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S U M M A R Y
We develop an algorithm to model the magnetometric resistivity (MMR) response over an
arbitrary 3-D conductivity structure and a method for inverting surface MMR data to recover a
3-D distribution of conductivity contrast. In the forward modelling algorithm, the second-order
partial differential equations for the scalar and vector potentials are discretized on a staggered-
grid using the finite-volume technique. The resulting matrix equations are consequently solved
using the bi-conjugate gradient stabilizing (BiCGSTAB), combined with symmetric successive
over relaxation (SSOR) pre-conditioning. In the inversion method, we discretize the 3-D model
into a large number of rectangular cells of constant conductivity, and the final solution is
obtained by minimizing a global objective function composed of the model objective function
and data misfit. Since 1-D conductivity variations are an annihilator for surface MMR data,
the model objective function is formulated in terms of relative conductivity with respect to a
reference model. A depth weighting that counteracts the natural decay of the kernels is shown
to be essential in typical problems. All minimizations are carried out with the Gauss–Newton
algorithm and model perturbations at each iteration are obtained by a conjugate gradient least-
squares method (CGLS), in which only the sensitivity matrix and its transpose multiplying a
vector are required. For surface MMR data, there are two forms of fundamental ambiguities for
recovery of the conductivity. First, magnetic field data can determine electrical conductivity
only to within a multiplicative constant. Thus for a body buried in a uniform host medium, we
can find only the relative conductivity contrast, not the absolute values. The choice of a constant
reference model has no effect on the reconstruction of the relative conductivity. The second
ambiguity arises from the fact that surface MMR cannot distinguish between a homogeneous
half-space and a 1-D conductive medium. For a 3-D body in a 1-D layered medium, it is still
difficult to obtain information concerning the general background 1-D medium, if sources
and receivers are at the surface. Overall, the surface MMR technique is useful so long as
significant current flows through the body. This happens when the overburden is thin and
moderately conductive (less than 10 times the conductivity of the underlying basement) and if
the current sources are placed so there is good coupling with the body. Our inversion method is
applied to synthetic examples and to a field data set. The low-resolution image obtained from
using traditional MMR data, involving one source and one magnetic component, illustrates
the need for acquiring data from multiple sources if 3-D structure of complex geometries are
sought.

Key words: 3-D, forward modelling, inversion, magnetometric resistivity, mineral
exploration, MMR.

1 I N T R O D U C T I O N

The magnetometric resistivity (MMR) method involves the mea-
surement of magnetic fields associated with artificially created, non-
inductive (DC or pseudo-DC) current flow input to the earth through
two electrodes. Historically, for a surface MMR survey, the wire
connecting the two current electrodes is typically laid in a horse-

shoe array and measurements are made somewhere in between the
electrode spread. The observations are then reduced by subtracting
the theoretical magnetic field arising from current flow in the wire
and also the field owing to current flow in a uniform half-space
or 1-D layered earth. The latter is often referred to as a ‘normal’
magnetic field. After the reduction, the remainders are expressed
as a percentage of the normal field at either the centre of the study
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area, or the centre of the relevant profile. Information concerning the
conductivity distribution beneath the surface is then extracted with
the aid of some data processing techniques. For down-hole or ma-
rine MMR measurements, data processing is slightly different since
the receivers are located in bore-holes or on the seafloor. Edwards
& Nabighian (1991) gives a thorough description of the theoreti-
cal work, modern implementation and case studies concerning the
MMR method. In this paper, though, we do not explicitly connect
the words MMR with a specific layout of current electrodes. The
work here is valid for all locations of current sources and receivers.
We will, however, use the typical horseshoe layout as an example,
since it serves as a good illustration and also is needed for our field
data set.

