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1. Introduction

The stability analysis of a wedge formed by two intersecting discontinuities is often
encountered in engineering practice. When establishing spatial force equilibrium
equations for this problem, the forces acting on each discontinuity plane involve
three unknowns, that is, the magnitude of normal force, the magnitude and di-
rection of shear force (tangential force). For two discontinuities there are 6 un-
knowns. The magnitude of factor of safety is an additional unknown. However,
the number of force equilibrium equations for a wedge is only three. If assuming
that the forces on each of two discontinuity planes follow the Mohr-Coulomb
failure criterion, then two additional equations are available. Therefore, there are
a total of 5 equations with 7 unknowns. Thus, the wedge problem is statically in-
determinate and two assumptions must be made to render this problem statically
determinate.

Generally, the conventional method for the wedge stability analysis based on
the limit force equilibrium assumes the direction of potential sliding of a wedge is
parallel to the line of intersection (Wittke, 1967; Hoek et al., 1973; Hoek et al.,
1973; Hoek and Bray, 1977; Jaeger, 1971; Goodman, 1995; Low 1997; Kumsar et
al., 2000). The assumption made in the conventional method actually implies that
the direction of shear force is also parallel to the line of intersection. Using the
upper bound method, Chen (1999) and Chen et al. (1999) questioned the assump-
tion and found that the factor of safety for a wedge of cohesive material (zero
friction angle) is the same as obtained from the conventional method. However,
for a wedge with cohesionless material, the di¤erence in the factor of safety be-
tween the upper bound method and the conventional method is obvious.

This paper deals with a method for calculation of the factor of safety by using
the limit equilibrium method and considering the dilatancy of discontinuities on
which the wedge rests. The direction of shear force on each discontinuity plane is



determined by considering the dilative movement along the discontinuous plane.
The variation of factor of safety with a dilative coe‰cient (or the direction of
shear force) is also investigated.

2. Wedge Geometry and Forces Acting on the Wedge

In this paper, a wedge formed by two intersecting discontinuity planes is con-
sidered (as shown in Fig. 1). For clarity, the wedge itself is taken away as shown in
Fig. 1. The flatter discontinuity plane is identified as Plane 1 and the right steeper
as Plane 2. The orientations of top surface, slope surface, Planes 1 and 2 are rep-
resented by their dip directions and dip angles respectively. The height of the
wedge, H, is defined as the di¤erence in elevations at Point A and Point B. A local
cartesian coordinate system (h, q, g) is defined as follows: the q-axis is in the di-
rection of the line of intersection of the two discontinuities; the g-axis, which is
lied in the vertical plane through the q-axis, is perpendicular to q-axis; the h-axis is
perpendicular to the plane through the q-axis and g-axis. The unit vectors along
axes h, q and g are denoted by the same bold lower-case letters h, q and g respec-
tively. Their direction cosines in (x, y, z) coordinate system are denoted by (hx, hy,
hz), (qx, qy, qz) and (gx, gy, gz), respectively.

The forces acting on the wedge are shown in Fig. 1 and summarised as follows:

– The normal reactions N1 and N2 applied on discontinuity Planes 1 and 2 re-
spectively.

– The shear forces S1 and S2 acting on the discontinuity Planes 1 and 2 respec-
tively. The water pressures P1 and P2 are considered on Planes 1 and 2.

– The weight of the wedge is denoted as G, direction cosines of which are
ð0; 0;�1Þ:

– A total external force T, which is the resultant of all external forces acting on
the surfaces of the wedge regardless of their distribution is considered. The di-
rection of T is specified in advance in the analysis. The unit vector in the direc-
tion of T and the direction cosines are denoted by bold lower-case letter t and
(tx, ty, tz), respectively.

