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Optimization With the Gradual Deformation Method 1

Mickaële Le Ravalec-Dupin2 and Benoı̂t Nœtinger2

Building reservoir models consistent with production data and prior geological knowledge is usually
carried out through the minimization of an objective function. Such optimization problems are nonlinear
and may be difficult to solve because they tend to be ill-posed and to involve many parameters. The
gradual deformation technique was introduced recently to simplify these problems. Its main feature is
the preservation of the spatial structure: perturbed realizations exhibit the same spatial variability as
the starting ones. It is shown that optimizations based on gradual deformation converge exponentially
to the global minimum, at least for linear problems. In addition, it appears that combining the gradual
deformation parameterization with optimizations may remove step by step the structure preservation
capability of the gradual deformation method. This bias is negligible when deformation is restricted to
a few realization chains, but grows increasingly when the chain number tends to infinity. As in practice,
optimization of reservoir models is limited to a small number of iterations with respect to the number
of gridblocks, the spatial variability is preserved. Last, the optimization processes are implemented on
the basis of the Levenberg–Marquardt method. Although the objective functions, written in terms of
Gaussian white noises, are reduced to the data mismatch term, the conditional realization space can
be properly sampled.
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INTRODUCTION

History matching is an important problem in reservoir engineering. Given a flow
model, it consists in approximating a reservoir by a grid of permeability or porosity
values to explain observed production data as much as possible. The computation of
the permeability or porosity values is performed through an optimization problem,
that is by minimizing a nonlinear objective function.

The current literature identifies three main types of optimization approaches:
gradient-based, enumerative, and randomized. Gradient-based methods have lo-
cal scope. They seek for a local optimum in the neighborhood of the starting
guess. Enumerative procedures compute the objective function at every point in
the space, one at a time. Since many practical applications depend on a large
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number of parameters, these methods are usually considered intractable. In the
long run, pure random schemes cannot be expected to do better than enumerative
approaches. They must be distinguished from the randomized methods such as
simulated annealing (Farmer, 1992) or genetic algorithms (Holland, 1992) that
use random choice as a tool in a directed search process. Unlike gradient-based
methods, randomized approaches are theoretically capable to reach the global
optimum, although they converge slowly.

In this paper, we focus on optimization problems specifically designed for
the geostatistical treatment of permeability or porosity within reservoirs. A regain
of interest in geostatistical inversion and practical needs have brought to fashion
problems with a huge number of parameters (permeability or porosity values);
discretization of reservoir models involves commonly more than 106 gridblocks.
Additionally, prior geological knowledge about the reservoir structure is expressed
as a geostatistical constraint that must be integrated into the conditioning process.
Thus, conditional reservoir models have to be consistent with the observed produc-
tion data, but also with the prior constraint. These issues motivated very specific
developments in optimization. de Marsily and others (1984) elaborated the pilot
point method involving a gradient-based search. Hu (2000a) introduced another
geostatistical parameterization technique called the Gradual Deformation Method
(GDM). As the pilot point method, the GDM can handle reservoir models with
many parameters.

Our subject is concerned with the coupling of the gradual deformation tech-
nique with optimization processes. Such an approach is hybrid because it involves
a random search crossed with gradient techniques. First, we give a brief recap
of the GDM and its extension, the Enhanced GDM. The latter was developed to
assess uncertainties in production forecasts. Then, we investigate whether and how
fast optimizations based on the gradual deformation converge to the global opti-
mum. In parallel, we analyze the changes in the spatial variability of realizations
all along the optimization processes. Last, we consider a peculiar optimization
approach whereby minimization is carried out through the Levenberg–Marquardt
algorithm.

DEFINITION OF THE OBJECTIVE FUNCTION

Reservoir history matching consists in estimating a permeability or porosity
grid, that is a reservoir model, from production data, and possibly prior geological
knowledge. We focus on methods where the grid is considered as a realization of
a random function.

