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Numerical Homogenization of the Rigidity Tensor
in Hooke’s Law Using the Node-Based Finite
Element Method!

Wouter Zijl, 2 Max A. N. Hendriks,® and C. Marcel P. ‘t Hart 3

Combining a geological model with a geomechanical model, it generally turns out that the geome-
chanical model is built from units that are at least a 100 times larger in volume than the units of
the geological model. To counter this mismatch in scales, the geological data model's heterogeneous
fine-scale Young’s moduli and Poisson’s ratios have to be “upscaled” to one “equivalent homoge-
neous” coarse-scale rigidity. This coarse-scale rigidity relates the volume-averaged displacement,
strain, stress, and energy to each other, in such a way that the equilibrium equation, Hooke’s law,
and the energy equation preserve their fine-scale form on the coarse scale. Under the simplifying as-
sumption of spatial periodicity of the heterogeneous fine-scale rigidity, homogenization theory can be
applied. However, even then the spatial variability is generally so complex that exact solutions cannot
be found. Therefore, numerical approximation methods have to be applied. Here the node-based finite
element method for the displacement as primary variable has been used. Three numerical examples
showing the upper bound character of this finite element method are presented.
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INTRODUCTION

The modeling of phenomena such as compaction of hydrocarbon reservoirs and
aquifer—aquitard systems has traditionally been separated into geological and geo-
mechanical modeling. These two activities reflect different aspects of the same
part of the subsurface that is studied: the rock types that have developed during
geological times, and their geomechanical behavior when placed under stress.
The geological model highlights the structural elements of the subsurface—the
geometry and dimensions of its layers and faults—together with its rock types
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and properties. The geomechanical model is set up in terms of quantities like dis-
placement, strain, stress, and energy. These quantities are related to each other by
the rock’s rigidity parameters—Young's modulus and Poisson’s ratio in isotropic
rocks. When trying to match the geological and the geomechanical model, it gen-
erally turns out that the spatial scales of the two models differ. For example, the
geological reservoir model may be based on cells meters in length and width and
decimeters in thickness, whereas the geomechanical model is based on cells that
are at least a 100 times larger in volume.

One approach to counter this mismatch in scales is to make the geomechanical
model finer. This “megacell approach” will be made feasible by the next generation
of multiprocessor computers (Dogru, 2000). However, there will always be a need
to run geomechanical problems on relatively simple and cheap computers like
PCs. In this way quick and user-friendly assessments can be made, even with run
times that are sufficiently fast to be done in parallel with real-time measurements.
In such a “fast model approach,” the spatial scale of the cells in the geomechanical
model must be chosen much coarser than in the megacell approach. Therefore,
the heterogeneous fine-scale rock parameters of the geological data model have to
be upscaled to “equivalent homogeneous” coarse-scale parameters that relate the
cell-averaged displacement, strain, stress, and energy.

For upscaling of periodic media, homogenization theory is well established,
both for the permeability in Darcy’s law and for the rigidity in Hooke’s law
(Lefik and Schrefler, 1994; Pellegrino, Galvanetto, and Schrefler, 1999; Schrefler,
Lefik, and Galvanetto, 1997). Classical homogenization theory is heavily based
on the mathematics of functional analysis and multiscale asymptotic expansions
(Auriault, 1983; Bakhvalov and Panasenko, 1994; Bensoussan, Lions, and
Papanicolaou, 1978; Sanchez-Palencia, 1980). In this way, homogenization the-
ory can deal with problems in which the course-scale equations have a form that
differs from the fine-scale equations. However, here we consider a problem in
which the fine-scale and coarse-scale equations have the same form. Therefore, it
is possible to base homogenization on a simple principle that yields exactly the
same results as classical homogenization. Based on the principle of “preservation
of expressions,” the coarse-scale rigidities are derived from the cell-averaged dis-
placement, strain, stress, and energy, in such a way that well-known expressions on
the fine scale are preserved, as much as possible, on the coarse scale. Following this
idea, it will be shown that homogenization can be obtained by two independent
procedures: displacement-stress averaging and displacement—energy averaging.
If the medium is periodic, the two resulting coarse-scale rigidity tensors will be
equal to each other (cf. Appendix for a proof). Because classical homogenization
yields identical results, the term “homogenization” for our averaging approach is
justified.

Since the resulting equations are generally too complex to be solved ex-
actly, the node-based finite element method has been applied to solve the elliptic
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equations for the displacement as primary variable. Displacement—energy averag-
ing is then used to assess an error estimate of the finite element approximation.
The theory is implemented in the finite element package DIANA (DlIsplacement
ANAlyzer), with which a number of numerical examples have been run.

THREE REQUIREMENTS FOR UPSCALING

Preferably, a procedure for upscaling of the rigidity should satisfy the follow-
ing three requirements.

Requirement (i): Preservation of Expression for Strain

The coarse-scale displaceméhtshould be equal to a spatial average)
of the fine-scale displacement while, at the same timethe coarse-scale dis-
placement gradiend; U; should be equal to the average displacement deriva-
tive (9;u;). If this requirement is satisfied, the coarse-scale stigin= (gi;) =
(9uj + 9ju;)/2, can be obtained as the symmetric part of the averaged displace-
ment gradientE; = (3;U; + 9;U;)/2. This means that the fine-scale expression
relating strain to displacement is preserved on the coarse scale.

