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Abstract

In this paper we present an analytical formulation of the derived distribution of peak flood and maximum annual peak flood,
starting from a simplified description of rainfall and surface runoff processes, and we show how such a distribution is useful in
practical applications. The assumptions on rainfall dynamics include the hypotheses that the maximum storm depth has a
Generalized Pareto distribution, and that the temporal variability of rainfall depth in a storm can be described via power—law
relationships. The SCS-CN model is used to describe the soil response, and a lumped model is adopted to transform the rainfall
excess into peak flood; in particular, we analyse the influence of antecedent soil moisture condition on the flood frequency
distribution. We then calculate the analytical expressions of the derived distributions of peak flood and maximum annual peak
flood. Finally, practical case studies are presented and discussed. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Antecedent soil moisture condition; Derived distribution; Extreme event; Generalized Pareto; Maximum annual peak flood; Peak
flood

where a variable Y = Y(X) is functionally related to a
random vector X, whose components are random
variables with joint density function fx and joint distri-
bution function Fx. Due to the randomness of X, also

1. Introduction

The dynamics of flood frequency is historically
analysed through the determination of the derived

flood frequency distribution via a simplified represen-
tation of rainfall and runoff processes. This approach
follows the route proposed by Eagleson (1972), who
first developed the idea of deriving flood statistics
from a simplified schematization of storm and basin
characterization. Indeed, the mechanism of derived
distribution is well established in probability theory,
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Y is expected to be a random variable, with distribu-
tion function Fy given by, fory € R :

Jx(x)dx

{x:Y(x)=y}

Fy(y) = P{Y(X) = y} :J

For instance, Y may represent the peak flow rate, and
the components of X may include, e.g. soil and
vegetation characteristics parametrized via both deter-
ministic and random variables.

This route can be followed by either analytical deri-
vation of the distribution function (Eagleson, 1972,
1978; Wood, 1976; Klemes, 1978; Cordova and

0022-1694/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S0022-1694(02)00025-2



246 C. De Michele, G. Salvadori / Journal of Hydrology 262 (2002) 245-258

Rodriguez-Iturbe, 1983; Diaz-Granados et al., 1984;
Wood and Hebson, 1986; Raines and Valdes, 1993,
among others), or via the statistical moments using
the second-order second-moment approximation
(SOSM) of extreme flood flows (Robinson and Siva-
palan, 1997a). The first approach provides complex
analytical formulations which may require numerical
methods for the computations. The second one gives
approximate estimates of the statistical moments of
maximum annual flood, useful for calculating the para-
meters of the distributions of interest; its practical
applicability is paid in terms of the requirement of
the existence of these moments. Alternatively, Monte
Carlo methods can be run to estimate either flood quan-
tiles or the moments (Sivapalan et al., 1990; Robinson
and Sivapalan, 1997b). Accordingly, the derived distri-
bution approach is an attempt to provide a physically
based description of flood processes with an acceptable
computational effort for practical applications: often, a
simplified description of the physical processes is a
necessity in order to obtain mathematically tractable
models. Indeed, the derived flood frequency distribu-
tion approach provides an attractive and alternative
solution for ungauged catchments; in particular, given
the explicit use of physically meaningful basin para-
meters, the impact of various land use changes on flood
magnitude and frequency can be directly investigated.

The targets of this paper are: (i) derive the analy-
tical expression of the distributions of peak flood and
maximum annual peak flood using simple, but physi-
cal, assumptions on rainfall dynamics and catchment
response, in order to provide a formulation useful in
practical applications; (ii) analyse the influence of
antecedent soil moisture condition (AMC) on flood
frequency distribution, and calculate the derived
distribution of peak flood conditioned by the AMC
statistical law.

In the next sections the dynamics of rainfall is
described. It is represented by maximum storm
depth for a fixed duration, and the corresponding
random variable is given a Generalized Pareto (GP)
distribution; we also show how proper power—law
relationships for the position and the scale parameters
of the GP law may yield a scaling behaviour. Introdu-
cing the SCS-CN method as a model for direct rainfall
excess, we derive the distribution of the effective rain-
fall. Then, using the distribution of the rainfall excess,
and a lumped model to transform the rainfall excess

into peak flood, we obtain the distribution of peak
flood, and consequently the distribution of maximum
annual peak flood. The derived (asymptotic) beha-
viour shows that a Generalized Extreme Values
(GEV) law may account for the dynamics of the
process for large values of the variable. Ad hoc tech-
niques for estimating specific parameters are also
shown in Appendix A. Following Wood (1976), and
using the SCS-CN method to transform the rainfall in
excess rainfall, we incorporate the probability distri-
bution of AMC into the flood frequency distribution,
and we illustrate the importance of AMC knowledge
for the determination of flood quantiles. Finally, a
model application is given.