MMR methods have advantages over conventional electrical re-
sistivity methods. The MMR measurement has greater sensitivity to
conductive targets beneath a moderately conductive overburden than
does the DC-electrical method (Edwards & Nabighian 1991). For
example, an overburden of conductivity 0.01 S m−1, 30 m thick, will
dramatically reduce the response from a conductive target located in
a basement of 0.001 S m−1 for a DC-electrical survey; however, the
corresponding MMR anomaly is only reduced by about 10 per cent,
compared with that without the conductive overburden (see Fig. 9).
Thus DC-electrical surveys are not useful in such areas where the
weathered layer has a conductivity that is one or more orders of
magnitude higher than the conductivity of the underlying rock, but
MMR is a feasible method. In addition, MMR is only sensitive to
the relative conductivity between the targets and their surroundings,
not the absolute conductivity values. This makes MMR an attractive
technique for detecting poorly conducting targets such as some zinc
deposits (Bishop et al. 1997).

Despite these positive attributes, MMR is not a routinely used
method in mineral exploration, although it was successfully applied
by Edwards (1974) two decades ago. There are two principal diffi-
culties. The first is that the MMR signal is generally low, and great
care, and good instrumentation are required at the data acquisition
phase. The second impediment is the complexity of the observations;
the maps of individual components bear no simple relationship to
the geometry of the conductors. Fig. 1 is a manifestation of this.
A simple cubic body with side length of 400 m and conductivity
0.1 S m−1, is located in a host of conductivity 0.001 S m−1. The top
depth of the cube is 80 m. The source and sink electrodes are located
on the x-axis; each is 600 m from the origin of the coordinates. The
three synthetic components of the anomalous magnetic field at the
surface have totally different anomaly patterns; the y-component is
positive above the target; the vertical component changes sign from
the upper panel to the bottom, while the x-component shows an
anomaly in all four quadrants. Except for the y-component, there is
little compelling evidence to indicate a conductive body at depth,
never mind trying to infer information directly concerning the con-
ductivity contrast and buried depth.

Calculation of MMR responses over a conductive structure can
be roughly grouped into three categories. The first is based on ana-
lytical derivations for simple structures. As summarized in Edwards
et al. (1978), these structures include an anisotropic earth, verti-
cal and dipping contacts, thin and thick dykes, and semi-cylindrical
and hemispherical depressions, as well as α-media. Inayat-Hussein
(1989) developed and used a Fourier series integral to compute the
magnetic field of a direct current in a cylindrical-shaped conduc-
tor embedded in a resistive half-space beneath a conductive sur-
face layer. The second method for forward modelling is based upon
the modification of a numerical ‘resistivity’ method (Edwards &
Nabighian 1991). This involves two steps. The first is to solve

the Poisson equation for the electric potential by using the stan-
dard finite-element or finite-difference techniques. This is the same
procedure implemented in the conventional DC-electrical forward
problem. The second step is to calculate the magnetic field through
the modified form of the Biot–Savart law in which magnetic field
is explicitly expressed as a volume integral of a functional that is
proportional to the cross-product of the gradient of the potential
and the conductivity throughout the volume (Edwards et al. 1978).
Pai & Edwards (1983), Acosta & Worthington (1983) and Yang &
Tseng (1992) all followed this procedure to compute the MMR re-
sponse over a 2-D conductivity model. More recently, Boggs et al.
(1999) developed a finite-difference method for evaluating total field
magnetometric resistivity (TFMMR) responses of 3-D structures. In
their work, the magnetic field was evaluated in the Fourier domain.
The third method for forward modelling is the surface integral equa-
tion method. For many simple problems, the gradient of the electrical
conductivity vanishes everywhere except on the surfaces defining
changes in conductivity. Consequently, the volume integral for the
modified Biot–Savart law is reduced to a finite set of surface inte-
grals. Gomez Trevino & Edwards (1979) derived a rapid algorithm
for evaluating the three components of the magnetic field over a 2-D
structure. Oppliger (1984) modelled the effect of 3-D topography,
while Nabighian et al. (1984) and Cheesman & Edwards (1989)
computed MMR anomalies associated with multiple finite plates of
arbitrary conductance.

In this paper we perform forward modelling by using the method
proposed by Haber (2000) except we use a finite-volume solution
rather than the mixed finite elements. Effectively the MMR mod-
elling can be regarded as a mixed subproblem of electrostatic and
magnetostatic problems. One first solves an electrostatic problem
for a scalar potential, and then solves a magnetostatic equation for
the magnetic field. The first stage is therefore similar to the finite-
difference modelling mentioned in the previous paragraph, but the
second stage is different in that we obtain the magnetic field by
solving a differential equation rather than by performing a volume
integration.