The spatial averaging operatpf consistent with the above requirement is
given by

1 X+3AX  py+3AY  pz4+3AZ
f)(x) = 7/ / / f(x") dX dy dZ 1
(Hx) AXAYAZ Jx_iax Jy z-3az Co Y @

—%Ay

(x denotes the row of Cartesian coordinatesy( z)). In this paper, the upscaling

cell is a rectangular hexahedron (a block). Thenr= (x;) denotes a Cartesian
coordinate and Equation (1) represents volume averaging. However, if the cell
has another shape, for instance a cylindrical cell around a welgpresents a
curvilinear orthogonal coordinate, for which averaging is vaumeaveraging

(zijl and Trykozko, 2001).

Requirement (ii): Preservation of Expression for Stress Divergence

The second requirement is that the coarse-scale sirgs$iould be equal to
the averaged fine-scale strésg ). If requirement (ii) is satisfied, it follows from
Equation (1) thatd;oi;) = 3; (0i;) = 8 ;. This way the divergence of the stress,
which plays a dominant role in the equilibrium equation, has the same from on the
coarse scale as on the fine scale.
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Requirement (iii): Preservation of Expression for Energy

The third requirement is that the coarse-scale endrgy E;; =i should
be equal to the average of the fine-scale engggy= (¢ijoij ). This requirement
expresses that the energy equation for the fine scale is preserved on the coarse scale.
The energy defined above equal® timeshe amount of reversible elastic energy
stored in the upscaling cell, divided by the volume of the cell. If requirement
(iii) is satisfied, thermodynamic expressions—Ilike energy potentials, Onsager’s
reciprocal relations, etc.—have the same form on the coarse scale as on the fine
scale.

Unfortunately, for general heterogeneous media the above three requirements
overspecify the upscaling problem. However, both perfectly layered porous media
and periodic porous media can be upscaled in such a way that the three require-
ments are satisfied simultaneously. Then the above upscaling approach leads to
the same results as classical homogenization.

THREE UPSCALING APPROACHES PRESERVING HOOKE’S LAW

Classical homogenization theory can deal with problems in which the course-
scale expressions differ from the fine-scale expression. However, because we do
not consider such a problem, we may require that Hooke’s law on the fine scale be
preserved on the coarse scale. In the previous section we have already introduced
the principle of “preservation of expressions.” This section presents an extension
to the three possible ways in which Hooke's fine-scale law can be preserved on the
coarse scale. Since, in general, only two of the three requirements of the previous
section can be satisfied simultaneously, upscaling based on volume averaging can
be performed in the following three ways.

Displacement—Stress (DS) Averaging

Displacement—stress (DS) averaging combines requirements (i) and (ii) using
(Gapij) = oo (eapmn) 10 define the coarse-scale rigidif,). The first two in-
dices, B = 1, 2, 3, denote the nine different load cases that have to be solved in
order to find all the 81 components of the coarse-scale rigidity tensor. The second
two indicesj, j = 1, 2, 3, denote Cartesian components. The inverse of the rigid-
ity, the compliance tensor, will be denotedﬁigfﬂ. If (emnij) is chosen equal to

(8indjm + 8imdjn)/2 (8ij is the Kronecker delta function), we filﬁI;(j'?nSg = (Omnij)-
Displacement—Energy (DE) Averaging

Displacement—energy (DE) averaging combines requirements (i) and (iii)
USING(£apij ) i (€ysmn) = (dupys) to define the coarse-scale rigid®yfor,. Here
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dupys = EapijOysij 1S @ component of the f|ne scale energy matrix(etnij) is
chosen equal t05(;,8;m + 5.rgajn)/2 we find C,]mn = {¢ijmn). The compliance

tensor will be denoted &80,

Stress—Energy (SE) Averaging

Stress—energy (SE) averaging combines requirements (i) and (|||) using
(oysij) S(mn (oapmn) = (¢ijmn) to define the coarse-scale compliance ter%
E : SE DS DE
which is the inverse of the coarse-scale ngm(ﬂﬁfmr)]. Since er)] S(a,su)caﬂy?s

ngﬁ)n, only displacement—stress and displacement—energy averaging will be dis-

cussed ahead.

Choice of Homogenization Cells

Because the fine-scale rigidity tenspp,, is symmetric €jmn = Cmnij) and
strictly positive definite, it follows from the above definitions that also the coarse-
scale rigidity tensor<! ?nEn) andCSE) are symmetric and strictly positive defi-
nite. The coarse-scale rigidity tens@(3) will generally be nonsymmetric
(Rijpsma and Zzijl, 1998).

Both for layered an@eriodicmedla the three upscaling approaches yield the
same coarse-scale rigidity, that &) = C05 = CI5%) = Cjjmn (for periodic
media this is proved in the Appendix). Of course, natural media are neither layered
nor periodic, but in many practical cases one can distinguish subdomains in which

layering or periodicity may be considered as an approximation.

HOMOGENIZATION BASED ON A PHYSICAL POINT OF VIEW

In periodic media the fine-scale rigidity has translation symmetry in three
different directions. For such media the smallest possible homogenization cell is a
parallelepiped with edges that represent the periodicity interval of the translation
symmetry.

The Basic Equation

Homogenization is an upscaling method for periodic media. Classical homog-
enization is based on a mathematical point of a view, in which functional anal-
ysis and multiscale asymptotic expansions play the dominant role (Bensoussan,
Lions, and Papanicolaou, 1978; Hornung, 1997; Sanchez-Palencia, 1980). Here,
a much simpler approach to homogenization is introduced. This approach is
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based on a physical point of view and yields exactly the same results as clas-
sical homogenization.