2. Derived flood frequency distribution
2.1. The rainfall model

The rainfall storm is represented here as the maxi-
mum rainfall depth observed in a given time period
within the considered storm. This is different from
the canonical Poisson Rectangular Pulses (PRP)
model, introduced by Eagleson (1972) and widely
used in literature, where the storm event is described
by an average intensity and an average duration, both
exponentially distributed; however, such a model is
unable to describe the observed scaling properties of
temporal rainfall for extreme events (Rodriguez-Iturbe,
1986; Burlando and Rosso, 1993). On the one hand, the
present model simplifies the representation of the
phenomenon and, on the other hand, it captures the
fundamental components of the precipitation useful
to represent the flood frequency distribution.

Let At be a given time duration (e.g. At = 1 h), and
denoted by P,, the maximum rainfall depth observed
in a generic period of length At within the considered
storm. We assume that P,, has the following GP
distribution, for x > by, :

ks, ks,
Kar e - bm) (1
C

Fp,(x)=1-— (1 -
At

where by, = 0 is a position parameter, c,, > 0 a scale
parameter, and k,, < O is a shape parameter. Note that
Py, is non-negative and upper-unbounded.

The use of a GP distribution with negative shape
parameter (instead of the classical choice of an
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exponential law, widely adopted and recommended in
literature) may provide both a valuable tool for
modelling extreme events, due to the presence of an
algebraic upper-tail, and a mathematical framework
suitable for describing possible scaling features of the
phenomenon analysed. Indeed, the GP law considered
in the present paper has been widely used in extreme
values analysis, and especially in hydrology (Davison,
1984; van Montfort and Witter, 1985, 1986; Hosking
and Wallis, 1987; Castillo, 1994).

Let Af' = rAt denotes a generic time duration,
where r > 0 represents the scale ratio, and let Py,
be the rainfall depth associated with the time scale
A¢'. Then, if the following relations hold:

bAI’ = bA,rs
Cay = CAIVS (2)
kar = kar =k

where 8 € R is a scaling exponent, it is easy to show
(Salvadori and De Michele, 2001) that P is strict sense
simple scaling, and consequently also wide sense
simple scaling, in the temporal domain (Gupta and
Waymire, 1990). It is important to note that, once
the parameters & and {by,, ca; ka,} are known for a
given duration A¢, in principle it would be possible to
calculate the distribution of P for any given duration
At (within the limits of physical validity of the
scaling régime). Clearly, such a scale invariance prop-
erty may provide a characterization of the temporal
variability of rainfall within a storm; thus, a scaling
GP law might be used to model the stochastic beha-
viour of rainfall rate in storms of any duration.

Fixing a reference time period AT > At (in the
present case, AT =1 year), and assuming that
the sequence of storms has a Poissonian chronology,
the random number Np of storms in AT is a Poisson
r.v., with distribution given by:

n

LA
P{Np=n} =e "L,

" neN 3)

where Ap > 0 represents the annual storm rate.

Let Py, =max{P,,} in AT, ie. the maximum
annual (within-storm) rainfall depth observed in a
generic period of length Az. Conditioning upon Np,
the distribution of P}, is given by:

F;A,(x) — e*AP(I*FPA,(X)) )

for all suitable values of x. If P,, is distributed as in
Eq. (1), then:

1/kp
Fp: (x) = exp(—(l - %(x - fm)) ) (52)

At

for x > &,, + aa,/Kkp,, Where:

— & — —ka
gAr - bAz + kAt (1 AP )

ay = cp Ap™ (56)

Kar = kag

Therefore, PZ, is a GEV upper-unbounded r.v., where
&, 1s a position parameter, a,, > 0 is a scale para-
meter, and k,, < 0 is a shape parameter. In Salvadori
and De Michele (2001) it is shown how to derive, for
the GEV process of the maxima modelled by Eqgs. (5a)
and (5b), the same scaling features found for the
parent GP process modelled by Eq. (1), and the rela-
tions linking the parameters of the GP-GEV laws
involved. In particular, if the following relations
hold (where the notation is the same as in Eq. (2)):

8
Ear = €t
QN = aA,r5 (6)
Kay =— Kar — K

then also P” is strict/wide sense simple scaling in the
temporal domain.