Early approaches placed the emphasis on providing a good fit only between
the simulated and the measured production data. Basically, a reservoir model is
proposed as a starting guess. Then, a fluid flow is simulated to mimic the production
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data. The suitability of the proposed modely is measured by an objective function
expressed as

J(y) =
∑

i

wi
(
dsimi − dobsi

)2
(1)

wherewi are weighting coefficients,dobsi are the observable data, anddsimi are the
simulated data. Ifg is the operator from the unconditional realization space to the
data space, we have:

dsim = g(y) (2)

After analyzing the computed data, the model is adjusted until it reproduces the
observed data as much as possible. The actual reservoir model should be the
minimizer of the objective function. However, such optimization problems tend
to be ill-posed (Sun, 1994). First, an accurate solution may not exist when there
are measurement errors or modeling errors. Second, several reservoir models may
yield similar production data. Last, even if a solution exists and is unique, it is
still inappropriate if it does not depend continuously on the input parameters. To
circumvent these difficulties, extra information is added into the objective function.
This process is called regularization (Neuman, 1973). The regularized objective
function is written as

J(y) =
∑

i

wi
(
dsimi − dobsi

)2+ α∑
i

vi
(
yi − y0i

)2
(3)

wherey0 is the reservoir model described from prior geological knowledge,vi are
weighting coefficients, andα is a regularization coefficient. It penalizes departure
from prior geological knowledge. Whenα tends to 0, the regularization term
vanishes and the problem may be ill-posed. The solution is the same as the one
derived from the basic objective function [Eq. (1)]. Whenα tends to infinity,
the problem is well-posed, but the influence of the observed data on the solution
becomes negligible. The regularized solution depends onα.

Inverse problem theory provides a general framework for incorporating prior
information into the objective function (Tarantola, 1987):

J(y) = 1

2
(g(y)− dobs)

tC−1
D (g(y)− dobs)+ 1

2
(y− y0)tC−1

Y (y− y0) (4)

The first term on the right-hand side, called the likelihood constraint, measures the
mismatch between the simulated and the observed data. The second one, referred
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as the prior constraint, evaluates the discrepancy between reservoir modely and
prior reservoir modely0. Covariance matrixCD quantifies the experimental and
theoretical uncertainties while covariance matrixCY characterizes the uncertain-
ties in y0. Minimizing Eq. (4) leads to a solutiony so thatg(y) is close todobs

andy is close toy0. The minimizer is the maximum likelihood point for the pos-
terior probability density function. This function measures the likelihood of built
reservoir models. It depends on the likelihood and the prior probability density
functions.

Computing J may be difficult, because two covariance matrices must be
inverted.CD is assumed to be diagonal: obtaining its inverse is straightforward.
However, determiningC−1

Y is all the more difficult sincey is discretized over
many gridblocks. Two classes of methods have been developed to overcome this
difficulty, both of them aiming at reducing the number of parameters. The first
ones boil down to algebraic decompositions of covariance matrixCY (Reynolds
and others, 1995). The second ones mix more intimately geostatistics with inverse
problem resulting in geostatistical parameterization techniques. This led first to the
pilot point method (de Marsily and others, 1984). A gradient-based optimization
scheme is applied to a few selected points, termed the pilot points. Then, the optimal
perturbation determined for these points is propagated to the whole reservoir model
by kriging. The pilot point method allows both for considering many parameters
and for honoring the prior constraint. However, it is subject to numerical artifacts
and it cannot depart easily from the starting guess. More recently, Hu (2000a)
designed the GDM on which we focus in the following sections.

GRADUAL DEFORMATION METHOD

The GDM was initially developed for gradually changing Gaussian-related
stochastic reservoirs models while preserving their spatial variability (Hu, 2000a).
Then, it was extended to non-Gaussian reservoir models simulated from sequential
indicator (Hu, Blanc, and Nœtinger, 1999) and boolean (Hu, 2000b) algorithms.

