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Abstract

Three different automated methods for calibration of rainfall-runoff models are presented and compared. The methods
represent various calibration strategies that utilise multiple objectives and allow user intervention on different levels and
different stages in the calibration process. The methods have been applied for calibration of a test catchment and compared
on validation data with respect to overall performance measures in terms of water balance error and general hydrograph shape,
and simulation of high and low flow events. The results illustrate the problem of non-uniqueness in model calibration since none
of the methods are superior with respect to all performance measures considered. In general, the different methods put emphasis
on different response modes of the hydrograph. Calibration based on the use of generic search routines in combination with
user-specified calibration priorities is seen to compare favourably with an expert system that is designed for the specific model
being considered and requires user intervention during the entire calibration process. © 2002 Elsevier Science B.V. All rights

reserved.
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1. Introduction

Computer-based lumped, conceptual rainfall-runoff
models have been widely applied in hydrological
modelling since they were first introduced in the late
1960s and early 1970s. Well known examples of this
type of model which are still used today are the Sacra-
mento model (Burnash et al., 1973; Burnash, 1995),
the HBV model (Bergstrom and Forsman, 1973;
Bergstrom, 1995), and the NAM model (Nielsen and
Hansen, 1973; Havng et al., 1995). A lumped, concep-
tual rainfall-runoff model consists of a set of linked
mathematical equations, describing in a simplified
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form the behaviour of the land phase of the hydrolo-
gical cycle with parameters that represent average
values for the entire catchment. While in some cases
a typical range of likely parameter values can be
given, it is not, in general, possible to determine the
parameters from physiographic, climatic and soil
physical characteristics of the catchment under
consideration. Thus, the final parameter estimation
must be performed by calibration against observed
data.

Traditionally, calibration has been performed
manually using a trail-and-error parameter adjustment
procedure. The process of manual calibration,
however, may be a very tedious and time consuming
task, depending on the number of free model para-
meters and the degree of parameter interaction.
Furthermore, because of the subjectivity involved, it
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is difficult to explicitly assess the confidence of the
model simulations. Due to this, a great deal of
research has been directed to development of more
effective and efficient automatic calibration proce-
dures.

In recent years, several automatic global search
algorithms have been developed that are especially
designed for locating the global optimum on a
response surface with numerous local optima which
is often observed in rainfall-runoff models (Duan et
al., 1992). Popular global search methods are the
population-evolution-based optimisation algorithms
such as, amongst others, genetic algorithms (Wang,
1991), shuffled complex evolution (SCE) (Duan et al.,
1992), and simulated annealing (Sumner et al., 1997).
A large number of studies have been conducted that
compare different automatic algorithms for calibra-
tion of rainfall-runoff models (e.g. Duan et al.,
1992; Gan and Biftu, 1996; Cooper et al., 1997;
Kuczera, 1997; Franchini et al., 1998; Thyer et al.,
1999). The main conclusion from these studies is
that the global population-evolution-based algorithms
are more effective than multi-start local search proce-
dures, which in turn perform better than pure local
search methods.

While much research has been directed to develop-
ing effective and efficient generic search routines, less
effort has been made to tailor these methodologies
against specific model applications. In this regard,
an important element is the proper formulation of
the objective function that is optimised numerically.
Application of automatic calibration routines has
mainly been based on a single objective measure of
comparison, e.g. the sum of squared errors between
observed and simulated runoff. A single measure,
however, is often inadequate to properly take into
account the simulation of all the important character-
istics of the system that are reflected in the observa-
tions and which are implicitly used by the hydrologist
to evaluate the goodness-of-fit of the calibrated
model. Recently, automatic routines that use a
multi-objective  formulation of the calibration
problem have been introduced in rainfall-runoff
modelling (Lindstrom, 1997; Liong et al., 1996,
1998; Gupta et al., 1998; Yapo et al., 1998; Madsen,
2000a; Boyle et al., 2000).

Another group of automatic calibration methods
comprises the knowledge-based expert systems.