Note that we considered only negative values of the
shape parameters because in our regions (North-
Western Italy) the statistics of rainfall and flood is
characterized by steep frequency curves (De Michele
and Rosso, 2000): they estimated the GEV parameters
of maximum annual rainfall depth for the duration of
1, 3, 6, 12, and 24 h collected by rain gauge stations
located in Thyrrenian Liguria. For 58 rainfall stations
with a sample dimension larger than 30 years they
found that 86% of the stations presents a negative
shape parameter, while for the remaining ones
(14%) it is not rejectable the hypothesis of a shape
parameter equal to zero. Furthermore, investigating
the regionalization of maximum annual peak flood
in North-Western Italy, they estimated the shape para-
meter of the normalized GEV distribution of the five
homogeneous regions, and found values of the shape
parameters in the range (—0.32, —0.09). In addition,
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Meigh et al. (1997) analysed the variability of the regio-
nal flood frequency distribution with climate, using a
GEV model. They considered 22 regions throughout
the world and showed how in tropical regions the
frequency curve is not very steep (and the shape para-
meter may also assume positive values), whereas in sub-
tropical regions (like the ones considered in our manu-
script) the variability of peak flood is high, and rare
floods can be extremely large. These results support
the use of a negative shape parameter in our region.

Inverting Eqs. (5a) and (5b) we may obtain the
depth duration frequency curves (DDF). As noted
before, the rainfall model considered is different
from the canonical PRP model, but it is consistent
with the DDF curves. We observe that, assuming
ba; = 0 and using Eq. (5b), in principle it would be
possible to calculate the parameters Ap and {cp,, ka, }
simply through the estimate of the parameters
{&as» aps, Kpy ) (for an  alternative approach, see
Appendix A). Therefore, using the series of maximum
annual rainfall data collected at different durations Ars
(generally 1, 3, 6, 12 and 24 h), it would be possible to
calculate the distribution of P},, and then make infer-
ence on the law of Py,.

For simplicity, in the present model we consider the
rainfall duration as constant, and equal to the time of
equilibrium of the basin. Such an hypothesis, physi-
cally acceptable for small basins, will allow to calcu-
late the analytical expression of the distribution of
peak flood and maximum annual peak flood (note
that the same assumption is also adopted by Temez
(1991)). Accordingly, we shall abandon the At
subscript, thus simplifying the mathematical notation.

2.2. The distribution of rainfall excess

We use here the SCS-CN method adopted by
USDA Soil Conservation Service (1986) to transform
the rainfall depth in rainfall excess. Accordingly, the
total volume of rainfall excess P, can be expressed in
terms of the rainfall depth P as:

P—1,)
i——£—,P>Q
P+S—1, @)

0, P=1,

P, =P,(P)=

where I, is the rainfall lost as initial abstraction, and
S = 0 is the maximum soil potential retention. Here S
is expressed in mm, and is given by S=

254((100/CN) — 1), where CN is the curve number;
also note that I, is generally estimated as I, = 0.2S.
The parameter CN depends upon the soil type, the
land use and the antecedent moisture conditions.
The Soil Conservation Service (1986) provides tables
to estimate the CN knowing the soil type, the land use,
and the AMC. In these tables, the CN values are
referred to an average antecedent moisture condition
of the basin. The SCS-CN method considers three
AMC classes (I, II, and III) dependent on the total
5-days antecedent rainfall and the season category
(dormant or growing). Condition I involves a dry
catchment, and it is characterized by a total 5-days
antecedent rainfall less than 13 mm in the dormant
season, and less than 36 mm in the growing season.
Condition II is characterized by a total 5-days ante-
cedent rainfall ranging from 13 to 28 mm in the
dormant season, and from 36 to 53 mm in the growing
season. Condition III occurs when the soil is almost
saturated, with a total 5-days antecedent rainfall
greater than 28 mm in the dormant season, and greater
than 53 mm in the growing season. In Ponce (1989)—
and references therein—can be found formulas to
calculate the CN for AMC I and AMC III from the
values of CN corresponding to AMC II. As we shall
see later, the parameters tuning the dynamics of the
basin may depend upon the AMC, and thus the prob-
ability distributions involved may be conditioned by
the actual AMC condition.