The simplest gradual deformation scheme consists in combining two indepen-
dent Gaussian random functionsY1 andY2 with meany0 and identical covariances:

[Y(θ )− y0] = [Y1− y0] cos(θ )+ [Y2− y0] sin(θ ) (5)

This relation ensures thatY(θ ) is also a random Gaussian function with the same
mean and the same covariance asY1 andY2. Given two independent realizations
y1 andy2 of Y1 andY2, a continuous realization chainy can be described varying
the deformation parameterθ :

[y(θ )− y0] = [y1− y0] cos(θ )+ [y2− y0] sin(θ ) (6)
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Figure 1. Realization chain built from two constituent realizationsy1 andy2.
These two primary realizations are constituted of two independent components
drawn from N(2.5, 0.1). The center of the chain is mean realization.

As an example, the realization chain depicted in Figure 1 is derived from two
starting realizationsy1 andy2, both of them having two independent components
randomly generated from the normal probability density function with mean 2.5
and variance 0.1.

The gradual deformation principle can be extended to more than two inde-
pendent realizations. Let us considerS+ 1 independent realizations with meany0

and identical covariances, a realization chain is built from

[y(θi , i ∈ [1, S]) − y0] =
S∏

i=1

[y1− y0] cos(θi )

+
S∑

i=1

sin(θi )
S∏

j=i+1

cos(θ j )[yi+1− y0] (7)

whereθi are the deformation parameters (Roggero and Hu, 1998). Again,y is
characterized by meany0 and the same covariance as the combined realizations.

The main advantages of the GDM are the decrease in the number of parameters
and the preservation of the spatial variability while changing continuously the
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reservoir model. Whatever the number of gridblocks, the whole reservoir model is
modified by varying a few deformation parameters. Because of these properties, it
is attractive to integrate the gradual parameterization technique into optimization
processes. As reservoir models can be perturbed while being consistent with the
prior constraint, Hu (2000a) suggested reducing the objective function to the data
mismatch term [Eq. (1)]. It results in an optimization problem simpler to the
one pointed out by Eq. (4). The basic idea is to calibrate a reservoir modely to
production data by tuning the deformation parameters. A first realization chain
is built from the initial guess and randomly drawn complementary realizations
[Eq. (7)]. Then, a search process is implemented to determine the deformation
parameters minimizing Eq. (1). At this point, the fit may not be good enough. A new
starting realization chain is constructed from the optimal realization identified at the
end of the previous search process. Sometimes, it may be impossible to determine
deformation parameters decreasing the objective function. In these conditions, the
starting guess is unchanged. Then, new complementary realizations are drawn
randomly. A search process is run again to investigate the resulting realization
chain and minimize further the objective function. This approach is iterated until
a satisfactory matching is achieved.

SAMPLING THE CONDITIONAL REALIZATION SPACE
WITH THE GDM

Because of the simplicity of the previously described gradual deformation
scheme, several optimizations can be run to get as many constrained reservoir
models. All of them can be used to infer the posterior probability density function
and thus to assess uncertainties. However, to get reliable estimates, we must ensure
that the set of constrained reservoir models reflects properly the posterior proba-
bility density function. Le Ravalec-Dupin, Hu, and Nœtinger (2000) focused on
a few numerical experiments following the randomized sampling method (Oliver,
He, and Reynolds, 1996). They showed that GDM-based optimizations, when per-
formed as explained above, do not correctly sample the constrained realization
space. To alleviate this drawback, they added the prior constraint into the objective
function [Eq. (4)] although the gradual deformation parameterization was applied
during the whole optimization process. But then, the inverse of covariance matrix
CY had to be computed. They applied the following variable change referring to
the moving average method (Le Ravalec, Nœtinger, and Hu, 2000; Oliver, 1995):

y = y0+ f ∗ z (8)

y is a Gaussian random field with meany0 and covarianceCY. Function f re-
sults from the decomposition ofCY asCY = f ∗ f · z is a field of independent
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normal deviates with mean zero and variance one, that is a Gaussian white noise.
Substituting Eq. (8) into Eq. (4) results in the following expression for the objective
function:

J(z) = 1

2
(g(z)− dobs)

tC−1
D (g(z)− dobs)+ 1

2
ztz (9)

g is the operator mapping the Gaussian white noise space into the data space.
Clearly, accounting for the prior constraint in the objective function gets much
easier.