While the global optimisation routines are generic
and require minimum user intervention, knowledge-
based methodologies are model-specific (i.e. are
designed for a specific rainfall-runoff model) and
often require the user to intervene during the calibra-
tion process. The basic philosophy behind these
methods is to automate the course of a manual cali-
bration carried out by an experienced hydrologist.
Harlin (1991) formulated a knowledge-based calibra-
tion scheme for the HBV model where the parameters
are calibrated individually, focusing on different
process descriptions. Zhang and Lindstrom (1997)
formulated a different routine for the HBV model
where the parameters are calibrated in two stages
based on a division of the parameters in two subsets
according to the model structure. Gupta et al. (1999)
compared the SCE algorithm with a semi-automated
expert system for calibration of the Sacramento
model. They showed that the generic SCE algorithm
compares favourably with the expert system, suggest-
ing that state-of-art automatic calibration performs
with a level of skill similar to that of an experienced
hydrologist.

In this paper three different automated strategies
are adopted for calibration of the NAM rainfall-
runoff model. The methods were presented at a work-
shop arranged at the third DHI Software Conference
(DHI, 1999). Before the conference, runoff and
meteorological data sets from a test catchment
were given to the participants for calibration of the
NAM model. At the conference itself, validation data
covering another period were made available for
evaluation and intercomparison of the calibrated
models. The three methods represent automated stra-
tegies that allow user intervention on different levels
and different stages in the calibration process. These
include:

1. A generic search routine where the user specifies a
weighting of several calibration objectives that are
aggregated into one measure which is then
optimised automatically.

2. A method that uses different automatic search
techniques in combination with different calibra-
tion objectives and requires user intervention at
different stages in the calibration process.

3. A knowledge-based expert system where user
intervention is required during the entire calibration
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Fig. 1. NAM model structure.

process for subjective evaluation of different cali-
bration criteria.

The paper is organised as follows. In Section 2, the
experimental set-up is outlined, including a descrip-
tion of the NAM model, the test catchment, and the
evaluation criteria employed. In Section 3, the three
different calibration schemes are presented, and the
results of the calibration exercise are summarised in
Section 4. In Section 5 discussion of the results is
given with focus on the formulation of calibration
strategy and inclusion of specific model knowledge
in the calibration process. Conclusions are given in
Section 6.

2. Experimental set-up

The model used in this study is the NAM rainfall-
runoff model that forms part of the rainfall-runoff

module of the MIKE 11 river modelling system
(Havng et al., 1995; DHI, 2000). The NAM model
represents the various components of the rainfall-
runoff process by continuously accounting for the
water content in four different and mutually interre-
lated storages where each storage represents differ-
ent physical elements of the catchment. These
storages are: (1) snow storage, (2) surface storage,
(3) lower zone (root zone) storage, and (4) ground-
water storage.

The meteorological input data to the model are
precipitation, potential evapotranspiration and
temperature (if snow modelling is included). On
this basis, it produces, as its main results, catch-
ment runoff and groundwater level values as well
as information about other elements of the land
phase of the hydrological cycle, such as the soil
moisture content and the groundwater recharge.
The resulting catchment runoff is split concep-
tually into overland flow, interflow and baseflow
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Table 1
NAM model parameters

Parameter Description

Uynax (mm) Maximum water content in the surface storage.
This storage can be interpreted as including the
water content in the interception storage, in
surface depression storages, and in the
uppermost few cm’s of the soil.

Maximum water content in the lower zone
storage. Lyax can be interpreted as the
maximum soil water content in the root zone
available for the vegetative transpiration.
CQOF Overland flow runoff coefficient. CQOF
determines the distribution of excess rainfall
into overland flow and infiltration
(0=CQOF = 1).

Threshold values for overland flow, interflow
and recharge, respectively. Flow is only
generated if the relative moisture content in the
lower zone storage is larger than the threshold
value.

Time constant for interflow from the surface
storage. CKjr is the dominant routing
parameter of the interflow because

CKj >> CKj,.

Time constant for overland flow and interflow
routing. Overland flow and interflow are routed
through two linear reservoirs in series with
time constants CKj,.

Baseflow time constant. Baseflow from the
groundwater storage is generated using a linear
reservoir model with time constant CKgp.

Lyiax (mm)

TOF, TIF, TG

CKir (h)

CKiy; (h)

CKegr (h)

components representing, respectively, the quick,
intermediate and slow response modes of the
hydrograph. The structure of the model is shown
in Fig. 1. In the present study, the basic NAM
model is applied, including nine parameters to
be determined by calibration. A brief description
of these parameters is given in Table 1. Snow
modelling is included in the simulation but cali-
bration is not performed on the snow module
parameters.