Note that if P < I, then P, = 0. Therefore, since P
has a GP law, we obtain:

k 1/k
P{P,=0}=P{P=L}=1-— (1 - E(IA —b))
®)

Thus, the distribution of P, is characterized by an
atom (mass point) at zero. Using Eq. (7) we may
derive the conditional distribution of P, given that
P>y

P(P,=xP>I1}=PP=1I,+ |P>1,}

x + Vx? + 4xS
2

( k( x + Va2 + 4xS ))l/k
1 L+ YTy

o
)
k 17k
Q——m—m)
C
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for x > 0. Then, from Egs. (8) and (9) we may obtain
the derived distribution of rainfall excess:

1/k
+ V2 +
Fp()=1- (1 - 5(1A+ % —b))

c
(10)

for x = 0, which is right-continuous at zero. Note that
V% + 4xS = x for x large enough; hence, for x > 1 :

k 1k,
Fre=1-(1- b)) (11

where b, = b — 1, is a position parameter, ¢, = c is a
scale parameter, and k, = k is a shape parameter.
Thus, the limit distribution of P, is again a GP law
with the given parameters. Indeed, such a result could
also be derived recalling that the GP distribution is
stable with respect to excess-over-threshold opera-
tions (Castillo and Hadi, 1997), and noting that Eq.
(7) is asymptotically linear for P > 1.

Note that the distribution of rainfall excess is calcu-
lated assuming the AMC of the basin as constant. This
may not be consistent with the actual situation in
many catchments, as pointed out by Wood (1976)
and later by Sivapalan et al. (1990): in fact, the former
author found that initial moisture condition of the
catchment could have a substantial effect on the esti-
mation of the flood frequency distribution. Thus, later
we shall relax this hypothesis, and calculate the flood
distribution considering also the AMC as a random
variable.

2.3. The flood frequency distribution (AMC constant)

Let Q denote the peak flood produced by a precipi-
tation P according to the transformation:

P—1,)
¢( ) P>,
P+S—1I, (12)

0, P=1I,

Q=0(/)=

with ¢ = A/t,, where A is the area of the basin and ¢,
is the time of concentration of the basin. The trans-
form function is non-linear in P (but linear in P,,
since Q = ¢P,), and invertible for P > I,. Thus,
by using Eq. (10), we may calculate the distribution

of Q as:
FQ(‘]) =
5 1k
1—(1—i(u4-Q+Viﬁj%ms—h))

13)

for ¢ = 0. Note that /g> + 4q¢S =~ ¢ for ¢ large
enough; hence, for g > 1 :

1kg
kg

Folg) = 1— (l - —(q— bg)) (14)
Co

where by = ¢(b — 1) is a position parameter, ¢y =
¢c a scale parameter, and ky, = k is a shape para-
meter. Thus, the limit distribution of the peak flood
Q is again a GP law with the given parameters.
Clearly, only a fraction of the Np annual storm
events produces an effective rainfall P, > 0, and
hence a peak flood Q > 0. This corresponds to a
random Bernoulli selection over the Poissonian
chronology of the actual storms; thus, the random
sequence of flood events has again a Poissonian
chronology, with annual rate parameter A, given by:

17k
C
(15)

which, in turn, specifies the distribution of the random
number N, of annual peak floods. Clearly, if I, = b
(i.e. if the minimum rainfall b is already larger than
the initial abstraction I,), then Ay = Ap = Ap, since
the storm automatically generates a flood event. Also,
note that Eq. (15) if properly modified, may provide
the average number of peaks over a given threshold.

Note that the initial abstraction I, is a function of
both the soil properties, the maximum soil potential
retention, and the AMC, through the simple empirical
relation I, = 0.2S55pc; thus the soil characteristics do
influence the expected number of annual flood events.
Indeed, rewriting Eq. (15) as:

Ag k 1k

Popr = A, (1 " 0.28 b)) (16)

it is easy to study the behaviour of the ratio py p as a
function of the absorptive characteristics of the basin.
As an illustration, and using the values of the
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Fig. 1. Behaviour of the ratio py pas a function of the absorptive characteristics of the basin § (see text). (a) Here b = 13.08 mm while ¢; =
6.90 mm (empty squares), ¢, = 11.04 mm (empty triangles), c; = 13.80 mm (circles), ¢, = 16.56 mm (full triangles), and ¢5 = 20.70 mm
(full squares). (b) Here ¢ = 13.80 mm while b; = 6.54 mm (empty squares), b, = 10.46 mm (empty triangles), b; = 13.08 mm (circles), b, =

15.70 mm (full triangles), and b5 = 19.62 mm (full squares).

parameters calculated in Section 4 investigating the
Bisagno basin (see Table 3), in Fig. 1 we plot py p as a
function of S. More particularly, for the sake of
completeness, we proceed as follows: in Fig. la we
fix b =13.08 mm and select five different values
cy,...,c5 of ¢ equal to, respectively, 50, 80, 100,
120, and 150% of ¢ = 13.80 mm; in Fig. 1b we fix
c=13.80mm and select five different values
by,...,bs of b equal to, respectively, 50, 80, 100,
120, and 150% of b = 13.08 mm. In both cases, it is
evident how the ratio py p becomes smaller than one,
depending upon the values of the rainfall parameters

and the absorptive features of the basin. The influence
of the remaining parameter k is negligible, and it is not
shown. It is interesting to note that the results shown
are similar to (and supported by) those obtained by
Tacobellis and Fiorentino (2000).