In contrast to the forward modelling, inversion techniques of
MMR data are less developed. Type curves (Howland-Rose et al.
1980) are used to estimate qualitatively the source of some simple
2-D targets, and trial-and-error interpretation has been developed
based upon the gravity–MMR relationship given by Szarka (1987).
This relationship has been exploited with some success by using
the standard 2-D gravity modelling suite for processing down-hole
MMR data (Asten 1988). As recognized by Bishop et al. (1997),
however, standard gravity programs, which generally assume flat
surface traverses, may be not suited to surveys down deviating drill
holes. Consequently, the results have to be best-fitted by hand on to
geological cross-sections. A full 3-D interpretation program is ex-
pected to be able to overcome such difficulties and to extract more
useful information concerning the conductivity from the measured
data.

In this paper, we first develop a numerical algorithm to model
the MMR responses of an arbitrary 3-D conductivity structure. The
governing second-order differential equations for scalar and vec-
tor potentials are split into two first-order equations, and then dis-
cretized on a staggered grid by using a finite-volume method (Haber
& Ascher 2001). This discretization scheme is second-order accu-
rate and allows us to cope with highly discontinuous conductivity
and permeability. Scalar potentials are defined at the centres of grid
cells, while vector potentials are located on the faces. Conductiv-
ity values at cell faces are harmonically averaged, while perme-
ability values at edges are arithmetically averaged. The resulting
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Figure 1. Anomalous magnetic fields at the surface produced by a 400 × 400 × 400 m3 cube (d) with conductivity of 0.1 S m−1 and a top depth of 80 m,
embedded in a host of 0.001 S m−1. The source and sink electrodes are located at the x-axis, 600 m each from the origin of the coordinates: (a) x-component;
(b) y-component; (c) z-component. The magnitudes are in picoTesla (pT).

matrix equations are solved using the biconjugate gradient stabi-
lized (BiCGSTAB) method, combined with a symmetric successive
over-relaxation (SSOR) pre-conditioning. Once the two potentials
are computed, the magnetic field (and electric field, if required) can
be obtained anywhere by applying the discrete matrix for the curl op-
erator to the vector potentials. This numerical algorithm is verified
by comparison with the analytic solutions over a vertical contact
and a hemispherical depression. We also discuss the relationship
between the MMR anomaly and the conductivity distribution; this
helps us to define the ‘model’ parameter in our inversion algorithm.
The inverse problem for MMR data is formulated as an optimization
problem in which we minimize a model objective function subject
to the constraints that the data misfit is achieved to some level.
Our model objective function has the flexibility to incorporate ex-
tra information, and a Gauss–Newton iterative method is used to
obtain the model perturbation at each iteration. The regularization
parameter that controls the balance between the model norm and
misfit is determined through a cooling process. At each iteration
we must solve a large matrix system. We use a conjugate gradient

least-squares (CGLS) method and hence the majority of computa-
tions involve multiplying a sensitivity matrix, or its transpose, by
an arbitrary vector. This can be accomplished without explicitly
calculating and storing the sensitivity matrix (Haber et al. 2000b).

The paper begins by formulating the finite-volume discretization
for forward modelling of MMR response and then by formulating the
inverse algorithm. Practical considerations pertaining to the inverse
problems, such as how to define a depth weighting to counteract the
natural decay of the kernels, how to choose a reference model, and
which component data should be inverted will be discussed using
synthetic data. We then invert a field data set over a known mineral
deposit and conclude the paper with a discussion.