The basis of our “physical approach” issquatehe net fine-scale force work-
ing on a domain with closed boundaxffin;si; dS+ [[[f; dV, to the net coarse-
scale force working on the same domaffin; =j; dS+ [[[F; dV, wheref; andF,
are respectively the fine-scale and coarse-scale body force. §fficgV = ( fi)V,
defining F = (f;) yields [[/fi dV = [[[F dV. Hence the basis of our approach
simplifies toffnjoi; dS= ¢fn; =i; dS Using Gauss's integral theorem and substi-
tuting Hooke's law yields

0 (Cijmn(amun + 8num)) =0 (Cijmn(amun + 8num)) (2)

Equation (2) will be used in two different ways: (i) to determine the fine-scale
equations that have to be solved numerically, and (ii) to prove the equivalence
between DS and DE averaging: cf. Appendix.

The Fine-Scale Equation and Boundary Conditions

Equation (2) can be simplified by invoking a “smoothness requirements.” Let
us consider a coarse-scale map with sdaséad “map coordinates), = 9x;. For
instance, if the map has scafe= 1:100000, a distancg = 1 cm on the map
corresponds to a distange= 1 km in reality. On the coarse-scale map the fine-
scale details are smoothed away: a variation of the coarse-scaleXiggsover
a map distance\y = ¢ (i.e., over the much larger real distanae = ¢/19) has
at most the same order of magnitude as a variation of the fine-scalesfi(ess
over a real distancéx = ¢£. Equation (2) yieldsdo;; (X)/dx; = 99Zij(y)/0V;
and substitution of the perturbation serigg = oi(jo) + z‘}aijl) ... while equat-
ing terms of the same power af (Van Dyke, 1975) produces the fine-scale
equation of order zer®, oi(jo)(g) = 0. Omitting the superscript (0) and substi-
tuting Hooke’s law, Equation (2) is approximated by the following fine-scale
equation

9i (Cijmn(dmUn + 3nUm)) = 0 3

For periodic media, wher&;; is constant with respect to the fine scale,
v =0, that is, Equation (3) is exact. Then the coarse-scale rigiljiy, is con-
stant too and, according to Hooke’s coarse-scale ¥aw= CijmnEmn, also the
coarse-scale strail;; is constant. Moreover, sindg; = gaiU,- +9;Uj)/2, the
coarse-scale displacement is lineaxiinthat is,U; (X) = Ui(O + Ajxj with Ej =
(Aij + Aji)/2 (Appendix). Both for displacement-stress (DS) averaging and for
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displacement—energy (DE) averaging we have already required;tkatu;) and

Eij = (&ij). Thenthe fine-scale displacement is equal to the coarse-scale displace-
ment plus a periodic “correctiony; that has the same periodicity pattern as the
fine-scale rigiditycijmn (for a proof cf. Appendix).

Equation (3) has to be solved, either analytically or numerically, in at least
one periodicity cell. The boundary conditions have to be such that the function
xi(X) = ui(x) — Ajjx; is periodic. In other words, the boundary conditions for
the displacement are such that the displacement differences between two similar
points on opposite boundaries are constant (Appendix). In this way, nine linear
independent sets of boundary conditions or “load cases,” denoteddby- 1, 2, 3
can be defined (Fig. 1).

Figure 1. Deformations of homogeneous isotropic cell with= 0 for nine orthonormal
load cases, 8 =1, 2,3.
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Determination of the Coarse-Scale Laws and Parameters

Scalar multiplication of Equation (2) for = u,g andU; = U, by a differ-
ent fine-scale displacememys; , applying Gauss’s divergence theorem, and using
the periodicity, yields

Sogij = (Oapij) < (€apij)Cimn(eysmn) = (€apij Oysij) 4)

Appendix, from which it follows that the DS, DE, and SE averaging approaches
yield equivalent results.

In conclusion, the coarse-scale Hooke’s lawis = Cijmn(dmUn + 9nUm)/2
in which Cjjmn is the coarse-scale rigidity tensor and the coarse-scale energy
equation is®ijmn = Eijjx Zmnk. The coarse-scale equilibrium equation can be
obtained by averaging the fine-scale equilibrium equadjof) = — f; yielding
di{aij) = —(fj).

Orthonormal Boundary Conditions

In general, homogenization theory requires that the displacements on two
opposite boundaries of the rectangular homogenization cell have a constant dif-
ferenceA jUmni = Kijmn, WhereAjumni = Umni(Xj + %AXJ‘) — Umni(Xj — %Ax,-)
denotes the difference in directignof displacement componentoetween two
equivalent points on opposite boundaries of the homogenization cell. The indices
m, n = 1, 2, 3 denote nine different displacement vectors, each with three compo-
nentSumni, 1 = 1, 2, 3.

The choice of orthonormal boundary conditions

AjUmni = 8indjmAX; (N0 summation over indej (5)

is very convenient. For example, iih = 2 andn = 1, boundary condition (5)
denotes a constant displacement differenge,;, = Ay between the two oppo-
site boundaries in thg direction, and zero displacement differenaegi, i =
AxUz1x = 0 between the two opposite boundaries in thend x directions. In
addition, also the differences of displacement componenjsandu,;, between
all opposite boundaries are equal to O.