This approach, called the Enhanced GDM, still allows for decreasing the
number of parameters and ensures consistency with the prior constraint. In addition,
full formulation of the objective function renders the problem well-posed and leads
to proper sampling of the constrained realization space (Le Ravalec-Dupin, Hu,
and Nœtinger, 2000).

Basically, the sampling process is as follows. First, an unconditional obser-
vation data vectordus and an unconditional Gaussian white noisezus are randomly
drawn. Then, they are substituted into Eq. (9) in place ofdobs and the maximum
of the prior probability density function, that is,0.

J(z) = 1

2
(g(z)− dus)

tC−1
D (g(z)− dus)+ 1

2
(z− zus)

t(z− zus) (10)

Last, a conditional Gaussian white noise is obtained by minimizing this inter-
mediate objective function. To generaten conditional realizations, the process is
repeatedn times.

CONVERGENCE RATES

In this section, we investigate the convergence of the objective function when
using the gradual deformation parameterization. Such optimization processes mix a
random search scheme with gradient-based computations. They exploit the global
perspective of the Monte Carlo sampling as well as the local scope of gradient
techniques. In a sense, the Monte Carlo sampling finds the holes and the gradient
techniques go to their bottoms.

In the random approach, the global minimum is supposedly reached provided
the search is long enough. However, for most practical problems, this is too long.
Our purpose is to point out the benefits due to the combination with gradient-based
computations.
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Prior Constraint

We consider a basic problem characterized by the following objectivefunction:

J = 1

2
ztz (11)

wherez is a Gaussian white noise. This objective function is no more than the
prior constraint as expressed in Eq. (9).

We aimed at minimizing Eq. (11) using the simplest gradual deformation
scheme, that is by combining sequentially two sets of independent normal deviates.
At step (n+ 1), z(n+1) can be expressed as a function ofz(n) andza:

z(n+1)
2 (θ ) = z(n)

2 cos(θ )+ za sin(θ ) (12)

z(n) is the optimal Gaussian white noise identified when exploring thenth realiza-
tion chain; it is also the starting realization for the (n+ 1)th chain.za is a randomly
drawn Gaussian white noise. Subscript 2 indicates that the gradual deformation
process applies to two constituent Gaussian white noises.

The gradual deformation principle ensures that anyz(n+1) resulting from
Eq. (12) is a Gaussian white noise providedz(n) andza are independent Gaussian
white noises. In other words, the mean of the objective function should equalM/2,
whereM is the number of components ofz. However, the minimal value for the
objective function is clearly zero. The question addressed here is whether this min-
imal value is reached when performing optimization on the basis of the gradual
deformation parameterization.

We calculate the objective function against the number of explored realization
chains. At step (n+ 1), the objective function is written as

J(n+1)
2 (θ ) = 1

2

[
z(n+1)

2 (θ )
]t

z(n+1)
2 (θ ). (13)

The optimization process relies on the estimation of the optimalθ values minimiz-
ing the objective function for the successive realization chains. Integrating Eq. (11)
into Eq. (12) leads to

J(n+1)
2 (θ ) = r cos(2θ + ϕ)+ C (14)

with

r 2 = A2+ B2

cos(ϕ) = A/r
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sin(ϕ) = −B/r

A = (1/4)
[
z(n)t

2 z(n)
2 − zt

aza

]
B = (1/2)

[
zt

az
(n)
2

]
C = (1/4)

[
z(n)t

2 z(n)
2 + zt

aza

]
(15)

At step (n+ 1), the smallest value of the objective function isC − r . Asz(n)t

2 z(n)
2 =

2J(n)
2 and〈zt

aza〉 = M , we obtain〈C〉 = (1/4)(2J(n)
2 + M). Last, it can be shown

that 〈(zt
az

(n)
2 )2〉 = 2J(n)

2 . Thus, the mean value for the minimum of the objective
function at step (n+ 1) is

〈
J(n+1)

2

〉 = J(n)
2

2
+ M

4
−
√

1

16

(
2J(n)

2 − M
)2+ J(n)

2

2
(16)

