estimates is to
begin with a large bandwidth and to decrease the
amount of smoothing until the fluctuations start to
appear. This approach is viable but there are also
many cases where it is very beneficial to have the
bandwidth automatically selected from the data. A
method that uses the data X|,...,X,, to estimate a band-
width £ is called a bandwidth selector. In this study,
seven bandwidth selectors such as ROT, LSCV, JMP,
SCV, BCV, PM, and SJ are employed.

The optimal bandwidth for a kernel density esti-
mate is typically calculated on the bias of an estimate
for the integrated squared error (ISE),
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ISE(h) = J[fh(X) — ) dx 3
And its expected value, the MISE is given by

MISE = E(J[ﬂ(x) — P dx)
= | EFy) — E[F4(0)] + E[f4(0] — f(0))* dx

= | Efy0)

—( Var f,(x)dx + Jbiasz Fa)dx
4)

where the first integral is integrated variance (IV) and
the second integral is integrated squared bias (IB). IV
and IB are given by (Turlach, 1993),

IV(h) = (nh)”'R(K)f(x) + O(n™'h*) )
4

1B(h) = %@(K)R(ﬂ”) +OU') (©)

where R(L) = [ L*(x)dx, w(L) = [ ¥L(x)dx, and f*

is the jth derivative of f. For a Gaussian kernel,
R(K) IK (X)dx = 172/ and o (K) =
f K (x)dx = 1.

The asymptotic mean integrated square error
(AMISE) based on the Taylor expansion of f is
given by

AMISE(h) = %R(K) + h4( e Z(K)) R(f®) ()

All the above optimal bandwidths depend on the
unknown density f or derivatives of f.

3.2.1. Rule of thumb

The ROT was proposed to minimize the AMISE
(Silverman, 1986). The best trade-off between asymp-
totic variance and bias is given by

1/5
_ R(K) ~15
hoo - ( M%(K)R(f(z)) ) n (8)

where h, is the minimizer of the AMISE and R(/*?) is
the only unknown. Assuming the unknown distribu-
tion to be normal with parameter w and o, the esti-
mate of 4 for a Gaussian kernel is given by (Hérdle,

— E[f4(0)D* + (E[f,(0)] — f(x))* dx

1991)
hror = 1.066n 1> )

The advantage of ROT is that it provides a very prac-
tical method of bandwidth selection while the disad-
vantage is that the bandwidth is wrong if the
population is not normally distributed.

3.2.2. Cross-validation methods

3.2.2.1. Least squares cross-validation. The LSCV
function is defined by (Rudemo, 1982; Bowman,
1985; Stone, 1984; Hall and Marron, 1987))

LSCV(h) = R(f(x) = 2> fri(x;) (10)
i=1

where fh,,-(x) is the density estimate obtained by all

data points except for the ith observation. The LSCV

function can be viewed as an estimator of ISE(h) —

R(f) (Turlach, 1993).

3.2.2.2. Bandwidth factorized cross-validation (Jones,
Marron, and Park CV, JMP). The starting point for
JMP is the representation MISE(h) = IV(h) + IB(h).
As far (nh)flR(K) has been proved to be a good
estimator of IV(/), the main task of JMP is to search
for a ‘good’ estimator of IB(#). The integrated bias
can be written as

IB(H) = j(Kh “f — PP (11

where * denotes the convolution of two functions K,
and f

(K * F)) = thoc — W uydu = th(u)ﬂx — wdu

12)

Introducing K| the Dirac function Ky(u) = I(u = 0),
IB(h) is estimated by (Turlach, 1993)

n n

IB(h)=n">> > (K, *K,

i=1 j=1

— 2K, + Kp) * K, * Ko(x; — x;)
(13)
The JMP function is obtained as

IMP(h) = (nh)”'R(K) + IB(h). (14)
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Table 2
The estimated parameters based on PWM

Probability distribution Location parameter

Scale parameter

Shape parameter

Gamma-2 0.0 4209.9 3.1
Gamma-3 788.9 4532.4 2.7
GEV 9606.0 5495.1 —0.1
Gumbel 9747.5 5808.1

Log-Gumbel-2 0.0 8977.1 2.6
Lognormal-2 0.0 9.4 0.6
Lognormal-3 —4396.3 9.7 0.4
Log-Pearson type 111 16.0 —0.1 132.6
Weibull-2 0.0 14 759.5 1.9
Weibull-3 2415.9 11 800.3 1.5

3.2.2.3. Smoothed cross-validation. This method was
introduced by Hall et al. (1992). In Eq. (13), different
kernel L and bandwidth g are used. By deleting all
diagonal terms (i.e. where i =j) and usingn = n — 1,
this yields the following criterion

1
SCV(h) = —R(K)
nh
R n(n -1 ; (K, * K, — 2K, + Kp) * Lg % Lg(xi _ xj)

5)

Because of using the high order kernel L in Eq. (15),
this method is only superior to other methods for very
large sample sizes.