Fig. 1. Isometric view of a wedge and the forces acting on the wedge
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For a specified geometry of a wedge and distribution of external forces, there
are totally 7 unknowns in the analysis of wedge stability using the limit force
equilibrium method. These magnitudes of N1, N2, S1 and S2, directions of S1 and
S2, and factor of safety F. However, there are only 5 equations, that is, 3 spatial
static force equilibrium equations and two equations of the Mohr-Coulomb failure
criterion relating the normal force and the shear force.

3. Determination of Direction of Potential Sliding

The shear behaviour of discontinuity is concerned in rock mechanics practice
(Brady and Brown, 1985; Wittke, 1990). Experimental results have shown that, in
the process of shearing, a discontinuity plane exhibits strong dilatancy due to the
roughness of discontinuity surfaces. The results indicate that the upper rock mass
moves upward during shearing represented by relative velocity V (see Fig. 2),
which inclines at an angle of dilatancy, c, from the lower rock mass on the dis-
continuity surface in average. It is generally advantageous to describe the relative
displacement at a discontinuity plane in terms of the normal and shear strain rates
or relative velocity (Wittke, 1990). Generally, the angle of dilatancy c ranges from
zero to the friction angle f ð0aca fÞ on the discontinuity surface or joint. In the
case of two-dimensional shearing of discontinuity, the direction of frictional shear
force on a block, which is dependent on the relative movement of discontinuity,
is parallel to the direction of the relative velocity projected on the discontinuity
surface (180� from the projected direction). Similarly, the extension of the two-
dimensional observation to a three-dimensional case suggests that the direction of
the frictional shear force on the wedge is parallel to, but 180� from the direction of
the projection of the relative velocity V on the discontinuity plane. Therefore, the
shear force, normal to discontinuity plane and relative velocity should lie on the
same plane.

Figure 3 shows typical movement of a wedge and the wedge velocity V, which
inclines at angle of dilatancy c1 with respect to the left discontinuity Plane 1 and at
c2 to the right discontinuity Plane 2. The components of the velocity vector of the
wedge in the (x, y, z) coordinate system are denoted by ðvx; vy; vzÞ. Likewise, the
unit vector n1 normal to the left discontinuity Plane 1 is denoted by ðn1x; n1y; n1zÞ;
the unit vector n2 normal to the right discontinuity Plane 2 is denoted by

Fig. 2. Relative displacement of the discontinuity plane under shear loading
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ðn2x; n2y; n2zÞ. The wedge velocity V inclined at the angle of dilatancy c1 to the left
discontinuity surface indicates the angle between the velocity vector V and normal
vector n1 to be p=2� c1, which yields

FðV � n1Þ ¼ cosðp=2� c1Þ ¼ sinc1: ð1Þ

Similarly, the wedge velocity V inclined at angle of dilatancy p=2� c2 with re-
spect to normal vector n2 gives

FðV � n2Þ ¼ sinc2; ð2Þ

where FðV � niÞ can be determined by

FðV � niÞ ¼
vx � nix þ vy � niy þ vz � nizffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2x þ v2y þ v2x

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

ix þ n2
iy þ n2

iz

q i ¼ 1; 2: ð3Þ

In general, the magnitude of the velocity of a wedge, which is independent of
the factor of safety or other variables, is assumed to be unit. Thus

jV j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y þ v2z

q
¼ 1: ð4Þ

Based on the given value of angle of dilatancy, the three components vx, vy and
vz of velocity V can be determined by solving the system of non-linear Eqs. (1), (2)
and (4). It should be mentioned here that there are two sets of solutions for the
velocity due to Eq. (4). The right one should render potential sliding of the wedge
downward and outward rather than that upward and inward.