Using orthonormal boundary conditions (5), the coarse-scale displacement
iS Umni = (Umni) = 8inXm, from which it follows that the coarse-scale strain is
Emnij = (€mnij) = (6indjm + dimdjn)/2. Substitution into Hooke’s law and using
Equation (4) yields very simple expressions for the homogenized rigidity:
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displacement-—stress (DS) averaging yielts.n = (omnij), and displacement-
energy (DE) averaging yieldSijmn = (@ijmn)-

NUMERICAL HOMOGENIZATION USING FINITE ELEMENTS
Node-Based Finite Elements for the Displacement

Homogenization software has been implemented in the node-based finite
element package DIANA (Displacement ANAlyzer) with nodal displacements as
degrees of freedom. The mesh has been chosen uniform with equally sized eight-
noded “solids” (blocks). The approximation space consists of piecewise bilinear
functions. DIANA's “tyings” option has been used to model boundary conditions
with constant displacement difference (De Witte and Hendriks, 1998). In general,
a tying is a user specified linear dependency between degrees of freedom of the
system of equations. In case of homogenization, tyings between two opposite
boundary points enforce the same displacement plus a constant. This way the nine
orthonormal load cases 8 = 1, 2, 3 have beenimplemented and applied (Fig. 1).

Forall nine load cases DIANA computesin each solid block the six strain com-
PONeNtstupxx, Eapyys Eapzz Yapxy = Yapyx> Yapyz = Yapzys Yapzx = Vapxz (erﬂ,ij =
2eqpi; are the “technical strains”) yielding 54 volume averaged strain compo-
nentsE,gij . Moreover, the orthogonal load cases lead to 18 additional symmetry
conditionsE,gij = Eg.ij. This means that only six load cases are linear indepen-
dent, yielding 36 independent coarse-scale strain components and, according to
Hooke’s law, 36 coarse-scale stress components. For all six relevant load cases
y,8 =1, 2,3 DIANA computes in each solid block the six stress components
Tysxx> Oysyys Oyszz, Oysxy = Oysyxs Oysyz = Oyszy, Oyszx = Oysxz. 1NESE  Stresses
are volume averaged by approximating the volume integrals over each solid block
by a 2x 2 x 2 Gaussian integration scheme. This yields 36 volume averaged
stress componentX, si;. Moreover, usingpys,s = apxxTysxx + EapyyTysyy +
Eapzz0ys22 T VapxyOysxy + VapyzOysyz + VepzxOyszx yields 36 volume averaged
energies®d,4,5. Displacement-stress (DS) averaging yields the coarse-scale
rigidity tensorCiEEﬁ) = Zmnij (%rg;j displacement—energy (DE) averaging yields the

coarse-scale rigidity tens@x

ijmn = Pijmn-

Error Bounds for Numerical Homogenization

For symmetric and strictly positive definite fine-scale rigidity tensgs,
the “principle of least action” holds (Duvaut and Lions, 1976; Lanczos, 1970;
Morse and Feshbach, 1953). This principle states that the solugjpmf Equa-
tion (3) is the functior®,g; that minimizes the strictly positive definite functional
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4®(Qaﬂ) = ((36upj + 0j6upi )Cijmn(OmBupn + Onbupm)) > Oforallfunctiondysi (x)
With 641 (Xg) = Uagi (Xg) ON the closed boundagy € d<2 of domain< (0 4 is the
row of component8,gx, Gugy, Oupz)-

Displacement—energy averaging defines the coarse-scale rigidity @pspr
by (31 Uagj + 9jUasi )Cijmn(0mUysn + 90Uy sm) = ((9i Uagj + 9 Uagi )Cijmn(dmUysn +
dnUysm)). Orthonormal boundary condition (5) yield$J,si /9X; = 8igdj. and,
hence, €up,5 = ((3iUapj + 3jUqpi)Cijmn(dmUysn + dnlysm)). This means that
Cijij = ©(u;;) > 0 and, as a consequence of the variational principle, displace-
ment fieldsu;; are such that the diagonal componejgs are minimal.

To find approximate, solutions, Equation (3) is solved by the node-based
finite element method for the displacement. This method is equivalent with the
Ritz method (Strang and Fix, 1973), which is based on the principle of least
action to find nodal displacements that minimize the energy in the domain. There-
fore, this approximation method minimizes the functiogd ,;) > 0. However,
in general the approximation space differs from the function space of the ex-
act solution, which means that the exact minimum cannot be obtained and, as a
result, the approximate energy is greater than the exact energy. In other words,
the rock is approximated as too rigid. Of course, when the exact solution is in
the approximation space, the finite element solution is equal to the exact solu-
tion. As a consequence, denoting the node-based approximation of the rigidity by
Clins We find Egij CIB | Egpmn = Eagij Cijmn Eagmn > 0, from which it follows
that Ci’}'fj‘ > Ciji; in any arbitrary coordinate system. Because the approximate
solution comes closer to the exact solution when the grid is refined, the diagonal
elements will monotonously approach the exact asymptote.