The NAM model was applied to the Danish Tryg-
gevaelde catchment. This catchment has an area of
130 kmz, an average rainfall of 710 mm/year, and an
average runoff of 240 mm/year. The catchment is
dominated by clayey soils, implying a relatively
flashy flow regime. For the calibration, a 5-year period
(1 January 1984-31 December 1988) was used where

daily data of precipitation, potential evapotranspira-
tion, mean temperature, and catchment runoff are
available.

For comparing the calibrated models, validation
data covering the period 1 January 1989-31
December 1993 were used. In order to unify the
presentation and intercomparison of the different
models, several statistical measures were calculated,
including:

1. Water balance error (difference between average
simulated and average observed runoff).

2. Coefficient of determination (R?* (Nash and
Sutcliffe, 1970).

3. Peak flow statistics for four selected peak flow
events, including peak error, bias and root mean
square error (RMSE).

4. Low flow statistics for four selected low flow peri-
ods, including bias and RMSE.

3. Calibration methods

3.1. Multi-objective calibration using shuffled
complex evolution

Madsen (2000a) presented an automatic calibration
procedure for the NAM model based on optimisation
of several objective functions simultaneously. In this

method four basic objective functions are considered:

1. Overall volume error

1 N
Fi(6) = ‘N D [Qopsi — Qsim,i(e)]‘ (D
i=1

2. Overall RMSE

| X 172
Fy(6) = [ﬁ D [Qobsi — Qsim,,-(e)lz] 2)
i=1

3. Average RMSE of peak flow events

1 M, 1 n; 172
F3(6) = W, Z. [ — > [Qobsi — Qsim,,w)]z]
J=

n.
3)

J i=1
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4. Average RMSE of low flow events

LM ) 12

Fu® =312 [; 2. [Qowsi = Qim(0)] ]
Jj=1 7 i=1

“)

In Egs. (1)—(4), Qos, 1s the observed discharge at
time 7, Qg is the simulated discharge, N is the total
number of time steps in the calibration period, M, is
the number of peak flow events, M, is the number of
low flow events, n; is the number of time steps in peak/
low flow event no. j, and 6 is the set of model para-
meters to be calibrated. Peak flow events are defined
as periods where the observed discharge is above a
given threshold level. Similarly, low flow events are
defined as periods where the observed discharge is
below a given threshold level.

When using multiple objectives, the solution to the
calibration problem will not, in general, be a single
unique set of parameters but will consist of the set of
Pareto optimal (non-dominated) solutions. Madsen
(2000a) discusses the principles and implications of
using multiple objectives. In the present application,
the different objectives have been transformed into a
single aggregated objective measure

4 12

Fogs(0) = [Z [Fi(0) + A,»JZ] )
i=1

where A; are transformation constants, reflecting the

priorities given to the different objectives.

The objective function in Eq. (5) is optimised auto-
matically using the SCE global search algorithm
developed by Duan et al. (1992). In brief, the SCE
algorithm involves the following steps:

1. Initialisation. An initial sample of parameter sets is
randomly generated from the feasible parameter
space.

2. Partitioning into complexes. The sample is parti-
tioned into several complexes based on the objec-
tive function values of the evaluated parameter
sets.

3. Evolution. Each complex is evolved independently
according to the simplex method (Nelder and
Mead, 1965).

4. Complex shuffling. The evolved complexes are
shuffled to enable sharing of information and new
complexes are formed, cf. step (2).

For a more detailed description of the algorithm the
reader is referred to Duan et al. (1992).

In this method, the user specifies the priorities to be
given to certain objectives, depending on the specific
model application being considered. In the present
test, the balanced aggregated objective function
suggested by Madsen (2000a) was applied. In this
case, the transformation constants in Eq. (5) are auto-
matically calculated from the randomly generated
initial population in the SCE algorithm so that all
(F;(6) + A;) have about the same distance to the origin
near the optimum. For the SCE algorithmic para-
meters, recommended values given by Duan et al.
(1994) were used. As suggested by Kuczera (1997),
to reduce the chance of premature termination of the
search algorithm, the number of complexes was set
equal to the number of calibration parameters.