2 3 - D M M R FO R W A R D M O D E L L I N G

2.1 Governing equations

In a typical MMR survey, an external current is impressed into
the ground through a pair of current electrodes. The magnetic field

C© 2002 RAS, GJI, 149, 679–697



682 J. Chen, E. Haber and D. W. Oldenburg

associated with the current flow in both the wire and ground can be
measured by a magnetometer at the surface. For MMR modelling
we can assume that the exciting source is a direct current (DC).
This means that the solution for general Maxwell equations in the
frequency domain can be reduced to a steady-state problem (the
frequency is zero), which can be written as

∇ × E = 0, (1a)

∇ × H − σE = Js, (1b)

∇ · (µH) = 0, (1c)

where E is the electric field intensity in V m−1, H is the magnetic
field intensity in A m−1, Js is the external electric current density
in A m−2, σ and µ are the electric conductivity and magnetic per-
meability, respectively. The constitutive relation J = σE has been
incorporated into eq. (1b).

From eq. (1a), there exists a scalar electric potential φ, which
allows us to write E as

E = −∇φ. (2)

By taking the divergence of eq. (1b), we obtain the well-known DC
equation

∇ · (σ∇φ) = ∇ · Js. (3)

With appropriate boundary conditions, this system of equations can
be solved for φ. Once the potential φ is obtained, the magnetic field
H can be computed by solving

∇ × H = Js − σ∇φ = f, (4)

along with eq. (1c). In eq. (4), the scalar potential φ is on the right-
hand side of eq. (4), and serves as a source term to produce the
magnetic field. The source term f in eq. (4) should implicitly satisfy
the compatibility condition ∇ · f = 0. Eqs (4) and (1c), along with
boundary conditions, define a magnetostatic problem, and many
numerical methods have been devoted to solving it (Jin 1993; Haber
2000). In order to solve for H, we introduce a magnetic potential A
such that

µH = ∇ × A. (5)

The introduction of the vector potential A makes eq. (1c) implicitly
satisfied. Therefore, the system of equations for A can be written as

∇ × µ−1∇ × A = f, (6a)

subject to appropriate boundary conditions. As encountered in other
electromagnetic problems (Jin 1993), this equation does not have
a unique solution owing to the null space of the curl operator, and
therefore a gauge condition for A has to be imposed. We adopt the
Coulomb gauge condition

∇ · A = 0. (6b)

The system of eqs (6) is in principle overdetermined, since we have
four equations but only three unknowns. However, it is consistent
since eq. (6b) exactly covers the null-space of the operator in eq. (6a).
To ensure that the system remains positive definite, a stabilizer is
added (Haber & Ascher 2001),

∇ × µ−1∇ × A − ∇µ−1∇ · A = f. (7)

In order to obtain a second-order accurate method, even in the case
of highly discontinuous conductivity and susceptibility, the variable

ψ = µ−1∇ · A, (8)

is introduced, and H is not eliminated from the system. The final
system becomes

∇ × A − µH = 0, (9a)

∇ · A − µψ = 0, (9b)

∇ × H − ∇ψ = f, (9c)

which leads to a first-order, mixed formulation for the unknowns (A,
H, ψ). Similarly, eq. (3) can also be decoupled into two first-order
systems for the unknowns (J, φ) as

∇ · J = −∇ · Js, (10a)

σ−1J − ∇φ = 0. (10b)

2.2 Discretization using finite volumes

The differential eqs (9) and (10) are discretized by a finite-volume
method on a staggered grid (Haber et al. 2000a). An appealing char-
acteristic of the finite-volume method is that discontinuous fields,
such as the normal component of the electric field separating two
regions of different conductivities, are handled by working with
fluxes that are continuous. The study region is divided up by three
orthogonal sets of constant coordinate surfaces, producing a matrix
of rectangular cells. The 3-D volume must include the air since we
want to solve for A and φ by using the same grid mesh. Each grid
cell is assumed to have constant material properties (conductivity
and permeability), but the property values can vary significantly
from one cell to the next. In formulating a solution, care must be
taken to consider the smoothness properties of the different un-
known variables. An inappropriate location of variables can violate
the conservation laws and implicit boundary conditions, and result
in erroneous solutions. In our discretization scheme, A and J are
chosen to be at the centres of cell faces, H at the centres of cell
edges and ψ and φ are at cell centres, as shown in Fig. 2. By doing
so, the continuity of normal J, and tangential H across boundaries
is preserved explicitly.