There exist “complementary” numerical methods for which the same inequal-
ity holds for the compliance tens&;mn, which is the inverse of the rigidity tensor
Cimn. Face-based (mixed hybrid) finite element methods for the facial tractions
(Bossavit, 1998; Penman, 1988; Trykozko, Zijl, and Bossavit, 2000) and block-
centered finite difference methods (Arbogast, Wheeler, and Yotov, 1997) are such
complementary methods. These methods yield coarse-scale rigidities that repre-
sent the mechanical properties as too weak. Itis customary define the coarse-scale
rigidity matrix as the 6x 6 matrix that relates the six coarse-scale stress com-
ponents Eyx, Zyy, X7z Zxy, Zyz, 2zx) t0 the six coarse-scale strain components
(Exx, Eyy, Ezz T'xy, T'yz, I'zy); herel'; = 2E;; are the “technical strains.” The in-
verse of this matrix is the coarse-scale compliance matrix. It can be proved that
the eigenvalues of the coarse-saaidity matrix calculated using theode-based
method are upper bounds. In addition, the eigenvalues of the coarsessnale
pliance matrix calculated usingomplementarynethods are upper bounds too
(Bossavit, 1998; Trykozko, Zijl, and Bossavit, 2000). Since the eigenvalues of the
compliance matrix are the inverses of the eigenvalues of the rigidity matrix, node-
based and complementary methods can be used together to confine the numerical
approximation error in an interval between upper and a lower bounds.
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NUMERICAL EXAMPLES
Perfectly Layered Rock

This example considers a perfectly layered linear elastic rock that is isotropic
on the fine scale. Since strain and stress depend only acthardinate, Hooke’s
law oi; = rewdij + 2ueij substituted into equilibrium Equation (3) simplifies to
32(1(9zUx + 0xUz)) = 0, 3z(u(dzUy + dyUz)) = 0, 92(nd,Uz + A(dxUx + dyUy)) =
O0.Heren =e(1—v)(L+v)l-2v) L a=ev(l+v) A —-20) L u=e(l+
v)~1/2, wheree = &(z) andv = v(2) are respectively the fine-scale Young’s mod-
ulus and Poisson’s ratio.

The nine fine-scale displacement vectors that satisfy the equilibrium equations
and the orthonormal boundary conditions are

(um,uny,una:( / 1@ 1—A(z)}dz) 6.2)

(U22x, U2y, U22;) = (0, Y, / @ Han Hn ™™t — A2} dZ) (6.2)

(Usoc, Usays Usas) — (o, 0.t | n(z)-ldz) 6.3)
(U12x, Ug2y, U12) = (0, X, 0) (6.4)
(U21x, U21y, U217) = (Y, 0, 0) (6.5)
(Uoc, Uzays Unz) = (o, W @t dz-z y) (6.6)
(U, Usays Uszs) — (o, Wi [ u@tdz 0) 6.7)
(Ve ey, ) = (1787 [ () d2.0,0) 6.8)
(Urax, U1ay, U1z,) = ( (w4~ /u(z) tdz—z0, x) (6.9)

In this example, the parametejsi, andu are chosen piecewise constant,
yielding a piecewise linear solution. Because in this example the piecewise bilinear
approximation space of the finite elements contains the space of the exact solution,
the finite element solution is equal to the exact solution. Therefore, the small
differences between numerical and exact solution are caused by inaccuracies in
the solution of the algebraic equations.
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From solutions (6) the fine-scale strains and, using Hooke’s law, the fine-
scale stresses can be calculated, as well as the fine-scale elastic epgrgies
gijkl omnkl- It turns out that only 25 fine-scale energy and 21 fine-scale stress com-
ponents are nonzero. Volume averaging of the fine-scale energy and stress com-
ponents yields 21 nonzero coarse-scale energy compo®gris= (¢ijmn) and
stress componenBmnij = (omnij). Moreover, we findXmnij = Pijmn = Cijmn.
As a consequence, the coarse-scale Hooke’s law is

Tx T2R+4M -9 T?2R+2M —-4S TR0 0 0 Exx
Tyy T°R+2M —4S T°R+4M -9 TR0 0 0 Eyy
 n | TR TR RO 00| | Ezx e
ey | 0 0 0OMOO Ty
Ty2 0 0 0 OLO Ty,
o 0 0 0 0O0L Tx

wherel = (™)™, M= (), R=n1" S= ™), T=1-2un"
are the “Backus parameters.”

Figure 2 shows the mesh consisting 0of2A0 x 10 elements. Figure 3 and
Table 1 present the piecewise constant fine-scale rigidities. Table 2 shows the

Figure 2. Finite element mesh in the homogenization cell.
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e (Pa) v ()
I 1 045
I 100 0.405
l 10 036
I 01 0315
J 1000 o270
§ oo oxs
I @ o

10 0135

1000 0.090

100 0.045

Figure 3. Homogenization cell filled with perfectly layered fine-scale parameters.

Backus parameters leading to the exact rigidity components presented in Table 3.
The numerical approximations are presented in Tables 4 and 5 for respectively
displacement-stress and displacement—energy averaging. The numerical approxi-
mations of the coarse-scale rigidities differ by less than 1%. from the exact values.

Table 1. Perfectly Layered Rock With
Piecewise Constant Fine-Scale Young’s
Moduli and Poisson’s Ratios

Layer e (kPa) v (=)
1 1 0.450
2 100 0.405
3 10 0.360
4 0.1 0.315
5 1000 0.270
6 0.01 0.225
7 1 0.180
8 10 0.135
9 1000 0.090

10 100 0.045
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Table 2. Backus Parameters

L (kPa) 0035351296
M (kPa) 8533762335
R (kPa) 0109754705
S (kPa) 2284657428
T() 0.370299677

Continuous Fine-Scale Rigidity

In this example we consider a rock with geomechanical behavior governed
by the fine-scale Hooke's law

Oij = eé‘ij fori = j7 oij = 2&)8” fori ?é J (8)

wheree(X, v, z) = & f (X, y, z) with constantg,. The heterogeneity is described
by

8abccoslt x cosit y cosif z

(@+ 3 sinh22)(b + 3 sinh )(c + 5 sin )

f(x.y.2) =

inthe domain~a<x<a; -b<y<b;, —c<z<c,wherea> 0,b> 0, and
0 < ¢ < /2. Outside this domain the functidi(x, y, z) is continued periodically,
which means that\x = 2a, Ay = 2b, and Az = 2c are the smallest periodicity
intervals. The functiorf (X, y, Z) has been chosen such thdé) = 1.