As far asM is finite, the resulting sequence is decreasing, monotonous, and posi-
tive. It can be easily shown that it converges to 0. Figure 2 compares this sequence
with experimental computations performed for given startingz realizations. The
experimental results are derived from the minimization of the objective function
for successively explored realization chains. The experimental results (Fig. 2, left)
are in a good agreement with the theoretical ones (Fig. 2, right). The objective
function computed for the successively generated Gaussian white noisesza is also
plotted in Figure 2 (left). The mean value for this objective function isM/2. None

Figure 2. Objective function against the number of investigated realization chains for Gaussian white
noises withM components. Comparison of the experimental calculations (left) with the theoretical
ones (right). Objective function for the complementary realization is added in the left plot (points on
the top).
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of the drawnza produces a strong decrease in the objective function. The iterative
objective function decrease is fully driven by the gradual combination process.
Last, because the objective function converges to 0, Eq. (14) and (15) show thatθ

tends toward 0 as the number of investigated realization chains increases.
The asymptotic behavior of the objective function is characterized assuming

that the objective function gets much smaller thanM at stepn:

J(n+1)
2 ≈ J(n)

2

(
1− 1

M

)
(17)

This optimization technique exhibits an exponential convergence rate:

J2 ∝ exp
(
− n

M

)
(18)

It was found experimentally that the convergence rate is speeded up when the
reservoir is divided into subregions (Le Ravalec-Dupin and others, 2000) and when
the gradual deformation process is based upon the combination of more than two
realizations (Roggero and Hu, 1998). In the first case, a deformation parameterθ

is attributed to every subregion. The improvement results from the decrease of
components associated to a single deformation parameter. If the reservoir model
is divided intoSsubregions with the same number of gridblocks, the convergence
rate becomes

J2 ∝ exp

(
−nS

M

)
(19)

Let us investigate more precisely the second deformation scheme. We consider the
same problem as above [Eq. (11)], but the gradual deformation process is developed
for three Gaussian white noises instead of two. Equation (12) is rewritten as

z(n+1)
3 (θa, θb) = z(n)

3 cos(θa) cos(θb)+ za sin(θa) cos(θb)+ zb sin(θb)

= [z(n)
3 cos(θa)+ za sin(θa)

]
cos(θb)+ zb sin(θb) (20)

Subscript 3 stands for “combining three realizations.” The realization chain de-
pends on three realizations, that is two deformation parameters denotedθa andθb.
z(n) is the starting Gaussian white noise at step (n+ 1) while za andzb are two
randomly drawn Gaussian white noises. The first bracketed term on the right-hand
side is equivalent to Eq. (12). It is convenient to define

z(n+1)
3 (θa) = z(n)

3 cos(θa)+ za sin(θa) (21)
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Introducing Eq. (21) into Eq. (20) provides

z(n+1)
3 (θa, θb) = z(n+1)

2 (θa) cos(θb)+ zb sin(θb) (22)

Again, this expression is similar to Eq. (12), but the firstz vector depends now on
deformation parameterθa. An approach similar to the one discussed above leads to

J(n+1)
3 (θa, θb) = r (θa) cos(2θb+ ϕ(θa))+ C(θa) (23)

Again, the mean objective function expresses as

〈
J(n+1)

3

〉 = J(n+1)
2

2
+ M

4
−
√

1

16

(
2J(n+1)

2 − M
)2+ J(n+1)

2

2
(24)

This expression is close to Eq. (16), but the sequence is defined relatively to the
number of combined realizations. We verify that the greater the number of com-
bined realizations, the smaller the objective function (Fig. 3).

The convergence rate is strongly influenced by the number of combined re-
alizations. If the gradual deformation process involves (S+ 1) realizations, that is

Figure 3. Objective function against the number of investigated realization chains
for different gradual deformation schemes.S+ 1 is the number of realizations that
are combined together to form a chain.
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Sdeformation parameters, the convergence rate is given by

J ∝ exp

(
−nS

M

)
(25)

Combining (S+ 1) realizations or dividing the reservoir intoSsubregions is equiv-
alent in terms of convergence.