3.2.2.4. Biased cross-validation. This technique is
based on AMISE (Scott and Terrell, 1987). To
estimate R( f(z)) in Eq. (7), Scott and Terrell (1987)
gave a formula for the expectation of R( f,iz)) when the
kernel K and the density f are at least twice
continuously differentiable

RG®) = R(FP) = — o REK®) (6)
This leads to
BCV(h) = ——R(K)
nh
2
) )
(17)

For the skewed distributions, BCV tends to give a too

big bandwidth as shown by the simulations in Scott
and Terrell (1987).

3.2.3. Plug-in methods

Plug-in methods target the AMISE as the distance
to be minimized. A, is a function of R( f(z)), which is
estimated through a sequence of bandwidths A, i, ...
The first bandwidth £, serves initially to estimate the
densuy fh (x), which is used to compute R( f(z)) =
R(fhl(x)) subsequently, R( f(z)) is plugged into Eq.
(8) to calculate the second bandwidth h, in the
sequence. Thus, a new estimate of R(f @) is obtained
as ﬁ(f(z)) = R(]?h2 (x)), and again plugged into Eq. (8)
to derive A3, and so on. The process iterates until
convergence of the bandwidths is reached.

3.2.3.1. Park and Marron plug-in. Supposing
bandwidth g to estimate R( f(z)) in MISE, then the
second derivative of f, can be computed as

(2)()6) ZK(2)< Xi ) (18)

Of course, this will yield a bandwidth choice problem
as well. However, we can now use a ROT bandwidth
in this first stage. Park and Marron (1990) showed that
the bandwidth can be taken as g = C(go&)hm/ 13 where
C(¢ps) is a constant calculated from the normal
density @4(x) = @(x/d)/6 for every x, and a power
constant 10/13 results from the optimal rate for the
second derivatives. As usual, & denotes the standard
deviation estimated from the data. A further problem
occurs due to the bias of R(f ;2)) which can be
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The results of goodness of fit tests (significance level: 0.05) (COM: computed value, TAB: tabulated value, RST: result)

181

Distributions Chi-square K-S CVM PPCC
COM TAB RST COM TAB RST COM TAB RST COM TAB RST
Gamma-2 4.90 7.81 OK 0.11 0.18 OK 0.06 0.46 OK 0.984 0.978 OK
Gamma-3 4.90 5.99 OK 0.10 0.18 OK 0.06 0.46 OK 0.985 0.978 OK
GEV 4.86 5.99 OK 0.11 0.18 OK 0.07 0.46 OK 0.985 0.951 OK
Gumbel 7.43 7.81 OK 0.12 0.18 OK 0.07 0.46 OK 0.983 0.961 OK
Log-Gumbel-2 9.71 7.81 NG 0.15 0.18 OK 0.26 0.46 OK
Lognormal-2 6.86 7.81 OK 0.12 0.18 OK 0.07 0.46 OK 0.959 0.973 NG
Lognormal-3 5.14 5.99 OK 0.11 0.18 OK 0.07 0.46 OK 0.959 0.973 NG
Log-Pearson type III 8.24 5.99 NG 0.10 0.18 OK 0.06 0.46 OK
Weibull-2 7.71 7.81 OK 0.12 0.18 OK 0.07 0.46 OK 0.985 0.962 OK
Weibull-3 4.29 5.99 OK 0.09 0.18 OK 0.05 0.46 OK 0.987 0.962 OK
overcome by using a bias-corrected estimate
N A 1
RF®) = R(FY) = —RK™) (19)
50000 — ng
7 ® EMPIRICAL (BLOM) . . . . .
. oAz The performance of PM in the simulation studies is
2 40000 7 - TR, e usually quite good. A disadvantage is that for small
o T - - = ' . . A . .
a 1 — s bandwidths, the estimator R(f(z)) may give negative
Q 30000 - ™
8 ] results.
S ]
2 ]
- .
= 20000 B 3.2.3.2. Sheater and Jones plug-in. Sheater and Jones
% o000 ] (1991) reconsidered the problem of estimating R(f @ ).
] They used the same idea as Park and Marron (1990)
. ] L Z but with bandwidth
0105 2 51020 50 90 9598 99 99.9 99.99 ®
NONEXCEEDANCE PROBABILITY (%) R(f7) PR (20)
@ R(f®)
60000 — . . 2 3 .
! [ EMPIRICAL (GRINGORTEN) mn AWthh R(f(,\)) and R(f(\)) can be estimated by
'é; 5000072 — _gﬁ;BEL ~ R(fi,zl)) and R(fg)) and both bandwidths g;, g, are
S . WEIBULLD determined by asymptotic optimal values and only
8 40000 in this step the normal PDF is used as a reference
é 30000 _f probability model. This improves the PM but is not
- ] the best achievable rate yet.
‘5 20000 —
Z -
Z ]
< 10000 4. Applications to flood data
0 1 f f L .
L1152 5 10 20 50 100 200 500 1000 For data applications, annual maximum flood
RETURN PERIOD (year) data of Goan gauging station in the Han River