Furthermore, conditioning upon Ny, the distri-
bution of the maximum annual peak flood Q is
given by:

FQ*(q) = efAQ(lfFQ(‘I)) (17)

for all suitable values of g. If Q is asymptotically
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distributed as in Eq. (14), then

I/KQ
K
Fo(q) =~ exp(—(l - Lg- §Q>) ) (18a)
210
for g > 1, where:
_ Co(: _ ik
& =bo + kQ(l 45")

aQ = CQAékQ (18b)

KQ:kQ

Therefore, Q" is (asymptotically) a GEV upper-
unbounded r.v., where &, is a position parameter,
ap >0 is a scale parameter, and kp <0 is a
shape parameter.

Thus, the shape parameter of the flood distribution
is the same as that of the rainfall distribution; in other
terms, asymptotically, the curve of maximum annual
flood quantiles becomes parallel to the curve of maxi-
mum annual rainfall quantiles. A similar result is
given by the ‘Gradex method’ (Guillot and Duband,
1967): there, using a Gumbel distribution for the
maximum annual rainfall depth, and assuming that
during the extreme flood event the basin saturation
is approached, the probability law of the specific
flood volume is calculated; such a derived distribution
is again a Gumbel law, with the location parameter
depending on the initial conditions of the basin, and
the scale parameter (gradex) equal to that of the rain-
fall distribution.

2.4. The flood frequency distribution (AMC variable)

Wood (1976) pointed out how the AMC of the
basin could be the most important factor influencing
the estimation of flood frequency distribution. In order
to take into account the variability of initial soil moist-
ure condition prior to the storm, we now consider the
AMC as a random variable, and associate to it a
discrete probability distribution:

PIAMC=1}=m =0
P{AMC =11} = m; = 0

(19)
P{AMC = III} = T =0

7TI+ ’7TH+ 7THI=1

where {7, 7y, 7} are the probabilities of occur-

rence of the three different moisture conditions of
the basin. It is clear that these probabilities are depen-
dent on climatic conditions. For example, Gray et al.
(1982) analysed 17 stations in Kentucky and Tennes-
see to determine the distribution of the AMC: they
found a predominance of AMC I (85%), whereas
AMC 1II (7%) and AMC III (8%) were much less
probable. More recently, a similar study was carried
out by Silveira et al. (2000), who calculated the AMC
distribution considering rainfall events collected
between 1992 and 1995 in a river basin in Uruguay,
with return period equal or greater than one.

The distribution of the peak flood conditioned by
the AMC distribution is given by:

k
Fol)= > 7r,~(1—(1— -

i=LILIIT

x (IA ¢ 4N T dadS b)))

(20)

AMC=i

for ¢ = 0, where F, turns out to be the weighted sum
of three terms; as indicated, the expression in parenth-
eses depends upon the AMC conditions via the basin
parameters tuning the dynamics of the phenomenon.
Combining Egs. (17) and (20) it is possible to calcu-
late the distribution F 5 of the maximum annual peak
flood Q" conditioned by the AMC:

k
FQ*(Q) = exp( — AQ(I — Z 771'(1 - (1 - —
i=LILII ¢

(o) )L )
¢ AMC=i

21

for all suitable values of g. Note that, if AMC is
constant, then all the probabilities ;s except one
are zero: thus, Eq. (21) is also able to model the deter-
ministic case described in Section 2.3.

As an illustration, Fig. 2 shows the function Fy, for
five different AMC distributions. Overall, the strong
influence of the AMC on the flood frequency distribu-
tion is evident: for example, passing from AMC I to
AMC III, the 100-years flood quantile changes from
119 to 398 m’/s. Thus, it is essential to stress the
fundamental importance of the AMC distribution in
order to properly identify the distribution of peak
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Fig. 2. Probability distribution of maximum annual peak flood for five different AMC probability distributions. Here the parameters are: k =
—0.031, ¢ = 13.39 mm, b = 12.69 mm, A, = 9 storm/year, A = 34 km?, t. = 1.97 h, and S;; = 76 mm.