4. Determination of Direction of Shear Forces and

Calculation of Factor of Safety F

4.1 Directions of Shear Forces

Two dilative coe‰cients h1, h2, which relate the angles of dilatancy c1 and c2 to
the friction angles f1 and f2 on the discontinuity surfaces, are defined as

Fig. 3. Velocity diagram of the wedge
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h1 ¼ c1=f1; ð5Þ

h2 ¼ c2=f2: ð6Þ

For a set of given dilative coe‰cients h1 and h2, the unit vector of velocity
Vðvx; vy; vzÞ can be obtained from Eqs. (1), (2) and (4). The unit vector
ðS1x;S1y;S1zÞ of the upward frictional shear force on the left discontinuity surface
of the wedge is 180� from the direction of projection of unit vector of velocity V on
the left discontinuity surface, and given by vector analysis as

S1 ¼
V 	 n1 	 n1
jV 	 n1 	 n1j

: ð7Þ

Similarly, the unit vector ðS2x;S2y;S2zÞ of upward shear force on the right
discontinuity surface is given by

S2 ¼
V 	 n2 	 n2
jV 	 n2 	 n2j

: ð8Þ

In general, the factor of safety, F, is defined as

F ¼ c

ce

¼ tan f

tan fe

; ð9Þ

where c and f denote cohesion and friction angle on the discontinuity surfaces (or
joints) respectively, ce and fe are the mobilised cohesion and friction angle.

Correspondingly, two mobilised dilative coe‰cients, he1, he2, which relate the
angles of dilatancy c1 and c2 to the mobilised friction angles fe1 and fe2, are de-
fined as

he1 ¼ c1=fe1; ð10Þ

he2 ¼ c2=fe2: ð11Þ

Theoretically, the mobilised dilative coe‰cients, he1, he2, which increase with the
increase in dilative coe‰cients, h1, h2 and come to a value of 1 prior to h1, h2. This
indicates that 0a he1, he2a 1. The value 1 of he1, (or he2) means that the material
follows an associated flow rule.

4.2 Determination of Factor of Safety F

Referring to Fig. 1, three force equilibrium equations can be established along the
three axes of local coordinate system (h, q, g) as follows.

Force equilibrium equation in the direction of h-axis:

ðN1 þ P1Þl1 þ ðN2 þ P2Þl2 þ S1l3 þ S2l4 þ Tl5 ¼ 0; ð12Þ

where l1 ¼ n1 N h ¼ n1x � hx þ n1y � hy þ n1z � hz, l2 ¼ n2 N h ¼ n2x � hx þ n2y � hy þ
n2z � hz, l3 ¼ S1 N h ¼ S1x � hx þ S1y � hy þ S1z � hz, l4 ¼ S2 N h ¼ S2x � hx þ S2y � hy þ
S2z � hz, l5 ¼ t N h ¼ tx � hx þ ty � hy þ tz � hz.

Force equilibrium equation in the direction of q-axis:

ðN1 þ P1Þm1 þ ðN2 þ P2Þm2 þ S1m3 þ S2m4 þ Tm5 ¼ Gqz; ð13Þ
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where m1 ¼ n1 N q ¼ n1x � qx þ n1y � qy þ n1z � qz, m2 ¼ n2 N q ¼ n2x � qx þ n2y � qy þ
n2z � qz, m3 ¼ S1 N q ¼ S1x � qx þ S1y � qy þ S1z � qz, m4 ¼ S2 N q ¼ S2x � qx þ S2y �
qy þ S2z � qz, m5 ¼ t N q ¼ tx � qx þ ty � qy þ tz � qz.

Force equilibrium equation in the direction of g-axis:

ðN1 þ P1Þk1 þ ðN2 þ P2Þk2 þ S1k3 þ S2k4 þ Tk5 ¼ Ggz; ð14Þ

where k1 ¼ n1 N g ¼ n1x � gx þ n1y � gy þ n1z � gz, k2 ¼ n2 N g ¼ n2x � gx þ n2y � gy þ
n2z � gz, k3 ¼ S1 N g ¼ S1x � gx þ S1y � gy þ S1z � gz, k4 ¼ S2 N g ¼ S2x � gx þ S2y � gy þ
S2z � gz, k5 ¼ t N g ¼ tx � gx þ ty � gy þ tz � gz.