3.2. Clustering and simulated annealing

This method is based on a combination of cluster-
ing, simulated annealing, and multi-objective optimi-
sation. Four basic objective functions are considered:

1. Overall volume error, cf. Eq. (1).
2. Relative RMSE of all flow events

1 u Qobs,i B Qsim,i(e) 1"
F2(0) B ﬁ ; Qobsi + Qsimi(e) (6)

3. Weighted RMSE of peak flow events

| X 172
F3(0) = [ﬁ > Wobs i[Qobsi — Qsim,,(e)]z] (7)
i=1

4. Weighted RMSE of low flow events

LN 12
F4(0) = [ N Zwobs,i[Qobs,i - Qsim,i(e)]z] (8)
=1

In Egs. (7) and (8), wgps,; is a weighting function of the
peak and low flow instances, respectively.

In this methodology a solution is found using clus-
tering followed by simulated annealing of a single
objective, which is followed by multi-criteria optimi-
sation of two objectives. In brief, the algorithm
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involves the following steps:

1. Initialisation. An initial sample of parameter sets is
randomly generated from the feasible parameter
space.

2. Cluster analysis. The sample is partitioned into
clusters based on the relative RMSE objective
function values of the evaluated parameter sets.
The best solution in each cluster is taken as a poten-
tial solution for further refinement.

3. Simulated annealing. Each potential solution is
evolved independently following the simulated
annealing (SA) algorithm into an improved solu-
tion using any one of the single objective functions
(except volume error).

4. Multi-criteria optimisation. The improved solu-
tions are further improved in the peak-flow and
low-flow multi-criteria 2D space by perturbation.
Each improved solution becomes a point on the
Pareto surface.

5. Final selection. The Pareto surface is plotted and
the investigator (a human) selects which point on
the front (and the corresponding parameters) is
‘optimal’ by trading-off objectives.

Note that the water-balance objective is only used
in the final selection step as an independent check on
the possible ‘optimal’ solutions.

3.3. Knowledge-based expert system

The knowledge-based calibration procedure seeks
to reflect the course of a trial-and-error calibration of
an experienced hydrologist, focusing on different
process descriptions, but replacing the arbitrary
(often visual) goodness-of-fit measures by appropriate
objective functions to be optimised numerically. The
procedure involves a preliminary recession analysis,
followed by an iterative scheme where individual
parameters are adjusted according to different
response modes of the hydrograph.

3.3.1. Recession analysis

In NAM, baseflow is described as the output from a
linear reservoir. Thus, the time constant CKgpp can be
estimated from a linear regression analysis of the log-
transformed observed discharges in the low-flow
seasons. Similarly, recession analysis is used for an

initial estimation of the time constant CK, that deter-
mines the peak flow recession. In certain cases, reces-
sion analysis also allows initial estimation of the
interflow time constant CKr by analysing the inter-
mediate flow recessions.

3.3.2. Storage parameters

The parameters Upax and Lyax, representing the
storage capacities of the upper zone and the lower
zone storage, respectively, control the overall water
balance. These two parameters can be optimised by
comparing the simulated and the observed total runoff
volume during the calibration period. If the simulated
volume is larger than the observed volume, Uyax and
Lyiax should be increased, and vice versa.

3.3.3. Overland flow runoff coefficient

The overland flow runoff coefficient, CQOF,
controls the distribution of excess rainfall between
overland flow and infiltration. The runoff coefficient
mainly affects the volume of peak flows, and can thus
be determined by comparing the distribution of the
simulated and the observed flow. This is numerically
done by comparing the moments of the hydrographs
about the origin. If the moment of the simulated
hydrograph is larger than the moment of the observed
hydrograph, CQOF should be reduced, and vice versa.

3.3.4. Time constant for overland flow

The time constant CK, is fine-tuned by comparing
the observed and the simulated peak flows. If peak
flows tend to be underestimated, CK;, should be
increased, and vice versa.

3.3.5. Threshold values

Rainfall occurring after a dry spell will in many
cases not generate any flow since all the water infil-
trates and fills up the root zone. In NAM, this is
modelled by allowing generation of overland flow,
interflow and recharge only if the soil moisture
content of the lower zone storage is larger than a
threshold value (TOF, TIF and TG, respectively).
The threshold values can be identified by comparing
the observed and the simulated hydrograph in the
beginning of the wet seasons. Numerically, the begin-
ning of a wet season is defined as periods where the
moisture content in the lower zone is rising and is
smaller than a specified level.
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Table 2
Calibrated parameters using SCE, cluster analysis and simulated
annealing (Cluster + SA), and expert system

Parameter SCE Cluster + SA Expert system
Unmax (mm) 10 9.5 25

Lyax (mm) 390 290 350

CQOF 0.70 0.89 0.92

TOF 0.73 0.78 0.70

TIF 0.83 0.42 0.60

TG 0.71 0.74 0.64

CKj (h) 790 1070 650

CKy; (h) 32 43 24

CKgg (h) 1820 1890 2670

3.3.6. Time constant for interflow

In many cases, interflow is not a dominant flow
component, implying that the interflow time constant
CKr does not need to be fine-tuned. For calibration of
CKjr the simulated and the observed runoff is
compared for days where interflow is the dominant
flow component as compared to overland flow.