flood and maximum annual peak flood. Note that
the shape parameter of the flood distribution is the
same as that of the rainfall distribution; in other
terms, asymptotically the curve of maximum
annual flood quantile becomes parallel to the
curve of maximum annual rainfall quantile.
Thus, the variability of initial moisture condition
significantly affects the scale parameter of the
flood frequency curve but not the shape parameter,
and does not influence the asymptotic behaviour
of the flood distribution, as is also evident in Fig.
2. Such a result is not new to hydrologic litera-
ture: see, e.g. the Gradex Method (Guillot and
Duband, 1967), where a Gumbel law is used for
the rainfall and the flood distribution, i.e. both
laws have the shape parameter equal to zero. As
a consequence, the estimation of the low return
period quantiles (up to 100 years) is reliable,
since the error on the shape parameter produces
smaller consequences on the estimation of the low
quantiles with respect to a similar error on the
scale parameter (which might have unacceptable
consequences in the same range of the return
period values). This is also evident from the sensi-
tivity analysis shown in Section 3.

3. Sensitivity analysis

An important theoretical and practical tool in
hydrologic modelling is represented by sensitivity
analysis. Such a tool provides a systematic means to
examine the response of a hydrologic model in a way
that is free of the ‘error variation’ that exists when
dealing with measured data. This freedom makes it
possible to assess more easily the rationality of the
model, as well as examining the effect of the error
in the input.

From an operative point of view, the flood quantile
Sfunction g(T), for any given return period 7, repre-
sents the object of maximum interest. Inverting the
fundamental expression of the law of Q, as given by
Eq. (13), we obtain:

k 2
(-a-—r*y—mzs—bﬂ
S+ klc(1 — T%) — (0.28 — b)

qT) = ¢ (22)
Here we perform a linearized sensitivity analysis
(McCuen and Snyder, 1986), which provides an
analytical derivation of the sensible dependence of
the derived quantiles upon the (rainfall and soil) para-
meters involved in Eq. (22), for several standard
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Fig. 3. Sensitivity analysis for the flood quantile function g(7") given in Eq. (22), using two return periods: 7 = 10 years (thin line) and
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Table 1
Characteristics of the basins investigated
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Bisagno
Area (km?) 34.2
Relief (m) 1063
Rainfall (cm/year) 167
Soil Limestone 62%;
clay, clayey 31%
Land use Trans. wood/shrub 60%;

agroforest 18%

Rain G., # years Scoffera, 35; Viganego, 39

Flood G, # years La Presa, 48

Vara
206
1640
187

Sandy, Marly 22%;

clay, clayey 56%

Trans. wood/shrub 59%;
sown field in well-water 18%;
mixed forest 10%

Arroscia

201
2141

116
Sandy, Marly 36%;
Calcar.-Marly 58%
Trans. wood/shrub 56%;
agroforest 11%;
mixed forest 10%

P. Cento C., 20; Pieve di Teco, 25
Tavarone, 44,

Varese L., 43

Naseto, 38 Pogli, 55

return periods. More particularly, we proceed as
follows: we select, one at a time, one of the four
parameters of interest (here ¢ is naturally discarded,
being a simple multiplying factor, and thus introdu-
cing only a perfect linear dependence), leaving the
remaining three fixed, and fix a return period T;
then, we calculate the relative percentual variation
of g(T) as a function of the percentual variation of
the selected parameter.

The results are shown in Fig. 3; the vertical scale is
the same for all plots, to make the comparisons easier.
Evidently, the dependence of g(T") on k (plot (c) is
weak, independently of 7. In all other cases, the larger
the T the smaller the dependence of ¢(T") on the para-
meters involved; in particular, only the parameters ¢
and S seem to affect in a significant way the behaviour
of the flood quantile function, and the sensitivity
analysis also shows how an error on the parameters
yields a larger error on the flood quantiles correspond-

Table 2

ing to lower return periods (considering a fixed time
of equilibrium of the basin ¢, or, equivalently, a fixed
¢). Indeed, the analysis shows how ¢ and S are the
most sensible parameters: a 30% error on ¢ corre-
sponds to a 50% error on the 100-year flood quantile,
and a 30% error on S corresponds to a 30% error on
the 100-year flood quantile. The sensitivity of the
model with respect to b and k is rather modest: a
30% error on b corresponds to a 10% error on the
100-year flood quantile, and a 30% error on k corre-
sponds to a 3% error on the 100-year flood quantile.
Incidentally, this last result supports our use of a shape
parameter for flood distribution equal to the one
adopted for rainfall.