General Formulation

The general problem consists in minimizing Eq. (9). For simplicity, the op-
eratorg is assumed to be linear. In such condition, it is shown heuristically that

〈
J(n+1)

2

〉− 〈J(n)
2

〉 = −1

2

〈(
z(n)

2 − z̃
)t

C−1C−1
(
z(n)

2 − z̃
)〉

〈Tr(C−1)〉 (26)

z̃ is the minimizer of Eq. (9) andC is the covariance matrix describing uncertainties
in conditional reservoir models. It is given by (Tarantola, 1987)

C−1 = GtC−1
D G+ I (27)

where sensitivity matrixG consists of the derivatives ofg and I is the identity
matrix. As (C−1C−1) ≤ C−1, the following convergence rate can be pointed out:

J2 ∝ exp

(
− n

〈Tr(C−1)〉
)

(28)

Tr(C−1) reduces toM when the objective function equals the prior constraint
term [Eq. (11)].

DISCUSSION

Integrating the gradual deformation into optimization procedures leads to hy-
brid optimization methods. They imply random searches because of the randomly
drawn complementary realizations. However, those ones are not generated any-
how: they depend on prior geological information. Thus, the resulting realization
chains explore a space with a priori highly suitable realizations. As investigation is
performed randomly, the global minimum can be achieved provided the search is
carried for a sufficiently longer time. However, we showed that such optimization
processes converge to the global minimum at least for linear problems. This im-
provement results from the combination of random search directions with gradient
based computations. For every realization chain, optimal deformation parameters
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Figure 4. Evolution of the objective function against the number of investigated realizations
when optimization is performed on the basis of the GDM and simulated annealing. Gaussian
white noises are constituted of 300 components.

are determined using gradients, making the search process more efficient. This
result is shown in Figure 2 (left). Over all the complementary realizations, none
could significantly reduce the objective function. However, a smooth decrease was
observed for the objective function: it was fully driven by the optimal combination
computed for the successive chains. For comparison, Eq. (11) is also minimized
on the basis of simulated annealing that is a randomized technique without any
gradient. Figure 4 shows that the objective function reaches the value 10 in about
500 iterations with a gradual deformation based optimization and in more than
100,000 iterations with simulated annealing.

Besides, the studied example [Eq. (10)] point out that gradual deformation
based optimizations can achieve global minima for linear problems. It also raises
questions about the preservation of the spatial variability. A primary idea was that
realizations built from gradual deformation exhibit the same spatial variability as
the independent constituent realizations. Thus, combining Gaussian white noises
should yield a Gaussian white noise. However, the described optimization process
converged to a zero realization whose variability differs a lot from the expected
one. Similarly, we matched a onedimensional Gaussian covariance realization by
combining successively exponential covariance realizations (Fig. 5). Again, their
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Figure 6. Behaviors displayed by the objective function against the number of investigated
realization chains.

spatial structures are very different. Gaussian covariance realizations are smooth
while exponential covariance realizations look more erratic. As can be seen in
Figure 5, the final exponential covariance realization could reproduce the spatial
structure of the Gaussian covariance realization.

Strictly speaking, optimizations based on the gradual deformation method do
not allow for preserving the spatial structure, but this remark deserves some details.
The discussed method can converge to any kind of minimizer provided the number
n of investigated realization chains tends to infinity and the number of components
M of the realization is finite [Eq. (16)]. As shown in Figure 6, the objective func-
tion displays two distinct behaviors. Forn > M , the objective function becomes
negligible with respect toM and decreases exponentially. The spatial structure is
dictated by the minimizer. If its spatial variability is not the same as the prior one,
the iterative gradual deformation process will not preserve the prior structure. For
n < M , the objective function decreases faster, but the spatial structure stays close
to the prior one.

These results may look dubious since the basic principle for gradual de-
formation is the spatial structure preservation. As stated above, Eq. (6) ensures
that y(θ ) has the same mean and covariance asy1 andy2 whateverθ , provided
y1 andy2 are independent. In practice, realizations are finite and never perfect.
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Thus, they do not have the same mean, the same covariance and above all, they
are never independent. These numerical artifacts are negligible for smalln, but
grow increasingly withn. They finally yield to departure from the prior spatial
structure when the minimizer is not consistent with the prior spatial variability.
Equation (16) shows that the spatial structure can be modified except whenM is
infinite.