4. Results

The parameter estimates obtained by the different
calibration methods are shown in Table 2, and the
evaluated performance statistics are shown in Table
3. The overall performance measures, water balance
error and coefficient of determination Rz, are calcu-
lated from the entire 5-year validation period. The
observed and simulated hydrographs for this period
obtained by the SCE multi-objective methodology is

Table 3

shown in Fig. 2. The peak flow measures include
average values of the absolute peak error, the bias,
and the RMSE of four selected high flow events.
Since the snow routine has not been subject to cali-
bration in the present study, the selected high flow
events do not include snowmelt events. The observed
and simulated runoff for high flow event No. 2
obtained by the three different calibrations is shown
in Fig. 3. The low flow measures include average
values of the bias and the RMSE of four selected
low flow events. The observed and simulated runoff
for low flow event No. 2 obtained by the three differ-
ent calibrations is shown in Fig. 4.

With respect to the overall performance measures,
the SCE calibration has the best performance. It
provides virtually an unbiased solution and has the
best R*-value. The calibration obtained by the expert
system is also virtually unbiased but has a slightly
lower R*-value. The cluster and SA calibration has
both worse water balance error and R*-value.

For the peak flow performance, none of the meth-
ods are superior for all of the measures considered.
The SCE calibration has the best performance with
respect to the general shape of the peak flow hydro-
graphs (lowest RMSE); the cluster and SA calibration
has the lowest bias, whereas the expert system has the
minimum peak error. The differences between the
three calibrations are mainly caused by the use of
different time constants CK,, for overland flow rout-
ing, which is the dominant parameter controlling the
shape of the high flow hydrograph. The cluster and SA
calibration has the largest CK,-value, which results
in longer recessions and a general phase error for

Performance statistics of calibrated models using SCE, cluster analysis and simulated annealing (Cluster + SA), and expert system

SCE Cluster + SA Expert system
Overall measures
Water balance error (%) 0.2 =7.0 —-0.2
R? 0.85 0.82 0.83
Peak flow measures
Absolute peak error (m%/s) 1.10 1.14 1.00
Bias (m%/s) 0.45 —-0.11 0.48
RMSE (m¥s) 0.67 0.92 0.73
Low flow measures
Bias (m¥s) —0.050 —0.031 —0.027
RMSE (m?/s) 0.091 0.067 0.078
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Fig. 2. Observed and simulated hydrographs obtained by the SCE multi-objective methodology.

simulation of the high flow events (see Fig. 3). The
expert system has the smallest CK,-value, resulting
in more peaky high flow simulations than the other
two calibrations.

With respect to the low flow measures, the SCE
calibration has the worst performance. The cluster
and SA calibration has the smallest RMSE, whereas
the expert system has the smallest bias. As can be seen
in Fig. 4, the SCE method has problems in simulating
the small peaks in the low flow periods, which are
better captured by the other two calibrations. Simula-
tion of minor peaks in the low flow period is
dominated by the threshold values for interflow and
overland flow in relation to the actual water content in
the root zone. The higher threshold value for interflow
TIF obtained in the SCE calibration requires larger
rainfall to simulate a runoff response in the low flow
period as compared to the other two calibrations.

5. Discussion

The results show that none of the calibration
methods are superior with respect to all the perfor-
mance measures considered. The different methods
put emphasis on different aspects or response modes

of the hydrograph. The procedure based on the multi-
objective SCE method has the best overall perfor-
mance but the worst performance for low flow
simulations, the clustering and SA based procedure
has the worst overall performance but better perfor-
mance for low flow simulations, and the expert system
favours certain aspects for both overall, high flow and
low flow performance.