4. Model applications

The derived distribution approach outlined in the

Estimates of the parameters a,, and &5, (in mm), for different durations Az. Also reported are the estimates of the corresponding scaling
exponents 8, and &, together with their standard errors (s.e.). The bottom row shows the estimates of the parameter «

At Bisagno Vara Arroscia
a 4 a & o 4

lh 12.10 35.31 9.86 28.29 9.26 24.49
3h 17.09 56.27 16.54 46.28 15.40 37.64
6h 20.17 75.22 20.69 61.71 19.99 51.71
12h 25.95 103.39 27.02 79.15 30.24 76.34
24h 31.40 134.04 31.50 101.90 40.90 102.97
o 0.300 0.423 0.368 0.403 0.470 0.460
s.e. 0.008 0.006 0.026 0.013 0.016 0.017
I —0.031 —0.183 —0.057
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Fig. 4. Temporal scaling (in a log—log plane) of the parameters a,,
(squares) and &,, (diamonds) and the corresponding fits (lines) of
the scaling exponents 3§, and & for three basins: (a) Bisagno,
(b) Vara, and (c) Arrosica.

previous sections is applied to three river basins:
Bisagno at La Presa, Vara at Naseto, and Arroscia at
Pogli, all located in Thyrrhenian Liguria, North-
Western Italy. In Table 1 some basin characteristics
are illustrated: area, relief, mean annual rainfall, soil
type, land use, and information on rainfall and stream-
flow gauges, including the number of records. The

Table 3
Parameters of the derived distributions of peak flood (Eq. (20)) and
maximum annual peak flood (Eq. (21))

Unit Bisagno Vara Arroscia
bar=, mm 13.08 17.10 20.00
Car—1, mm 13.80 14.40 28.53
k —0.031 —0.183 —0.057
A km? 34.2 206 202
[ h 1.97 8.00 15.60
S mm 80 89 99
M 0.25 0.26 0.27
T 0.12 0.16 0.08
o 0.63 0.58 0.65
Ap st./year 9 13 9

maximum annual rainfall depth is collected in each
raingauge for the durations of 1, 3, 6, 12, and 24 h.
Making the hypothesis that rainfall features are homo-
geneous in basins of small dimensions, the historical
information concerning the hanging raingauges in a
basin are pooled together. The parameters of the GEV
distribution are calculated (at the basin scale) using
the L-moments technique (Hosking, 1990): the shape
parameter k is constant (i.e. independent of Af) in
each basin, and is estimated using all the rainfall
information at different durations, normalizing each
time series with respect to the sample mean value;
the estimated values are shown in Table 2. Then,
using Eq. (6), it is possible to evaluate the scaling
exponents &, and &; (see Table 2): these are statisti-
cally the same (within 99% confidence intervals) for
both the Vara and the Arroscia basins; for the Bisagno
basin, the difference between the two is statistically
significant, and thus the corresponding distribution is
scaling but not simple scaling. In Fig. 4 the temporal
scaling of ay, and &,, is shown for all the three basins
considered, together with the fits of &, and & : the
scaling behaviour is well evident in all cases.

Using Eq. (5b), and the procedure described in
Appendix A, it is possible to calculate the parameters
Ap and {by,, ca;, ka,} simply through the estimate of
the corresponding parameters {&n;, @p;, K }; then,
using Eq. (15), the parameter A, can be estimated.
In Table 3 the parameters of the derived distributions
of peak flood (Eq. (20)) and maximum annual peak
flood (Eq. (21)) are given. The maximum soil poten-
tial retention Sy (for AMC II), at the basin scale, is
obtained from spatial integration over digital maps at
resolution 225 m X225 m (the estimates are also
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Fig. 5. Flood frequency curves (in m?/s) for the Bisagno river basin
at La Presa: observations (circles), GEV fitted on data (thin solid
line), derived distribution (thick solid line).

cross-checked with the ones obtained from the
analysis of some observed rainfall-runoff events);
in the present analysis we collected coupled obser-
vations and information about hyetograph and
hydrograph for some flood events, and we used
them to check and calibrate the mean value of
St (at basin scale). Such a procedure is recom-
mended by several authors (Gray et al.,, 1982;
Hawkins et al.,, 1985; Silveira et al., 2000).
Then, S; and Sy are calculated as described by
Ponce (1989). Finally, the estimated distributions
of the AMC conditions for the three basins
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Fig. 5. Flood frequency curves (in m%s) for the Vara river basin at

Naseto: observations (circles), GEV fitted on data (thin solid line),
derived distribution (thick solid line).
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Fig. 7. Flood frequency curves (in m?/s) for the Arroscia river basin
at Pogli: observations (circles), GEV fitted on data (thin solid line),
derived distribution (thick solid line).

considered are shown. These are obtained by
calculating the total 5-days antecedent rainfall
for the series of maximum annual flood event in
the Bisagno and Arroscia basins; instead, for the
Vara basin we consider the 31 main flood events
between 1993 and 1997. It is important to note
that the distributions obtained are practically iden-
tical, thus indicating homogeneous climatic condi-
tions for the area considered.

