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Abstract

We propose a model describing the thermal effects of a lava tube. The tube is a circular cylinder, embedded in a
solid medium and filled with a Newtonian liquid flowing under the gravity force. Steady-state conditions are
considered. The velocity field in the tube, evaluated by the Navier^Stokes equation, is introduced into the heat
equation taking into account the viscous dissipation. The temperature distribution is evaluated both inside the tube
and in the surrounding solid medium. Under the assumption that the lava tube is embedded in a solid half-space, the
surface heat flow due to the presence of the tube is calculated. It is shown that heat flow measurements at the Earth’s
surface can give information on the depth, size and temperature of the buried lava tube. 0 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Lava tubes are a common feature of many ef-
fusive eruptions and they were described by sev-
eral authors (Ponte, 1949; Peterson and Swanson,
1974; Guest et al., 1980; Greeley, 1987; Peterson
et al., 1994; Sakimoto et al., 1997). The evolution
of a lava channel into a tube is often a conse-
quence of surface cooling of lava, which produces
a solid crust and levees (Dragoni et al., 1995).

Thermal aspects concerning lava tubes have
been investigated by several authors. Keszthelyi
(1998) proposed a thermal budget of lava tubes
taking into account conduction, viscous dissipa-

tion, crystallization and degassing, atmospheric
convection, rain and thermal radiation and com-
pared the heat £ows due to these various mecha-
nisms. In the present model atmospheric convec-
tion, rain and radiation are not taken into
account because we consider buried lava tubes
as observed on Mount Etna (Calvari and Pinker-
ton, 1999); moreover we evaluate not only the
heat £ux but also the temperature pro¢le. Saki-
moto and Zuber (1998) described the cooling of
lava tubes by conduction. Our paper di¡ers from
theirs since we take into account the viscous dis-
sipation and we introduce the solution of the
Navier^Stokes equation into the heat equation:
in this way we consider the velocity ¢eld of the
lava and obtain a temperature pro¢le also for the
inner part of the tube. Accordingly our model
depends also on gravity, lava viscosity and slope
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of the tube. Lava tubes have strong implications
for hazards in volcanic areas: because of the for-
mation of tubes, lava £ows may threaten areas
which would not be reached by £ows in open
channels (Malin, 1980). In fact, tube formation
may considerably increase the length of a £ow,
since it greatly reduces the heat loss of lava.

The formation and evolution of a lava tube is a
complex phenomenon resulting from a close inter-
play between thermal and rheological properties
of lava. In the present paper we investigate the
temperature ¢eld which develops inside and
around a lava tube. Lava tubes have irregular
cross sections, varying from rectangular to circu-
lar and sometimes triangular (Kilburn and Guest,
1993; Peterson et al., 1994; Calvari and Pinker-
ton, 1999). As a ¢rst approximation, we assume
that the lava tube is a sloping, right circular cyl-
inder, ¢lled with a high-temperature Newtonian
liquid and embedded in a solid medium. Kauahi-
kaua et al. (1998) observed that lava tubes rarely
are full : however the model that we are proposing
can approximately account for partially ¢lled
tubes. The liquid £ows under the gravity force
and heat is transferred by conduction to the sur-
rounding medium.

2. The model

We assume that the tube is a right circular cyl-
inder, inclined by an angle K with respect to the
horizontal plane and ¢lled with a Newtonian liq-
uid with density b, speci¢c heat cp, thermal con-
ductivity U and viscosity R, £owing in the tube
under the gravity force.

As a consequence of the geometry, we intro-
duce a system of cylindrical coordinates (r, a,

x), such that the x-axis coincides with the axis of
the cylinder and r is the radial distance from the
axis of the cylinder itself, while a is the azimuthal
coordinate (Fig. 1). Let r1 be the radius of the
cylinder.

As it £ows, the liquid cools down due to heat
conduction in the surrounding medium. Temper-
ature varies as a function of r and x. We assume
that temperature variations are small enough to
consider b, cp, U and R as uniform. We consider
only the steady-state condition.

We ¢rst consider a tube embedded in an un-
bounded solid medium and calculate the temper-
ature distribution inside and outside the tube.
Then we consider the tube in a solid half-space,
in order to evaluate the heat £ow at the Earth’s
surface. A summary of the procedure is shown in
Fig. 2.Fig. 1. Sketch of the model.