Generally, magnitudes of the shear forces S1, S2 on the discontinuity planes
are related to the normal forces N1, N2 on the same discontinuity planes by the
Mohr-Coulomb failure criterion, that is,

S1 ¼ ce1A1 þ N1 tan fe1; ð15Þ

S2 ¼ ce2A2 þ N2 tan fe2: ð16Þ

In Eqs. (15) and (16) A1 and A2 are the areas of the left and right discontinuity
surfaces respectively.

Substituting of Eqs. (15) and (16) into Eqs. (12), (13) and (14) and rearranging
yields

a1N1 þ a2N2 þ ða3 þ l1N1 þ l2N2ÞF þ a4 ¼ 0; ð17Þ

where a1 ¼ tan f1 � l3, a2 ¼ tan f2 � l4, a3 ¼ P1 � l1 þ P2 � l2 þ T � l5, a4 ¼ c1 � A1 �
l3 þ c2 � A2 � l4.

b1N1 þ b2N2 þ ðb3 þ m1N1 þ m2N2ÞF þ b4 ¼ 0; ð18Þ

where b1 ¼ tan f1 � m3, b2 ¼ tan f2 � m4, b3 ¼ P1 � m1 þ P2 � m2 þ T � m5 � G � qz,
b4 ¼ c1 � A1 � m3 þ c2 � A2 � m4.

d1N1 þ d2N2 þ ðd3 þ k1N1 þ k2N2ÞF þ d4 ¼ 0; ð19Þ

where d1 ¼ tan f1 � k3, d2 ¼ tan f2 � k4, d3 ¼ P1 � k1 þ P2 � k2 þ T � k5 � G � gz,
d4 ¼ c1 � A1 � k3 þ c2 � A2 � k4.

Note that the normal forces N1, N2 and factor of safety F are only involved in
Eqs. (17), (18) and (19), which are a system of nonlinear equations with variables
N1, N2 and F. These three unknowns can be determined by the general method of
solving a system of nonlinear equations (Press et al., 1988). Then, the mobilised
dilative coe‰cients, he1, he2, are determined by using Eqs. (10) and (11).

5. Hoek and Bray’s Example

The variation of the factor of safety with various combinations of dilative coe‰-
cients is investigated by using an example presented by Hoek and Bray (1977). The
wedge geometry and material strength parameters are listed in Table 1. Values of
the factor of safety determined by the present method are summarised in Table 2.
The variation of mobilised dilative coe‰cients, he1, he2, with dilative coe‰cients,
h1, h2, are also listed in Table 3 and Table 4, respectively.
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Table 1. Wedge geometry and material strength parameters

Plane Dip direction (�) Dip(�) Properties

Discontinuity 1 105 45 c1 ¼ 23:9 kN/m2 (500 lb/ft2), f1 ¼ 20�

Discontinuity 2 235 70 c2 ¼ 47:9 kN/m2 (1000 lb/ft2), f2 ¼ 30�

Slope surface 185 65 g ¼ 25:2 kN/m3 (160 lb/ft3),
gw ¼ 9:81 kN/m3 (62.5 lb/ft3)

Top surface 195 12 height ¼ 30.48 m (100 ft)

After Hoek and Bray (1977) and water pressure not considered.

Table 2. Variation of factor of safety F with dilative coe‰cients h1, h2

F h2 0.0 0.1 0.2 0.3 0.4 0.5 0.555
h1

0.0 1.846 1.863 1.877 1.889 1.898 1.905 1.907
0.1 1.857 1.873 1.887 1.898 1.906 1.913 1.915
0.2 1.866 1.882 1.895 1.906 1.914 1.919 1.921
0.3 1.874 1.889 1.902 1.912 1.919 1.924 1.926
0.4 1.881 1.896 1.907 1.917 1.923 1.927 1.929
0.5 1.886 1.900 1.911 1.920 1.926 1.929 1.930
0.534 1.888 1.902 1.913 1.921 1.927 1.930 1.930