In Figs. 5-7 the T-year flood quantile obtained via
the derived distribution is compared to the observed
data of maximum annual peak flood for, respectively,
Bisagno, Vara, and Arroscia catchments. Also shown
is the GEV distribution fitted on the observed data. It
is important to note that, for small return periods (say,
T =100 years), the derived distribution almost
matches the GEV distribution calculated from the
observed data, and both show a good agreement
with the observations; in particular, the agreement is
very good for Vara basin. From the analysis of Figs.
5-7 it is evident that the statistical information
extracted from the series of maximum annual peak
floods (and represented by the distributions fitted on
the data) is also available considering the rainfall data
(for small return periods) using the derived distribu-
tion approach proposed here.

Overall, the derived distribution is able to represent,
up to a practically significant degree of approximation,
the flood quantile curves, and thus it performs fairly
well when considering small return periods.
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5. Conclusions

In the present paper, we put the emphasis on several
important facets of the problems concerning the deter-
mination of flood frequency distribution, starting from
the statistical properties of rainfall and the hydrologic
modelling of extreme floods. In particular, starting
from simplified but physically based considerations,
we provide the analytic expressions of the derived
distribution of both peak flood and maximum annual
peak flood. The following points must be stressed.

e The introduction of the GP distribution for modelling
the maximum storm depth, and the (temporal) simple
scaling of the rainfall depth to represent the rainfall
storm. Apparently, the GP law provides a valuable
model of the phenomena considered. In addition, the
scaling feature may considerably simplify the math-
ematical tractability and description of the dynamics
investigated: on the one hand, it offers a flexible tool
for making inference at different temporal scales
without changing the model adopted; on the other
hand, it also provides a synthesis of the mechanisms
underlying (extreme) storm events and (peak) flows,
and provides a general conceptual framework for
data analysis and modelling. Indeed, the simple rain-
fall model presented describes the fundamental rain-
fall properties necessary for calculating the flood
frequency distribution for small return periods (say,
T = 100 years); this model is also consistent with the
DDF curves.

e The importance of the antecedent soil moisture
condition in the determination of flood frequency
distribution. In particular, using the SCS-CN method
to transform the rainfall in excess, it is easy to incor-
porate the probability distribution of the AMC into
the flood frequency distribution, and to show the
importance of the knowledge of AMC for the estima-
tion of the flood quantiles.

o The comparison between the derived distribution and
the available flood data. 1t is evident that the statis-
tical information extracted from the series of maxi-
mum annual peak floods (and represented by the
distribution fitted on the data) is practically equiva-
lent to the one obtained using the proposed derived
distribution approach for small return periods.

As a conclusion, the derived distributions of peak

flood and maximum annual peak flood proposed in
this paper show a fairly good agreement with both the
historical data and the distributions fitted to the data.
These results support their application to river basin
with no flood information and small return periods
(say, T = 100 years).
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Appendix A

Considering Eq. (5b), suppose that some estimates
of the parameters {&n,, ap;, Kp,} are available, and
that the remaining parameters Ap and {by,, cas kps}
need to be estimated; clearly, there would be only
three equations to estimate four parameters. However,
we may suggest the following procedure to solve the
problem.

Taking twice the logarithm of Eq. (4) we obtain:

1
1n(—1n szf(x)) =1nAp + K1n(1 -
'

Ky
Rar iy - bm)

CAr

Let x(jy < -+ < x,) be the sample order statistics
corresponding to n available observations of Pj,.
Since for (small) x = by, the above formula can be
approximated by:

1
1n(—1n szf(x)) ~1InAp— oo b
1

we see that (assuming, as empirically reasonable, that
the smallest order statistics of P}, are close to by,):

; 1
S~ In(—In Fp (55)) = In Ap — — (x5 — b
@i n( n Pm('x(l))) nAp n (x(l) A1)
where ¢ = In(—In(i/(n + 1))) and the index i is

small. Thus, we may provide an estimate ¢; of cy,
which involves none of the remaining parameters as
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follows:

X — X,
A X+ (i)
¢ = * %

Ci — Pirl

which, in turn, can be combined with the last two formu-
las of Eq. (5b) to obtain an independent estimate of Ap.
Practically it turns out that the average of several esti-
mates ¢;s (for small indices is) provides reliable esti-
mates of the parameter c.
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