Fig. 2. Summary of the procedure.
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2.1. Temperature distribution inside the tube

Flow takes place in the x direction and £ow
velocity has the form:

v ¼ ð0; 0; vÞ ð1Þ

The Navier^Stokes equation yields the well-
known solution (e.g. Kundu, 1990; Dragoni et
al., 1986):

vðrÞ ¼ v0 13
r2

r21

� �
; 09 r9 r1 ð2Þ

where v0 is the velocity at the center of the tube:

v0 ¼
bgr21sinK

4R
ð3Þ

where g is the acceleration of gravity. Fig. 3
shows the magma velocity v inside the tube, as a
function of distance r from the center, for a tube

having initial radius r1 = 1 m. The typical para-
bolic pro¢le of the velocity of a Newtonian £uid
inside a cylindrical tube can be recognized. Due to
the low thermal conductivity of rocks, the de-
crease of temperature T with x is very slow: we
assume that it is linear, i.e.
DT
Dx

¼ 3G ð4Þ

with Gs 0. If we call T0 the temperature at the
center of the tube, we can write:

T0ðxÞ ¼ �TT03Gx ð5Þ

where T· 0 is the central temperature at the begin-
ning of the tube (x=0 and r= r71). The temper-
ature distribution T(r, x) inside the tube is given
by the heat equation for an incompressible £uid
(e.g. Landau and Lifchitz, 1971):

bcp
DT
D t

þ vW9T
� �

¼ U92T þ 1
2
R

D vi
Dxj

þ D vj
Dxi

� �2

ð6Þ

where the second term in the right hand side of
the equation is the heat production per unit vol-
ume and unit time due to viscous dissipation. If
we consider a steady-state motion and take into
account Eq. 1, the heat equation reduces to:

bcpv
DT
D x

¼ U92T þ 1
2
R

D v
D r

� �2

ð7Þ

In cylindrical coordinates, the Laplacian of T has

Fig. 3. Lava velocity in a cross section of the tube. Di¡erent
values of the tube inclination K and the viscosity R are con-
sidered. (a) Curve 1, K=0.1 rad, curve 2, K=0.2 rad, curve
3, K=0.3 rad, curve 4, K=0.4 rad, curve 5, K=0.5 rad; for
all the curves R=10 000 Pa s. (b) Curve 1, R=10 000 Pa s,
curve 2, R=8000 Pa s, curve 3, R=6000 Pa s, curve 4,
R=5000 Pa s, curve 5, R=4000 Pa s; for all the curves
K=0.1 rad. The values of the model parameters g and b are
¢xed and shown in Table 1.

Table 1
Numerical values for the model parameters which are kept
constant in drawing the graphs

T0 1100‡C
Ts 900‡C
Ta 20‡C
U 3 J s31 m31 K31

b 2800 kg m33

g 9.8 m s32

cp 837 J kg31 K31

r1 1 m

The values are typical for basaltic lavas, such as Etna lavas
(e.g. Murase and McBirney, 1973).
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the following expression:

92T ¼ D
2T
D r2

þ 1
r
DT
D r

þ 1
r2

D
2T

D a
2 þ

D
2T
D x2

ð8Þ

Thanks to Eq. 4, D2T/Dx2 = 0. Moreover we have
axial symmetry, i.e. no dependence on a. Accord-
ingly, the expression of the Laplacian can be sim-
pli¢ed and Eq. 7 can be written as:

bcpv
DT
Dx

¼ U

D
2T
D r2

þ 1
r
DT
D r

� �
þ 1
2
R

D v
D r

� �2

ð9Þ

or, by Eqs. 2 and 4:

D
2T
D r2

þ 1
r
DT
D r

¼ 3
bcpv0G

U

13
r2

r21

� �
þ 2Rv20

U

r2

r21
ð10Þ

Boundary conditions on temperature and heat
£ow are:

Tð0; xÞ ¼ T0ðxÞ ð11Þ

DT
D r

jr¼0 ¼ 0 ð12Þ

The solution of Eq. 10 is:

Tðr; xÞ ¼ T0ðxÞ3QG 4r23
r4

r21

� �
þ L

r4

r41
; 09 r9 r1

ð13Þ

where, taking into account Eq. 3:

Q ¼ bcpv0
16U

¼ b
2gcpr21sinK
64U R

ð14Þ

L ¼ v20R
8U sinK

¼ b
2g2r41sinK
128U R

ð15Þ

Sakimoto and Zuber (1998) obtain a di¡erent so-
lution, for which they do not assume a constant
thermal gradient but assume constant temperature
and heat £ow at the wall of the tube. In this way
they obtain G as a result of their model. It ap-
pears that G is approximately constant for reason-
able distances from the vent and not too small
£ow rate according with our assumption in Eq.
4. We assume that the surface of the tube r= r1 is

the isothermal surface at the solidus temperature
Ts :

Tðr1; xÞ ¼ T s ð16Þ

The velocity and temperature distributions within
the tube control the radius of the tube itself. The
liquid cools down as it £ows: due to temperature
decrease, the radius of the tube also decreases:
therefore r1 depends weakly on x. However, the
decrease is very small and can be neglected for
our purposes. From Eq. 13 calculated at r= r1

Fig. 4. Temperature inside the tube. Di¡erent values of the
tube inclination K and of the distance from the beginning of
the tube x are considered. (a) K=0.1 rad, (b) K=0.3 rad, (c)
K=0.5 rad; curve 1, x=0 m, curve 2, x=250 m, curve 3,
x=500 m, curve 4, x=750 m, curve 5, x=1000 m. For all
the curves R=10 000 Pa s. The values of the other model pa-
rameters are ¢xed and shown in Table 1.
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we obtain:

T s ¼ T033QGr21 þ L ð17Þ

Once the initial radius r71 of the tube is given, the
temperature gradient G can be obtained from
Eqs. 5 and 17 as:

G ¼
�TT03T s þ L

0�rr41
3Q 0�rr41

; �TT0 vT s ð18Þ

where:

Q
0 ¼ Q

r21
ð19Þ

L
0 ¼ L

r41
ð20Þ

The temperature inside the tube given by Eq. 13 is
shown in Fig. 4. Three di¡erent slopes K and ¢ve
di¡erent distances x from the tube origin x are
considered: it appears that the lava temperature

decreases as x increases. The cooling decreases for
higher values of K : this is due to the greater lava
velocity causing a greater supply of heat, repre-
sented by the advective term in the heat equation
(Eq. 6).

At points xs 0, from Eq. 18 the radius of the
tube is found to be:

r1ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T0ðxÞ3T s

3Q 0G þ L
0

4

s
; T0vT s ð21Þ

The radius decreases slowly as T0 decreases; it
appears that the decrease in the radius reaches a
maximum at a value of about 3%: we ignore this
e¡ect. Since dr1/dx is very small, we neglect the
decrease of the radius in the continuity equation.
The temperature gradient as a function of r71 is
shown in Fig. 5. It can be seen that G reaches a
limit value if r71 is greater than about 2 m, such a
value is:

lim
r1!r

G ¼ L
0

3Q 0 ¼
g

6Cp
ð22Þ

2.2. Temperature distribution outside the tube

The temperature distribution outside the tube is
given by the heat equation for the solid medium,
in the absence of heat sources (e.g. Landau and
Lifchitz, 1971):

bcp
DT
D t

¼ U92T ð23Þ

where b, cp and U are, respectively, the density,
the speci¢c heat and the thermal conductivity of
the solid. Under steady-state conditions, Eq. 23
reduces to:

92T ¼ 0 ð24Þ

On the basis of previous assumptions, the Lap-
lacian of T in cylindrical coordinates, given by
Eq. 8, has the last two terms equal to zero. There-
fore Eq. 24 reduces to:

D
2T
D r2

þ 1
r
DT
D r

¼ 0 ð25Þ

Fig. 5. Thermal gradient G as a function of the initial tube
radius r1. Di¡erent values of the tube inclination K and the
viscosity R are considered. (a) Curve 1, K=0.1 rad, curve 2,
K=0.2 rad, curve 3, K=0.3 rad, curve 4, K=0.4 rad, curve
5, K=0.5 rad; for all the curves R=10 000 Pa s. (b) Curve 1,
R=10 000 Pa s, curve 2, R=8000 Pa s, curve 3, R=6000 Pa
s, curve 4, R=5000 Pa s, curve 5, R=4000 Pa s; for all the
curves K=0.1 rad. The values of the other model parameters
are ¢xed and shown in Table 1.
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The boundary conditions are:

Tðr1Þ ¼ T s ð26Þ

Tðr2Þ ¼ Ta ð27Þ

that is temperature must equate the solidus at the
surface of the tube and the ambient temperature,
Ta, at a distance r2Er1. The value of r2 is eval-
uated requiring the continuity of heat £ow at the
surface of the tube r= r1. Of course Ts sTa is

assumed. The solution of Eq. 25 is:

Tðr; xÞ ¼ Ta þ ðT s3TaÞ
ln
r
r2

ln
r1ðxÞ
r2

; r19 r9 r2

T ¼ Ta; rv r2

8>>><
>>>:

ð28Þ

where r1 is given by Eq. 21 and r2 will be given by
Eq. 33. The temperature inside and outside the
tube, given by Eqs. 13 and 28, respectively, is
shown in Fig. 6 where three di¡erent slopes K

are considered. The inner part of the tube cools,
while the surrounding medium is heated. We con-
sider now the heat £ow density q. Both inside and
outside the tube, the radial component of q is
given by:

qr ¼ 3U

DT
D r

ð29Þ

where U is the thermal conductivity of the £uid or
the solid, according to the case. We assume that
the two conductivities are equal. From Eq. 13 we
obtain:

qrðr; xÞ ¼ 4U QG 2r3
r3

r21

� �
3L

r3

r41

	 

ð30Þ

and from Eq. 26:

qrðr; xÞ ¼ U

T s3Ta

rln
r2
r1

; r1 9 r9 r2 ð31Þ

The radial heat £ow is positive and directed out-
ward from the tube. Eq. 28 satis¢es the boundary
condition of vanishing £ow at r=0. The continu-
ity of £ow at r= r1 requires that:

ln
r2
r1

¼ T s3Ta

4ðQGr213L Þ
ð32Þ

from which the appropriate value of r2 can be
derived:

r2 ¼ r1exp
T s3Ta

4ðQGr213L Þ

� �
ð33Þ

Fig. 6. Temperature inside and outside the tube. Di¡erent
values of the tube inclination K and of the distance from the
beginning of the tube x are considered. (a) K=0.1 rad, (b)
K=0.2 rad, (c) K=0.3 rad; curve 1, x=0 m, curve 2, x=250
m, curve 3, x=500 m, curve 4, x=750 m, curve 5, x=1000
m. For all the curves R=10 000 Pa s. The values of the other
model parameters are ¢xed and shown in Table 1.
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We neglect the longitudinal component qx of heat
£ow, since DT/Dx is small.

2.3. Lava tube in a half-space

In order to evaluate the temperature ¢eld and
the surface heat £ow due to a buried lava tube, we
introduce a Cartesian coordinate system (x, y, z)
and assume that the tube is embedded in the solid
half-space zs 0. The axis of the cylinder is the
right line parallel to the x-axis at z=3h. This
means that the tube is parallel to the Earth’s sur-
face: this is assumed for the sake of simplicity,
considering that the free surface is not horizontal
on the £anks of a volcano. In order to ¢nd the
solution in the half-space, we apply the method of
images. We consider an image lava tube, the axis
of which is the right line at z= h : its surface is at
temperature T=3Ts (Fig. 7). By superposition of
the temperature ¢elds generated by the two tubes,
the boundary conditions at the Earth’s surface
z=0 are satis¢ed. We consider a plane x= con-
stant, where the radius of the tube is r1(x), and
r and rP are the distances of a generic point on
this plane from the axes of the real and image
lava tubes, respectively. Taking into account
only the zone outside the tube rv r1, by Eq. 33

we obtain:

Tðr; r0Þ ¼ ðT s3TaÞ
ln
r
r0

ln
r1
r2

; r1 9 r9 r2 ð34Þ

The temperature ¢eld on the plane yz is shown in
Fig. 8 for three di¡erent depths of the tube. In
each case the temperature vanishes at the Earth’s
surface. The radial heat £ow density is obtained
in the same way by Eq. 31:

qrðy; zÞ ¼ U

T s3Ta

ln
r2
r1

1
r
þ 1
r0

� �
; r1 9 r9 r2 ð35Þ

Fig. 7. Sketch of the method of images. The dashed line rep-
resents the image tube.