The following nine fine-scale displacement vectors satisfy the equilibrium
equation combined with Hooke's law [Eq. (3)] and the nine orthonormal boundary
conditions (5)

(U11x, U11y, U117) = (a cotha tanhx, 0, 0) (10.1)
(u22x, Uz2y, U227) = (0, b cothb tanhy, 0) (10.2)

Table 3. Exact Rigidities (kPa) Derived From Equation (7)

C.... XX. . yy.. zz.. Xy.. yz.. zX..
LXX 2499792461 7980399937 (040642132 O 0 0
Lyy 7930399937 249792461 (040642132 O 0 0
.2z 0.040642132  M40642132 (109754705 O 0 0
LXY 0 0 0 8533762335 0 0
..yz 0 0 0 0 0035351296 0

..ZX 0 0 0 0 0 0035351296
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(Uzsx, Uszy, uss) = (0, O ccotc tanz) (10.3)
Uggi = BipXe, o # P (10.4)

In this example, Hooke’s law and the energy equation yield 15 nonzero fine-
scale stressegn,;j and energiegimn satisfyingomnij = ¢ijmn. The volume averaged
stress and energy components then yield the coarse-scale rigidity components
resulting in Hooke’s law on the coarse scale

IV F 0O O Eyx
pIE 0 0F E,,
where
2a? cotha 2b? cothb 2c? cotc

(12)

X

“a+isinha’ 7 b+isinhd 7 o+ Isinx

Table 6 shows the parameters used in the numerical example, while the ex-
act coarse-scale rigidities are shown in Table 7. The numerical analyses have
been performed using&ax x Ay x Az mesh refinement sequence of @0 x
5,20 x 20 x 10, and 40x 40 x 20. The rigidities are approximated as piecewise
constant, in such a way that the approximate rigidity in each solid block equals
the exact rigidity in the center of that block. Figure 4 visualizes the approximate
rigidity distribution of the 40x 40 x 20 model. Numerical approximations for this
40 x 40 x 20 mesh are presented in Tables 8 and 9 for respectively displacement—
stress and displacement—energy averaging. The approximation has an accuracy
of 2%, except for componer@)2 , which is a factor 2.67 too large. This large
error is caused by the fine-scale rigidities are tHeoundaries, which are ap-
proximated as 12 times larger than the exact rigidities. Figure 5 shows the sum
Croxx + Clyyy + Ciy,0f the numerically approximated coarse-scale rigidity ten-

XXXX 7272727
sor as it converges to the exact solution under grid refinement.

Table 6. Parameters of Example With
Continuous Fine-Scale Rigidity

g

b1
(49/100)
100 kPa

800’9’
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0 +3000005 0 0 0 0 0 Xz
0 0 +3000005 0 0 0 0 zA-
0 0 ¥0-+3000005 0 0 0 Ax-
0 0 0 €0 +3102876 0 0 7z
0 0 0 0 VvO+3aLT6IYT 0 K-
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TTXZ 1 zK " AX 7z AR XX
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Figure 4. Piecewise constant approximation of continuous rigidity distribution.

FIELD EXAMPLE

The heterogeneity pattern of the fine-scale rigidity is taken from a field ex-
ample. We consider a homogenization cell that is part an oil reservoir. Within this
cell the absolute permeabili(x, y, z) is known (Zijl and Trykozko, 2001). We
may reasonably assume that the heterogeneity pattern of the rigidity is the same
as that of the permeability. There exists no unique physical relation between per-
meability and rigidity. However, for the sake of providing an example, a simple
but reasonable relationship will be postulated.

For isotropic media, Young’s modulus and Poisson’s ratio can be uniquely
related to the seismic velocitieg andvy, : €/4pv3 = 1 — (1 —v3/v3) /4, v =
1-(1- vﬁ/v,z))—l/Z (Helbig, 1994).

Table 8. Numerically Approximated Rigidities (kPa) Using Displacement-Stress Averaging

C.... XX.. yy.. zz.. Xy .. yz.. ZX..

L XX 1.44E+ 04 1.67E+00 —5.27E—03 5.38E—-03 —4.33E—-05 —-3.13E-04
LYy 1.67E+ 00 1.44E+04 —-5.16E—03 —4.94E—03 —2.73E—04 —1.97E— 05
.2z —6.51E—-06 1.23E—-06 2.53E+04 —2.08E—06 —2.92E—04 1.84E—04

Xy —4.11E—- 04 2.64E-03 6.95E-05 4.88E+04 1.85E-04 —1.58E—- 04
..yz 9.48E— 06 2.00E—04 —-1.75E—03 —8.88E—05 4.97E+04 —5.23E- 03
..ZX —5.79E—- 04 3.15E-05 8.82E-04 6.12E-05 6.89E-05 4.97E+ 04
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Table 9. Numerically Approximated Rigidities (kPa) Using Displacement—Energy Averaging

C.... XX. . yy.. zz.. Xy.. yz.. ZX..