After having carefully defined the locations of variables, we can
discretize eqs (9) and (10) in their weak forms. Detailed derivations
are given in Haber & Ascher (2001). It is worthwhile pointing out

Figure 2. A grid cell showing the locations for each unknown variable. φ

and ψ are at the centre of the cell; A and J are at the centre points of the
faces, denoted by arrows with dashed tails; H is at the edges.
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that firstly, this discretization is second-order accurate for both po-
tentials and H. Secondly, we use harmonic averaging for values of σ

at cell faces, and use arithmetic averaging for values of µ at cell
edges. These choices arise naturally from the discretization of eqs (9)
and (10), and are common to mixed methods. Thirdly, we can elimi-
nate the auxiliary components of J, H, and ψ unambiguously by sub-
stituting eq. (10b) into eqs (10a), (9a) and (9b) into (9c), respectively.
These algebraic eliminations correspond exactly to discretizing the
second-order systems (3) and (7). Our resultant matrix system is(

∇ (e)
h × M−1

e ∇ ( f )
h × −∇hM

−1
c ∇h · S∇h

0 ∇h · S∇h

)(
A

φ

)

=
(

Js

∇h · Js

)
, (11)

where the matrices ∇ (e)
h × and ∇ ( f )

h × are assembled from the dis-
cretization of the curl operator, projecting from cell edges to faces
and from faces to edges, respectively; matrices ∇h · and ∇h cor-
respond to the discretization of the div and grad operators. The
material matrix S arises from the discretization of the conductivity,
which is a harmonic averaging of values at cell faces. The matrices
Me and Mc result from an arithmetic averaging of the permeability
at cell edges and the permeability at the cell centres, respectively.
The superscript −1 represents the inverse of the matrix.

As pointed out by many researchers, such as Zhang et al. (1995)
and Zhao & Yedlin (1996), boundary conditions are critical to accu-
rately model the 3-D DC response using a finite-difference method.
Mixed boundary conditions (Dey & Morrison 1979) are often used.
In our implementation of the finite-volume method, we do not im-
pose boundary conditions explicitly on the scalar potential φ, but
normal components of A and J, and the tangential components of
H are assumed to be zero. This requires that the outer boundaries
must be far from the electrodes. In our following synthetic exam-
ples, the outer boundary in each direction is 2 km away from the
origin, including the top boundary in the air.

2.3 Solving the system of equations

The large system of equations that result from a finite-volume ap-
proximation over a 3-D mesh can be solved using Krylov space iter-
ative methods because a direct solution requires prohibitive amounts
of memory and computation. The convergence of Krylov space
methods depends on the condition number of the system matrix and
on the clustering property of the eigenvalues. Convergence is greatly
accelerated by applying an appropriate pre-conditioner. We use the
biconjugate gradient stabilized method, or BiCGSTAB, proposed by
Van der Vorst (1992), combined with a symmetric successive over
relaxation (SSOR) for our problem.

Obviously, the system of eq. (11) is decoupled and it is not nec-
essary to solve for A and φ simultaneously. We split them into two
systems

∇h · S∇hφ = ∇h · Js, (12)

and(∇ (e)
h × M−1

e ∇ ( f )
h × −∇hM

−1
c ∇h ·

)
A = Js − S∇hφ. (13)

The matrix eq. (12) is first solved, and we then substitute φ into
eq. (13) and solve for A. A standard left and right pre-conditioning
in the SSOR is applied to eqs (12) and (13), and then we use the
BiCGSTAB subroutine coded by Barrett et al. (1994), to solve for
φ and A.

After A and φ are obtained, the fields H (or B) and E (if required)
can be computed elsewhere by matrix operations M−1

e ∇ ( f )
h × A (or

∇ ( f )
h × A for B) and −∇hφ. For convenience, we do not distinguish

H and B from now on. Both are called as the magnetic field.