Table 3. Variation of mobilised dilative coe‰cient he1 with dilative coe‰cients h1, h2

he1 h2 0.0 0.1 0.2 0.3 0.4 0.5 0.555
h1

0.0 0 0 0 0 0 0 0
0.1 0.180 0.182 0.183 0.184 0.185 0.186 0.186
0.2 0.363 0.365 0.368 0.370 0.372 0.372 0.373
0.3 0.546 0.550 0.554 0.557 0.559 0.560 0.561
0.4 0.731 0.736 0.740 0.744 0.746 0.748 0.749
0.5 0.916 0.922 0.927 0.832 0.934 0.936 0.936
0.534 0.979 0.986 0.991 0.995 0.999 1.000 1.000

Table 4. Variation of mobilised dilative coe‰cient he2 with dilative coe‰cients h1, h2

he2 h2 0.0 0.1 0.2 0.3 0.4 0.5 0.555
h1

0.0 0 0.174 0.351 0.530 0.709 0.890 0.988
0.1 0 0.175 0.353 0.532 0.712 0.893 0.992
0.2 0 0.176 0.354 0.534 0.715 0.896 0.995
0.3 0 0.177 0.355 0.536 0.717 0.898 0.998
0.4 0 0.177 0.356 0.537 0.718 0.899 0.999
0.5 0 0.177 0.357 0.538 0.719 0.900 1.000
0.534 0 0.178 0.357 0.538 0.719 0.901 1.000
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From Table 2, the factor of safety for the case of h1 ¼ h2 ¼ 0 ðhe1 ¼ he2 ¼ 0Þ
is 1.846, which is identical to that obtained by Hoek and Bray (1977). However,
when the angle of dilatancy is not equal to zero, but varies from zero to the
mobilised friction angle (0 < he1, he2 < 1), the value of the factor of safety varies
accordingly. The factor of safety, F, is equal to 1.846 (the minimum) at
h1e1 ¼ he1 ¼ 0:0. The F then slowly increases with the increase in the mobilised
dilative coe‰cients and arrives at the maximum value of 1.930 at he1 ¼ 1:0,
he2 ¼ 1:0 (h1 ¼ 0:534, h2 ¼ 0:555) (see Table 2). Since the change in mobilised
dilative coe‰cients means the change in the direction of shear forces on the dis-
continuity surfaces. This implies that the change in direction of shear forces has
considerable influence on the factor of safety. It is noted that he1 ¼ 1:0 and
he2 ¼ 1:0 mean that the joint materials follow an associated flow rule. The factor
of safety reaches the maximum value of 1.930 at he1 ¼ 1:0, he2 ¼ 1:0 (c1 ¼ fe1 and
c2 ¼ fe2) when using an associated flow rule. The directions of shear forces on
discontinuity surfaces corresponding to the maximum value of the factor of safety
can be determined. In this example, the angles between the directions of shear
forces on left and right discontinuity surfaces are 19.4� and 14.7� for he1 ¼ 1:0,
he2 ¼ 1:0 (h1 ¼ 0:534, h2 ¼ 0:555), respectively.

6. A Symmetrical Wedge

To further investigate the wedge problem, a wedge symmetrical in geometry is
analysed. The cohesion and friction angles associated with two slip surfaces are
the same. The wedge geometry and material strength parameters are listed in
Table 5. Values of the factor of safety determined by the present method are
summarised in Table 6.

From Table 6, the factor of safety obtained using the conventional method and
in the case of he ¼ h ¼ 0 using the present method is the same and equal to 1.229
with zero dilation. However, the maximum value of factor of safety is 1.4297 at
he ¼ 1:0 (h ¼ 0:733) where the angle between the shear force on the slip surface
and the line of intersection is 30.7�. The di¤erence in the values of the factor of
safety for the two cases is about 0.2. Accordingly, the factor of safety, F, increases
with the mobilised dilative coe‰cient, reaches the maximum at he ¼ 1:0 with fully
mobilised dilation.