LLXX 1.45E+04 —-5.12E—-01 —-9.51E-04 6.32E-03 —1.25E—05 —2.06E— 04
..yy —512E-01 145E+04 —1.02E—03 —4.72E— 03 —6.79E— 05 1.50E- 05
..zz —8.47E—04 —792E—-04 253E+04 7.25E-05 —4.09E—04 1.97E-04
4Y 541E-03 —4.05e—-03 6.27E-05 5.00E404 —1.96E—05 3.38E-04
..yz —6.48E—-05 —252E—-04 4.18E-04 160E-04 4.99E+04 —6.05E—03
..zx  —3.44E-04 —257E-05 1.20E—04 —1.54E—04 —5.07E—03 4.99E+ 04

Let us now consider rock types in which a high permeability correlates with
a high porosity. For such rocks, high permeability regions may contain relatively
large amouts of fluids (water, oil, gas), which have a nonzero compression mod-
ulus ¥ and a vanishing shear modulus— 0. Hence, fluids have a vanishing
Young's moduluse = 9%u/(3x + 1) — 0 (Davis and Selvadurai, 1996). There-
fore, for such rock types it is reasonable to assign a relatively low shear velocity
vs to high permeability regions. On the other hand, low permeability rocks that
contain hardly liquids, will have a relatively high shear velocity. Making these
qualitative assumptions quantitative, we assume that the shear wave velocity is
given byv? = ak 1 with @ = 0.25 x 10°%m*.s72 = 0.25 x 10°m? - s2 . mDa
(De Haan, Giesen, and Scheffers, 2000).

Real rocks have material properties suchthat 65 /v3 < 1/2, hence 2v5 <
e < 3pvZ and 0< v < 1/2. As postulated above, pieces of rock with a relatively
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Figure 5. SumCRE,+ CNB\ + CNB as a function of the number of solid blocks.
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Figure 6. Fine-scale rigidity distribution of field example; inactive cells have been omitted.

low shear wave velocity (i.e., a relatively high permeability and porosity) con-
tain relatively large amounts of fluid. Since for fluigs— 0, Poisson’s ratio

v = (3x — 2u)/(6x + 2u) — 1/2 (Davis and Selvadurai, 1996). In contrast, for
pieces of rock with a relatively high shear velocity, Poisson’s ratio is assumed to
be much smaller than 1/2. This will be accomplished by choosﬁmgqual to two
times the maximum value af in the homogenization cell.

Finally, since fluids ¢ — 1/2) are less dense than solids£0v < 1/2) the
density is chosen gs = 2000(1— v) kg - m~3.

In this field examplek(x, y, z) varies from 213.188 to 13984.5 mDa. Ac-
cording to the above “translation rules,” Young’s modué(s, y, z) varies from
54 to 4691 MPa (Fig. 6) and Poisson’s ratix, y, z) varies from 0 to 0.4961.

The homogenization cell consists 0&k68 x 8 = 384 hexahedral cells, each with

a given permeability. There are 26 “inactive” cells to which the small permeabil-
ity k =1 mDa has been assigned. In our geomechanical model these cells are
extremely rigid € = 2004 GPa). In Figure 6, which shows the fine-scale rigid-

ity distribution, the inactive cells are removed. The geometry of this cell is very
anisotropic; the aspect ratiox/ Az is equal to 6, while the aspect rathoy/Azis

equal to 25.

Figure 7 shows the different meshes used in the analyses. Table 10 shows
the dimensions of the solid blocks of the different meshes. The coarse-scale rigid-
ity components of the finite element model with 1536 elements are given in the
Tables 11 and 12. Note that the displacement—stress averaging method gives an
approximately symmetric matrix while the displacement—energy averaging yields
an exactly symmetric matrix. In Figure 8(a)—(f) the six diagonal components of the
coarse-scale rigidity matrix are plotted as a function of the mesh size. We observe
that these components decrease monotonically when refining the mesh, which is
in agreement with the upper bound properties of the node-based finite element
method.
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384 solid blocks

1536 solid blocks

4608 solid blocks

23040 solid blocks
Y
E

Figure 7. Sequence of refined meshes for field example.

CONCLUSIONS

The fine-scale Young's modulus and Poisson’s ratio of the geological data
model have been homogenized. The resulting coarse-scale rigidities relate the
volume-averaged displacement, strain, stress, and energy in such a way that the
equilibrium equation, Hooke’s law, and the energy equation preserve the well-
known form these expressions have on the fine scale.

Table 10. Dimensions of Solid Block in the Different Meshes

No. of solid blocks Division No. of nodes  Solid block size3m
384 6x 8x8 567 6x 40 x 150
1536 6x 8 x 32 2079 6x 40 x 37.5
4608 6x 16 x 48 5831 6x 20 x 25

23040 6x 32x 120 27951 6< 10x 10
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The theory of homogenization has been presented in a simple way based
on physical understanding. Two independent approaches can be distinguished:
displacement—stress (DS) averaging and displacement—energy (DE) averaging.
Under the simplifying assumption of spatial periodicity these two approaches
yield the same coarse-scale rigidity (cf. Appendix for a proof).

The spatial distribution of the rigidity is generally so complex that exact so-
lutions of the homogenization equations cannot be found. Therefore, numerical
approximation methods have been applied. Software for the numerical homoge-
nization of 3D spatial distributions of the rigidity has been implemented in the
finite element package DIANA, which is based on the node-based finite element
method for the displacement as primary variable. It is shown that this method is
an upper bound method for the diagonal components of the coarse-scale rigidity
matrix.