These results do not mean that the gradual deformation parameterization
should be avoided. Indeed, it still allows for reducing strongly the number of
parameters to be optimized and for investigating successively chains constituted
of a priori highly suitable realizations. In addition, we observed experimentally that
for reservoir optimizations, the number of investigated realization chains is much
smaller than the number of gridblocks. In such conditions, it may be considered
that optimizations based on the gradual deformation parameterization preserve the
spatial variability of the starting reservoir model.

Last, we emphasized that expressing the objective function againstz instead of
y is suitable [Eq. (9)]. The prior constraint becomes simpler because the covariance
matrix for Gaussian white noisesz is the identity matrix. This formulation also
conciliates two common ideas in reservoir optimization. The prior term may be
regarded as an objective the same way as the data mismatch term, but also as
a regularization term. The Taylor expansion of the objective functionJ around
realizationzi is:

J(zi +1z) = J(zi )+∇ J t1z+ 1

2
1ztH1z (29)

Higher order terms are ignored. Gradient vector∇ J and Hessian matrixH are eval-
uated at pointzi . Differentiating this equation leads to an iterative determination
of the minimizer (Sun, 1994):

zn+1 = zn − H−1
n ∇ Jn (30)

Subscriptn indicates that vectors or matrices are calculated at pointzn. If Eq. (9)
was restricted to the data mismatch term,∇ J andH would equal:

∇ Jn = Gt
nC−1

D (Gnzn − dobs)
(31)

Hn = Gt
nC−1

D Gn

whereGn are the derivatives ofg estimated at pointzn. The last equality holds
because second-order terms are assumed to be very small whenzn is not too far
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from the minimizer. In such conditions, Eq. (30) is rewritten as:

zn+1 = zn −
(
Gt

nC−1
D Gn

)−1∇ Jn (32)

The resulting sequence is known as the Gauss–Newton algorithm. WhenHn is
near singular, the Gauss–Newton direction cannot be calculated. The Levenberg–
Marquardt method avoids this difficulty. The previous relation is turned into

zn+1 = zn −
(
Gt

nC−1
D Gn + αI

)−1∇ Jn (33)

whereα is a penalty coefficient andI is the identity matrix. Ifα is set to 1, Eq. (33)
is just the same as the one we would have obtained at once if we had considered
the whole objective function given by Eq. (9). In these conditions, there is no need
to include explicitly the prior constraint term into the objective function as far as
the optimization process is implemented with the Levenberg–Marquardt method.
It is appropriate becauseJ is expressed as a function of the Gaussian white noise
z instead of the realizationy.

CONCLUSION

We showed that at least for linear problems, optimizations based on gradual
deformation converge exponentially to the global minimum. This result cannot be
extended to nonlinear problems. However, if the search is iterated long enough, the
method is theoretically capable to achieve the global minimum. Actually, gradual
deformation based optimizations take advantage of the crossing of random search
with gradient computations. Random search allows for investigating new domains
with minima and for going out of them when the minima are local while gradients
lead to the minimum in a given domain.

Additionally, we pointed out that optimizations based on the GDM do not
preserve the spatial structure. When the number of investigated realization chains
is small compared to the number of components of the reservoir model as it is
usually for reservoir optimization, the prior spatial structure is approximately kept,
although fluctuations can occur. For greater chain numbers, changes may be more
significant: they depend on the spatial structure of the minimizer. This unexpected
behavior depends on the realizations used to describe reservoir models. As they
are finite and not perfect, they introduce a bias yielding to departure from the prior
spatial structure.

Last, to ensure the proper sampling of the posterior probability density func-
tion, Le Ravalec-Dupin, Hu, and Nœtinger (2000) suggested adding the prior con-
straint into the objective function. When running the optimization process on the
basis of the Levenberg–Marquardt algorithm, this additional term can be canceled
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as far as the objective function depends not on the reservoir model itself, but on
its underlying Gaussian white noise.
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