(b)

Fig. 1. Empirical and fitted frequency curves for annual maximum
flood on (a) normal probability paper and (b) GUM probability
paper.

Basin in Korea are selected. In addition, 1000 data
samples with 100 random numbers which come
from a mixture of two normal distributions are
used for assessing the applicability of parametric
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and kernel density estimation with respect to nonuni-
modal density.

4.1. Parametric methods

For the parametric method, the probability distribu-
tions as shown in Table 1 are assumed to be the under-
lying distributions for a given flood data. The
parameters of each model are estimated based on
the method of probability weighted moments
(PWM) and then the validity conditions of the esti-
mated parameters are checked. Table 2 shows the
estimated parameters which are obtained based on
PWM. The log-Gumbel-3 distribution is discarded
because the estimated parameters violate the para-
meter validity conditions.

For the distributions which meet with parameter
validity conditions, the goodness of fit tests such as
chi-square, Kolmogorov—Smirnov (K-S), Cramer
von Mises (CVM), and probability plot correlation
coefficient (PPCC) tests are performed to select an
appropriate probability distribution for a given data.
Table 3 shows the results of goodness of fit tests at
significance level 0.05. And PPCC test is also
performed for the gamma, GEV, GUM, lognormal,
and Weibull distributions. As shown in Table 3, the
null hypothesis of good fit can be rejected for the log-
Gumbel-2, and log-Pearson type III distributions
based on chi-square test and for the lognormal-2 and
lognormal-3 (LN3) distributions based on PPCC test,
respectively.

Finally, the gamma, GUM, GEV, and Weibull
distributions are selected as the appropriate distribu-
tions for annual maximum flood of Goan station on
the basis of the parameter validity conditions and the
goodness of fit tests.

4.2. Kernel density estimation

Gaussian kernel density function among several
kernel density functions is employed because
of many times differentiability. The bandwidth
selectors are estimated based on seven data
driven methods such as ROT, LSCV, IMP, SCV,
BCV, PM, and SJ. Highly computational cost
for the density estimation can be reduced by the
WARPing method (Hérdle et al.,, 1995). For
flood frequency estimation, the kernel estimate

F,(x) of the CDF F(x) is interested, which is defined
as

x | t—x; 1 & X — X;
F (x) = —K de= =) K° !
() wa;nh ( h ) h; ( h )

D
and
K1) = f K(u)du = b Jl exp(— 1u2)du
o L) w 2
(22)

A quantile estimator can be defined through the
inverse of the distribution function F,(x) (Nadaraya,
1964; Azzalini, 1981) or through kernel averaging
of the sample quantile function. There are extensive
studies on the kernel estimation of quantiles within
the range of the data (Sheater and Marron, 1990;
Falk, 1984; Yang, 1985).

Fig. 1(a) shows the plots of the frequency curves
from the Blom’s plotting position formula (Stedinger
et al., 1993), and the fitted ones obtained from the
gamma-2 (GAM?2) and seven bandwidth selectors on
the normal probability paper while the same plots
from the Gringorten’s formula (Stedinger et al.,
1993), GEV, GUM, Weibull-2 (WBU2), and the
bandwidth selectors are displayed on the GUM
probability paper as shown in Fig. 1(b). As shown
in Fig. 1, the fitted frequency curves for the GAM2,
GEV, GUM, and WBU2 models seem to over-
estimate the flood quantiles beyond 50 years return
period (nonexceedance probability: 0.98) because
the fitted curves pass over the maximum flood
data. However, the fitted curves for the kernel
smoothing follow the empirical one fairly well even
though these curves slightly pass over the maximum
value.