These results clearly illustrate the problem of
uniqueness in model calibration. First, in a multi-
objective context, there is a multitude of parameter
combinations that are equally good according to
trade-offs between different objectives (see e.g.
Gupta et al., 1998; Madsen, 2000a). Secondly, there
are many different parameter combinations that can
give acceptable solutions according to one specific
objective (see e.g. Beven and Binley, 1992). If one
seeks a single solution to the calibration problem, it is
important to recognise the non-uniqueness property
and put priorities to certain objectives in the calibra-
tion process, depending on the model application
being considered.

The results also show that calibration based on the
use of generic search routines in combination with
user-specified calibration priorities compares favour-
ably with the expert system that is designed for the
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Fig. 3. Observed and simulated runoff in high flow event No. 2 obtained by the three different calibrations.

specific model being considered and requires user
intervention during the entire calibration process. In
this regard, however, it should be emphasised that
automatic calibration based on generic search routines
is not an easy push-the-button solution to rainfall-
runoff modelling. First, as noted above, user interven-
tion is important for tailoring the model calibration to
a specific application. Secondly, critical and sound
hydrological knowledge is important to evaluate the
quality of data, the model set-up, and the model cali-
bration. Data and model errors should be properly
taken into account in order to avoid that the automatic

calibration routine provides parameter estimates that
compensates for errors rather than optimises the
model performance. For instance, due to the inherent
uncertainties in measuring the catchment average
rainfall and the corresponding runoff, it may be ques-
tionable to attempt to obtain a perfect water balance
fit. One should rather focus more on other aspects
when trading off objectives and then accept a water
balance error within certain limits, say 5-10%.
When comparing different calibration algorithms,
efficiency is a general aspect to consider. In the
present case, the SCE and the cluster and SA methods
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Fig. 4. Observed and simulated runoff in low flow event No. 2 obtained by the three different calibration methods.

used in the order of 1000—10 000 model evaluations
whereas the expert system was much more efficient
and required only about 50 model evaluations. The
considered model, however, is very cheap (in the
order of 1072=10"" CPU seconds for a model evalua-
tion), end hence the efficiency aspect is not crucial in
this application. For more expensive models, 1000—
10 000 model evaluations may be unacceptable. In
such cases, the generic search routines considered
herein could still be used but the effectiveness of the
routines has to be relaxed. For instance, in the SCE
algorithm the number of complexes can be lowered to

obtain a more efficient search scheme but at the
expense of increasing the chance of locating a local
optimum rather than the global one. In general, the use
of prior knowledge about the calibration parameters in
terms of e.g. specifying realistic limits and correlation
structures, and utilising knowledge about the
responses of parameter changes will increase the
efficiency of an automatic calibration scheme.
Closely related to the efficiency and effectiveness
aspects is the problem of parameter insensitivity.
Sensitivity analysis such as the Monte Carlo based
procedure proposed by Spear and Hornberger (1980)
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is often used to identify insensitive parameters, and
hence reduce the number of free model parameters to
be calibrated. The results of such an analysis,
however, should be carefully interpreted. The analysis
do not properly account for parameter correlations,
implying that parameters that seem to be insensitive
may have important correlations with other para-
meters that are essential for the model behaviour
(Madsen, 2000b). It should also be noted that inclu-
sion of multiple objectives in the calibration process
provides better identifiable parameters and a more
well-posed model structure (Madsen, 2000b).

6. Conclusions

Three different automated strategies have been used
for calibration of the MIKE 11/NAM rainfall-runoff
model. The methods represent automated strategies
that allow user intervention on different levels and
different stages in the calibration process, including
(1) the SCE optimisation algorithm with a user
specified objective function that allows simultaneous
optimisation of several objectives, (2) clustering and
SA optimisation methods that also combines different
calibration objectives but requires user intervention at
different stages in the calibration process, and (3) an
expert system where user intervention is required
during the entire calibration process.

The calibrated models have been compared with
respect to the overall performance in terms of water
balance error and general hydrograph shape, and
simulation of high and low flow events. The different
methods were seen to put emphasis on different
aspects or response modes of the hydrograph, and
none of the methods were superior with respect to
all performance measures considered. This illustrates
the problem of non-uniqueness in model calibration
and emphasises the importance of considering multi-
ple objectives in the calibration process.

The automated strategies considered in this paper
all reflect the multi-objective nature of model calibra-
tion. The use of generic search routines where user
intervention is required only for definition of appro-
priate multi-objective numerical measures is seen to
compare favourably with methods that require more
user intervention and include subjective rules for
trading off objectives.
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