Fig. 8. Temperature ¢eld outside the tube on the plane yz.
Di¡erent values of the tube depth h are considered: (a) h=5
m, (b) h=10 m, (c) h=15 m;x=0 m, R=10 000 Pa s. The
values of the other model parameters are ¢xed and shown in
Table 1.
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where:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh3zÞ2 þ y2

q
ð36Þ

and:

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhþ zÞ2 þ y2

q
ð37Þ

At the free surface z=0, Eq. 35 becomes:

qrðyÞ ¼ U

T s3Ta

ln
r2
r1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ y2

p ð38Þ

We are interested in the heat £ow component qz,
which is normal to the free surface. It is given by:

qzðyÞ ¼ qrðyÞ
hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ y2
p ð39Þ

A graph of qz(y) is shown in Fig. 9, where ¢ve
di¡erent depths of the tube are considered. We
can integrate Eq. 39, obtaining the total £ow Q
across the Earth’s surface (per unit length of the
tube):

Q ¼
Z r

3r

qzðyÞdy ð40Þ

From Eqs. 38 and 39, one obtains:

Q ¼ 2ZU ðT s3TaÞ
ln
r2
r1

ð41Þ

which is independent of h. Eq. 41 is also the heat
£ow (per unit length of the tube) across a cylin-
drical surface of arbitrary radius r surrounding
the tube itself. Hence we can write :

qzðyÞ ¼
Q
Z

h
y2 þ h2

ð42Þ

At some distance from the tube, the heat £ow
must be fairly independent of the shape of the
tube and of the £ow cross section. The energy
equation (Eq. 7) shows that the heat £ow is ap-
proximately proportional to the lava £ow rate in
the tube (neglecting viscous dissipation). The £ow
rate F of a completely ¢lled cylindrical tube with
circular cross section can be calculated by inte-
grating the £ow velocity Eq. 2, giving:

F ¼ Z b
2gsinK
8R

r41 ð43Þ

Therefore we shall preferably associate a mea-
sured heat £ow value Q with a lava £ow rate F,
rather than with a tube radius r1. From Eqs. 41
and 43, we obtain:

F ¼ Z b
2gr42sinK
8R

e38ZU ðT s3TaÞ=Q ð44Þ

In this way, the model can account in an approx-
imate fashion for the cases in which the tube is
not a circular cylinder or is only partially ¢lled
with lava. For instance, a £ow rate F may corre-
spond to a completely ¢lled tube with radius r1 or
to a half-¢lled tube with radius:

r01 ¼
ffiffiffi
24

p
r1W1:2r1 ð45Þ

3. Conclusions

The importance of lava tubes in the evolution
of e¡usive eruptions is widely recognized. The
thermal e¡ects of a lava tube are related to the
size and geometry of the tube as well as to the
thermal, rheological and dynamical parameters of
£owing lava. The model proposed in this paper

Fig. 9. Vertical component qz of the heat £ow at the Earth’s
surface. Di¡erent values of the tube depth h are considered:
curve 1, h=3 m, curve 2, h=5 m, curve 3, h=7 m, curve 4,
h=9 m, curve 5, h=11 m; for all the curves R=10 000 Pa s,
x=0 m, K=0.1. The values of the other model parameters
are ¢xed and shown in Table 1.
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describes the cooling of a cylindrical tube and the
heating of the surrounding medium. In order to
obtain an analytical solution, the model has been
simpli¢ed in several respects : in particular,
steady-state conditions are considered, the tube
has a regular shape and a constant slope, the
downslope temperature gradient is assumed to
be constant, and the change of viscosity with tem-
perature is neglected. Moreover the tube is com-
pletely ¢lled with lava, while observations indicate
that ¢lling is usually only partial. These approx-
imations are considered acceptable, in view of the
aim of the present model, that is to provide a ¢rst
quantitative insight into the relationships existing
between the many physical quantities involved in
the problem. The model illustrates how the tem-
perature ¢eld around a lava tube depends on the
tube radius and slope, on the lava viscosity and
on the distance from the beginning of the tube,
other quantities like the thermal conductivity of
rocks and the solidus temperature being consid-
ered as ¢xed. Moreover it has been shown that
the heat £ow at the Earth’s surface is a function
of the depth, size and temperature of a buried
lava tube. Therefore measuring surface heat £ow
during an eruption may be an e⁄cient method to
discover the existence of active lava tubes at depth
and to investigate their characteristics. Of course
in complex lava ¢elds, where several active £ows
are present, the thermal anomaly connected with
a lava tube may be perturbed by other thermal
sources.
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