2.4 Computing magnetic data for MMR surveys

For a typical surface MMR set-up, a magnetic field sensor measures
a component of the magnetic field that exists at any location. The
magnetic field is caused by currents that flow in the Earth (Bg) and in
the wire (Bw). Without consideration of various noise, the observed
magnetic field Bobs can be denoted by

Bobs = Bw + Bg. (14)

From a numerical point of view, Bwand Bg can be computed sep-
arately from the discretized matrix equations as shown in eq. (13).
The right-hand side of eq. (13) represents the current source terms.
The first term Js corresponds to the current flow in the wire; the
term −S∇hφ represents the current flow in the ground. This means
that we have two options for calculating the magnetic field. Eq. (13)
could be solved by including both current source terms. This is fea-
sible but there are substantial discretization errors when fields are to
be calculated close to the wire. This arises, because in the numerical
implementation of a finite-volume solution, the current in the wire
is effectively distributed over the face of a cell. A better procedure,
and one used here, is to leave Js out of eq. (13) and compute the
magnetic field Bw analytically using the Biot–Savart law. The mag-
netic field Bw around a finite straight length of wire carrying current
I can be obtained from the Biot–Savart law (Asten 1988) and is

Bw = µI

4πr
(cos α − cos β) (Î × r̂), (15)

where Î is a unit vector in the direction of current flow and r̂ is a unit
vector perpendicular to the wire. α and β are the angles between
the connecting line from the observation point to the ends of the
wire and Î. It is evident that Bw does not contain any information
concerning the conductivity.

Following the MMR convention, the ground component Bg can
also be split into two parts:

Bg = Bn + Ba, (16)

where Bn is the normal magnetic field associated with the current
flow in a background media that may be a uniform half-space or 1-D
earth; Ba is the anomalous magnetic field produced by the current
variation with respect to the normal current. As shown in Edwards
& Nabighian (1991), Bn at the surface is independent of the 1-D
conductivity distribution beneath the earth, and is only related to
the current amplitude and distance from the current. The vertical
component of Bn is zero and the azimuthal Bn, caused by a single
impressed source electrode with a current of strength I over any 1-D
earth, is given by

Bn
φ = µI

4πr
, (17)

where r is the distance from the observation point to the electrode.
This expression is independent of conductivity. It should be noted
that eq. (17) only applies for surface MMR without any topography.

From the above, it follows that the only portion of useful signal
from which electrical properties can be inferred is the anomalous
magnetic field
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Ba = Bobs − Bw − Bn. (18)

Our numerical tests will focus on this quantity.

2.5 Verification of the forward modelling code

Edwards et al. (1978) present some analytical solutions for verti-
cal and dipping contacts, thin and thick dikes, hemicylindrical and
hemispherical depressions. We checked our code with two mod-
els: a vertical contact and an extremely conductive hemi-spherical
depression. Analytical models were calculated directly from formu-
lae given in Boggs (1999), which are slightly different from those
given in Edwards et al. (1978). The discrepancies are attributed to
typographical errors in the original reference (Boggs et al. 1999).
Only formulae for the vertical component of the anomalous mag-
netic field, Ba

z , were available so we limited our comparison to that
component.

As shown in Fig. 3(c), the vertical contact model consisted of two
adjacent quarter-spaces with conductivities 0.01 and 0.001 S m−1.
The contact separating the two spaces is coincident with the yoz

Figure 3. 3-D numerical vertical component of anomalous magnetic field (a) and its percentage error (b), compared with an analytical solution for a vertical
contact model shown in (c). The source and sink electrodes, carrying 1.0 A, were located at (0, −600, 0) and (0, 600, 0) m, respectively.

plane and the source and sink electrodes were located at the surface
at the positions (0, −600, 0) m and (0, 600, 0) m, respectively. The
analytical expression for Ba

z (Edwards & Nabighian 1991, p. 63),
is not reproduced here. For numerical modelling, the 3-D model,
4 km × 4 km × 4 km, was unevenly discretized into 54 × 50 ×
44 cells, including the 2 km air layer. A mesh size of 25 m was used
to partition the centre region of the model and a larger mesh size
for the rest of the model. The vertical component of the anomalous
magnetic field over the area bounded by the coordinates −400 to
400 m in both x and y directions, is shown in Fig. 3(a). There is little
visual difference between the analytical and computed magnetic
field, so to compare, we plot the difference between them. Fig. 3(b)
is the error map in pT.