4.3. Sampling properties of statistical estimates

The simulation experiments are designed to
investigate how well a distribution can estimate
the quantiles for a given return period when the
population distribution is different from the
assumed distribution. For this purpose, two cases
of simulation experiments are performed. For first
one, the selected probability model is assumed as
a parent model. And in the second one, an arbi-
trary probability model such as a mixture of two
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Fig. 2. The RRMSE of 100-years flood quantiles as a function of sample size (parent distributions: (a) GAM2, (b) GEV, (c) GUM, (d) LN3, and

(e) WBU2).
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Fig. 2. (continued)

normal distributions is assumed as a parent model
to investigate the performances in the case of
bimodal model.

4.3.1. Unimodal distributions

In the first case, the GAM2, GEV, GUM, LN3,
and WBU2 distributions are assumed as a parent
model, respectively. The estimated parameters of
each model obtained from the annual maximum
flood of Goan station are assumed as the parameter
values of a parent distribution. Then, 1000 flood
data sets are generated based on each assumed parent

distribution with various sample sizes and return
periods. For the generated data sets, the parameters
of the GAM?2, GEV, GUM, LN3, and WBU2 models
are estimated based on PWM. Kernel density estima-
tion is also applied. Finally, the estimated flood
quantiles are obtained from the estimated parameters
of each data set for a given method, and then the
relative biases (RBIAS) and relative root mean square
error (RRMSE) can be calculated from both estimated
flood quantiles and population ones. RBIAS and
RRMSE are used as the indicators to test the predic-
tive ability of the models. RBIAS and RRMSE are
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Fig. 3. The PDF of the mixture distribution and the fitted PDFs.

given by
Mo
RBIAS = % > (%) (23)
i=1
Moy A 2412
RRMSE:[$Z<%) ] (24)
i=1 T

where Q,-,T and Q7 are the estimated and population
flood quantiles, respectively, and M represents the
number of simulations (i.e. M = 1000 in this case).
These are then used to compare the performance of
different procedures (five parametric models and
seven bandwidth selectors) for the given return peri-
ods and sample sizes.

Tables 4 and 5 present the RBIASs and the
RRMSEs for the specific sample size (N = 100) and
Fig. 2 shows the RRMSEs of the 100-years flood
quantiles as a function of sample size when the
GAM2, GEV, GUM, LN3 and WBU2 models are
assumed to be a parent distribution, respectively.
The followings are the summary of the simulation
results:

1. When the parent probability distribution is the
same as the applied model, almost all RBIASs of
the applied models are smaller than those of any
other models (Table 4).

2. Among seven bandwidth selectors, the RBIASs of
SJ are the smallest in most cases (Table 4).

3. As the return period increases, the RRMSEs
increase (Table 5). And the RRMSEs decrease as
the sample size increases (Fig. 2).

4. The RRMSE:s of the GUM are smaller than those of
any other models regardless of parent models.
However, those of WBU?2 are the smallest when
the WBU?2 is assumed as a parent model (Table 5
and Fig. 2).

5. When the WBU?2 is assumed as a parent model, the
RRMSEs of seven bandwidth selectors are rela-
tively small, while those of seven bandwidth selec-
tors are much bigger than those of parametric
methods when the other parametric models are
assumed as parent models

6. There are no big differences in the RRMSEs among
the bandwidth selectors. However, ROT, LSCV,
and JMP have relatively bigger RRMSEs than
other bandwidth selectors (Table 5).

4.3.2. Bimodal distribution
The second case is that a mixture of two normal
PDFs is assumed as a parent model as follows

J(x) = 0.6¢;(x) + 0.4¢,(x) (25)

where ¢;(x) = @(x + 1) a normal density with mean
w = —1 and variance o> =1 and @,(x) = @(x — 2) a
normal density with mean u = 2 and variance o* = 1.