The software module has been validated extensively by a number of synthetic
and field-data tests. Moreover, the numerical homogenization model has been
applied to three examples to estimate the numerical error as a function of the mesh
density.
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APPENDIX: EQUIVALENCE OF DISPLACEMENT-STRESS AND
DISPLACEMENT-ENERGY AVERAGING

Displacement and Strain

Homogenization is a method of upscaling in which constant displacement
differences between equivalent points on two opposite boundaries of the homoge-
nization cell are specified as boundary conditions. As a consequence, the volume-
averaged displacement is a linear function of the Cartesian coordinates

Ui () = (u)®) = U2 + Ajx (A1)

whereUi(o) andA;; are constants. In case of orthonormal boundary conditions, the
nine constants amd;; = &ind;jm, Wwhere each pam, n = 1, 2, 3represents a partic-

ular choice—a load case—with nine coarse-scale displacetdgpisi = 1, 2, 3.
Although orthonormal boundary conditions greatly simplify actual computations,
they are not required in the following proafpnstantdisplacement differences
suffice. Then, the fine-scale displacements can be written as a vector that is linear
in the spatial coordinates plus a periodic vector function. (A periodic function
haszerodifferences between equivalent points on two opposite boundaries of the
homogenization cell.)

ui(x) = U9+ Ajx; + xi (%), (A2)
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Taking the symmetric part of the gradient yields
1 1
eij (x) = S @u; ) +9jui(¥) = Eij + 5(8x(X) +9jx(x))  (A3)

whereE;; = (Ajj + Aji)/2. Integration over the periodic homogenization &gll
with volumeV = [[/, dVyields

///Qeij(X)dV= Eijv+//9%(aix,-(;)Jraj;a(z))dV. (A4)

Since x;(x) is a periodic vector function, the volume average of its gradient is

equal to 0. Hence
1
Eij :V/// &ij (X) dV = (eij) (A5)
Q

which proves that the coarse-scale strgijnis equal to the volume average of the
fine-scale strairge;; ).
The Basic Approach to Homogenization

From the physical point of view expounded in this paper, homogenization is
based on the following requirement [Eq. (2)]

dioij (X) = 9 Zij (%), (AB)

Below, Equation (A6) will be applied in two different ways.

First Application of Basic Requirement

For periodic media, the coarse-scale stress is constant. Substitution of constant
%ij into the right-hand side of Equation (A6) yields

0 0ij (X) = 3 (Cijmn(X)[dU]mn(x)) =0 (A7)

where the shorthand notatiodJ];; = (3 u;j + 9;u;)/2 has been used. Equation
(A7) has to be solved in at least one periodicity cell with periodic boundary con-
ditions for the vector function; (x).
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Second Application of Basic Requirement
Multiplying the left and right sides of Equation (A6) by an arbitrary displace-

ment vector; (x), applying some vector differentiation rules, and using Gauss’s
divergence theorem yields

/ / [8u]3} (X)Cijmn [8UTmn (x) AV — / / [9u];; (X)Gjmn(X) [AU] m (X) AV
Q Q

= P, 101009 — =1, dS (A8)
where the circle in the surface integrals means integration over the closed boundary

92 of the periodicity celk2 (i.e., the homogenization cell). Let us consider in more
detail the surface integral

J= @agvi (x){oij (X) — Zij In; dS (A9)

Similar to Equation (Al), the displacement vecip(x) is written asv; (X) =
Vi(o) + Bijxj + «i (%), Where\/i(o) is a constant vectoB;; is a constant tensor, and
ki (X) is a periodic vector function. Hence,

3= @ag(\/i(o) + ki (X) + Binj)(Uij (x) — Zij)nj ds
=3® + 3@ 4 3@ (A10)
Using Equation (A6) we find
30 = vOFP 00 — mym; as

:vi(o)///gai(oij(ﬁ)—zij)dvzo (A11)

Using the periodic boundary conditions ef(x) and the periodicity ob;j(x)
we find

3@ = P, ()1 (x) - 5)n; ds=0 (A12)

The evaluation of® is more complex, but also more rewarding. Again using
Equation (A6) we find

38 = Sfﬁm(Bij Xj)(0ij (x) — Zij)n; dS

= —B;; <zijv—///gai,-(5)dv) (A13)
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Requiring3® = 0, which is equivalent with displacement—energy averaging
(see ahead), a similar expression as Equation (A5) is found

i =$///§;Uij(l)dv=<0ij> (A14)

which proves that the coarse-scale stress is equal to the volume average of the
fine-scale stress.

From Equations (A11) and (A12) it follows that requiring® = 0 yields
J = 0, that s, then the surface integral in Equation (A8) is required to be equal to 0

([f] 120 av)imtsvtnn = [[[ 1203y 601 v
Q Q
(A15)
Definingeqgi; = [9v]ij, €ysij = [0u]j and using Equation (A5) shows that Equa-
tion (A15) is equivalent with the displacement—energy definition of the coarse-scale

(eapij ) Cijmn{&ysmn) = (EapijCijmnEysij) (Al6)

In conclusion, for periodic media displacement—-energy averaging (i.e., re-
quiring Equation (A16) be satisfied) implies displacement—stress averaging (i.e.,
Equation (A14) holds). Moreover, it can easily be observed from Equation (A13)
that the inverse is also true: displacement—stress averaging implies displacement—
energy averaging. This proves Equation (4).