Table 5. Geometry and strength parameters for a symmetrical wedge

Dip
Direction (�)

Dip (�) Cohesion
c (kPa)

Friction
angle f (�)

Left discontinuity surface 120 65 10 30 g ¼ 26:64 kN/m3

H ¼ 10.2 m
Right discontinuity surface 240 65 10 30
Top surface 180 0
Slope surface 180 90
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In addition, a three-dimensional finite element (FE) model has recently been
developed and used by the authors for analysis of the symmetrical wedge using
a commercial software (ABAQUS, 1998). Due to the symmetry in geometry of
wedge, only the right-hand half of the wedge is analysed. As shown in Fig. 4, the
wedge is divided into three parts:

(i) the wedge body itself above the slip planes – the main body of the wedge is
represented by solid elements and considered to be fully elastic, since we are
interested in stability only, not deformation.

(ii) the slip plane – the slip plane is simulated by a very thin layer of solid ele-
ments of a material that follows the Mohr-Coulomb criterion.

Table 6. Variation of factor of safety with h and he

Dilative
coe‰cient h

Mobilised dilative
coe‰cient he

Factor of
safety F

0.0 0.0 1.229
0.1 0.123 1.274
0.2 0.253 1.315
0.3 0.389 1.350
0.4 0.529 1.380
0.5 0.671 1.404
0.6 0.814 1.421
0.7 0.955 1.429
0.733 1.000 1.4297

Water pressure not considered.

Fig. 4. A three-dimensional finite-element model for the symmetrical wedge problem
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(iii) the base beneath the slip planes – the base is simulated as a rigid body and
can be simplified as fixed supports since we are interested in stability only.

The nodes on the symmetrical plane are not allowed to move in the x direction
(numbered as 1). A value of the factor of safety of the wedge problem is deter-
mined when the normal and tangential components of reaction forces of the wedge
base node forces along the two slip planes fully satisfy the Mohr-Coulomb failure
criterion for a given combination of cohesion and friction angle of the slip plane
material.

For the symmetrical wedge problem with c ¼ 10 kPa and f ¼ 30�, the factor of
safety determined by the FE analysis is 1.430 very close to 1.4297 at he ¼ 1:0 using
the present method. The angle between the shear force and line of intersection is
about 29.9� using the FE method, which is also close to 30.7� determined by the
proposed method. The results obtained by the three-dimensional finite-element
analysis support the proposed simple method in two aspects: (a) the direction of
the shear force inclines at a certain angle with respect to the line of intersection
and (b) the factor of safety is greater than that obtained by the conventional
method for wedge analysis if dilation is not zero.

7. Conclusions

Based on the results and discussion presented above, the following conclusions
may be drawn:

– The factor of safety, F, varies for di¤erent combination of he1 and he2 (or
mobilised dilation angles). The F has the minimum value for he1 ¼ 0 and
he2 ¼ 0 and is the same as that obtained using the conventional method. The F

reaches the maximum value for he1 ¼ 1 and he2 ¼ 1. The di¤erence in the values
of the factor of safety for (a) he1 ¼ 1 and he2 ¼ 1 and (b) he1 ¼ 0 and he2 ¼ 0 is
apparent.

– The factor of safety is dependent on the directions of shear forces on the dis-
continuities and the dilation angle of the discontinuities.

– The conventional method assuming the direction of shear force is in the direc-
tion the line of intersection, to some extent, underestimates the factor of safety if
the dilation exists.

– The proposed method is a simple method for wedge analysis when considering
the dilatancy of the discontinuities.

It shall be pointed out that the dilatancy at the joints or the discontinuity is de-
pendent on the e¤ective surface morphology and may be anisotropic (Aydan et al.,
1996). The treatment of the dilatancy in a way similar to soil mechanics in this
paper is a phenomenological and simple approach without consideration of the
surface morphology. However, the work done by Aydan et al. (1996) is very val-
uable. It is thought that the proposed method may be extended to consider the
anisotropic dilatancy as studied by Aydan et al. (1996) in a future study.
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