Fig. 3 shows the PDF of the mixture distribution
and the fitted PDFs for data generated from the
mixture distribution. The GAM2 and WUB2 are
discarded because the null hypothesis of good fit can
be rejected based on a chi-square test. As shown in
Fig. 3, the GEV, GUM, and LN3 do not fit the PDF of
the mixture model well while the kernel density esti-
mation represent the bimodal characteristics fairly
well, especially in the cases of SJ and PM.
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Fig. 4. The RBIASs in case of the mixture distribution as a parent
model.
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Fig. 5. The RRMSEs in case of the mixture distribution as a parent
model.

Fig. 4 shows the RBIASs for 1000 samples of
sample size 100 generated from the mixture dis-
tribution. As shown in Fig. 4, the probability models
have the largest RBIASs except the return period
T=10 years. Among the bandwidth selectors, the
RBIASs of SJ are smaller than those of any other
bandwidth selectors and PM has the next smallest
RBIASs while ROT has the largest ones. This
result supports the existing study which reported
that ROT is suitable for a flat density but fails to detect
the bimodality of density (Hérdle, 1991). Similar
results can be observed for the RRMSEs as shown
in Fig. 5. Take into consideration that, the kernel
density estimation should be used instead of the para-
metric models when a parent model has a bimodality
of density.

5. Safety factors of flood quantiles

Uncertainty in flood quantile estimation can be
caused by inaccurate measurements of the data.
Also, uncertainty is caused by model errors, which
consist of incorrect estimation of the population
parameters owing to sampling errors, incorrect
choice of the parameter estimation procedures,
and incorrect choice of population density func-
tion. Simulation experiments are carried out to
investigate the extent to which the estimated flood
quantiles might be affected by data and model
errors.

For a given parent distribution, sample size, and
return period, the simulation procedures consist of

the following steps:

(A) The GAM2 model is assumed as a population
distribution. The parameters of GAM2 model are
selected from annual maximum flood data of Goan.

Step 1. Generate a sample of size N: x;, i =

I,...,N.
Step 2. Estimate quantile O from x; series based
on

(a) parametric methods (GAM2, GEV, GUM,
LN3, WBU2 models)

(b) Kernel smoothing (ROT, LSCV, BCV,
SCV, IMP, PM, and SJ).

Step 3. Repeat the procedure (Steps 1 and 2)

1000 times to obtain 1000 quantile estimates of

Qj,j =1,...,1000 for each meEhod.

Step 4. Estimate the PDF of Q obtained from

Step 3. Since it is not possible to assume a single

suitable parametric form to describe the

sampling distribution of Q7 values (Mkhandi et
al., 1996), kernel smoothing of fitting distribution
functions are chosen.

Step 5. Perform the uncertainty and risk analysis.
(B) The GEV, GUM, LN3, and WBU2 models are
assumed as the population distributions, respec-
tively, and then repeat the above procedures
(Steps 1-5).

To assess the effects of data and model errors in
quantile estimation, quantile values O are calcu-
lated for specified probability of exceedance
P(QT) =0.05, 0.10, 0.90, and 0.95 based on
kernel density estimation. The RBIAS of QT is
given by

RBIAS,p,) = |07 — EQQn)VEQr) (26)

The magnitude of RBIAS is the indicator of the
effect of errors such as model and data errors on
the quantile estimates for each sample considered.
Fig. 6 presents RBIAS of 100-years quantiles as a
function of sample sizes for the GAM2 model.
Each quantile of 1000 samples is estimated by
parametric methods and sampling distribution of
the estimated quantiles is obtained by kernel
density estimation. The magnitude of uncertainty
decreases as the sample size increases. As shown
in Fig. 6, the RBIAS band is the widest when the
GEV model is applied one. However, the GUM



K.-D. Kim, J.-H. Heo / Journal of Hydrology 260 (2002) 176—193 189

o
IS
o

ASSUMEND DISTRIBUTION : GAM2
APPLIED DISTRIBUTION : GAM2
RETURN PERIOD : 100 YEAR

o
N
o

o
N
o

REATMVEBAS
o
]
=]
L Mm LU H‘H LLL H‘ L1
Y
[ n
o
'o
|©

-0.40

L1

\ \ \
o 40 80 120 160 200

Sample Size (N)
(a)

. ASSUMEND DISTRIBUTION : GAM2
0.40 — . APPLIED DISTRIBUTION : GEV
: RETURN PERIOD : 100 YEAR

L

= =0.05
f e 010

E 0.00 —

a = P =090
-0.20 — - P=0095
-0.40 —

3 T
(0] 40 80 120 160 200
Sample Size (N)
(b)
0.40 — ASSUMEND DISTRIBUTION : GAM2
! APPLIED DISTRIBUTION : GUMBEL
RETURN PERIOD : 100 YEAR

g 0.20 —

- - P =0.05

P =0.10
0.00 :

| P =0.90

a ~ P =0.95

-0.20 —
-0.40 —
\ \
(0] 40 80 120 160 200

Sample Size (N)

(©)

Fig. 6. The RBIASs of 100-years flood quantile estimates for the GAM?2 as a parent when the applied models are (a) GAM2, (b) GEV, (c) GUM,
(d) LN3, and (e) WBU2.
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model has the narrowest width of RBIAS band. In
other words, the GEV model has the largest
RBIAS whereas the GUM model has the smallest
RBIAS. For other distributions such as the GAM?2,
GEV, LN3, and WBU2 assumed as parent models
it is the same as the earlier results.

If safety factor (SF) is defined as the value of 95%
confidence limit of the sampling distribution of Q7()),
j=1,...,1000, it can be calculated by (Mkhandi et al.,
1996)

SF = 1.0 + RBIAS(%) (5,005 27)

Table 6 summarizes the SF values of 100-years flood

quantiles for different parent distributions, models,
and sample sizes. As shown in Table 6, the SFs are
the largest when the GEV is assumed as a parent
model for all applied distributions except for when
the LN3 is used as both parent and applied models
especially for sample size N = 20. On the other hand,
the SFs are the smallest when the WBU2 model is
assumed as a parent model regardless of the applied
models. Among the applied distributions, the GUM
model has the smallest SFs for all parent models. In
addition, the GEV model has the largest values for all
parent models. It is the same as shown in Fig. 6.
Overall, the largest SFs are obtained based on the
combination of the GEV as both a parent and an
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applying distribution for N =50 and 100 and on the
combination of the LN3 as a parent model and GEV as
an applying model for N = 20. The smallest values are
obtained based on the combination of the WBU?2 as a
parent model and the GUM as an applying model for
all sample sizes considered.

The SFs in Table 6 may be used to decide the 100-
years design flood of Goan station incorporating
the uncertainties caused by the model and data errors
for a given sample size. In general, the SFs decrease
as sample size increases. These values are very
similar to each other regardless of kernel density
estimation.

6. Conclusion

It is very important for a hydrologist to estimate
flood quantiles corresponding to a given probability
of occurrence. Current methods of flood frequency
analysis are mainly based on the assumption that the
sample of flood observations comes from known PDF.
However, in the hydrological context, the population
distribution function is not known exactly. Thus,
alternative kernel density estimation was investigated
and compared with the parametric methods for annual
maximum flood data. It is also important to consider
data and model errors of estimated flood quantiles. In
order to consider such errors, the SFs were derived
based on simulation experiments. Several conclusions
obtained from this study are as follows:

1. When the parent probability distribution is the
same as the applied model, almost all RBIASs of
the applied models are smaller than those of any
other models. Among seven bandwidth selectors,
the RBIASs of SJ are the smallest in most cases.

2. As the return period increases, the RRMSEs
increase while the RRMSEs decrease as the sample
size increases. The RRMSEs of the GUM are smal-
ler than those of any other models regardless of
parent models applied. However, those of the
WBU2 are the smallest when the WBU2 is
assumed as a parent model.

3. When the WBU?2 is assumed as a parent model, the
RRMSEs of kernel density estimation are rela-
tively small, while those of kernel density estima-
tion are much bigger than those of parametric

methods for the other parametric models assumed
as parent models. Especially, the RRMSEs of
kernel density estimation within interpolation
range are much smaller than those for extrapolation
range in comparison with those of parametric
methods.

4. Kernel density estimation turns out to be superior
to the parametric methods when a parent model has
a bimodality of density because kernel density esti-
mation can detect a bimodality of density while the
parametric method cannot.

5. In general, the estimated SFs decrease as a sample
size increases. Among the applied distributions, the
GUM model has the smallest SFs for all parent
models applied. And the GEV model has the
largest values for all parent models.

Taking into consideration all the results of this study,
kernel density estimation can be suggested to estimate
the flood quantiles within interpolating ranges. Espe-
cially, at the moment of initial data application, the
kernel density estimation is preferable to the parametric
method. The SFs can give reliable flood quantiles in the
design and evaluation of hydraulic structures for the
assumed probability distributions.
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