In a second comparison (Fig. 4c) we modelled responses from a
conductive (10 S m−1) hemi-sphere of radius 200 m located at the
origin of the coordinates. The host medium had a conductivity of
0.001 S m−1 and the current flow was from the source at (0, −600,
0) m to the sink at (0, 600, 0) m. The analytical vertical magnetic
fields are given in (Edwards & Nabighian 1991, p. 71). We used
the same mesh as in the contact case to discretize this hemisphere
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Figure 4. 3-D numerical vertical component of the anomalous magnetic field (a) and its percentage error (b), compared with the analytical solution for a
hugely conductive hemi-sphere of radius 200 m shown in (c). The source and sink electrodes, carrying 1.0 A, were located at (0, −600, 0) and (0, 600, 0) m,
respectively.

model. Results of the 3-D numerical modelling are presented in
Fig. 4(a), and the difference error in the model is shown in Fig. 4(b).
Larger errors (up to 14 pT) occur at the rim of the hemisphere, but
errors in the rest of the study area are quite small. The error at the
rim of the hemisphere is principally owing to the difficulty in trying
to represent a spherical surface with cuboidal prisms. Rerunning the
forward modelling after decreasing the cell size by a factor of 2 in
the core area reduced the error to 8 pT.

2.6 Relationship between B and conductivity

Understanding the relationship between the magnetic field and the
conductivity beneath the surface of the earth is important for in-
version of MMR data. One may expect that different conductivity
distributions will give rise to different magnetic fields and hence
any change of the conductivity will be manifested in the observed

data. This is true for the electric fields, and it allows us to recover
absolute values of the conductivity from observed DC resistivity
measurements, albeit there is the usual non-uniqueness associated
with inverting a finite number of inaccurate data. The situation for
MMR data is more complicated. We have already discussed one
form of insensitivity, that is, the anomalous surface magnetic field
is insensitive to 1-D variations in conductivity. In addition, identical
magnetic fields arise from any two conductivities that differ only by
a constant scaling factor.

To see this, consider a general conductivity model σ1(x, y, z) and
compute potentials A from eq. (7) and φ from eq. (3). These two
equations are uncoupled so φ can be determined solely from the
latter equation. Now consider another conductivity model such that
σ2(x, y, z) = χσ1(x, y, z), where χ is a constant. From eq. (3), it
is easy to see that φ2 = φ1/χ , i.e. σ1∇φ1 = σ2∇φ2. So the source
term Js −σ∇φ on the right-hand side of eq. (7) remains unchanged
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for these two models. Since the left-hand side does not involve
conductivity, the vector potential A, and hence the magnetic field
B, are unchanged by this scaling. The same conclusion can also be
obtained by working with the discretized eq. (11).

This clearly indicates that the magnetic field is not sensitive to the
absolute conductivity. Thus if σ0 is a constant reference background
conductivity then the data are dependent upon a ratio of conductiv-
ities σ (x, y, z)/σ0. The two analytic results presented earlier sub-
stantiate this. The analytical expressions of the anomalous magnetic
field Ba

z are only related to conductivities through the reflection co-
efficients K21 for the vertical contact, and Cn for the hemispherical
model. K21 and Cn are expressed as

K21 = 1 − σ2/σ1

1 + σ2/σ1
, (19)

and

Cn = 1 − σ1/σ0

(n + 1) + n · σ1/σ0
, (20)

where n is the degree of the Legendre polynomial. It is evident that
both K21 and Cn are only sensitive to the ratio of conductivities, not
the absolute values.

The result that scaled conductivities generate the same magnetic
field holds for all measurements irrespective of whether they are
acquired inside or outside the earth. In addition, for surface MMR
data, there is the complication that the magnetic fields from a 1-D
earth are the same as those arising from a half-space. This does
not mean that the anomalous signal from a buried conductor is
independent of the background. In particular, sufficiently conductive
overburden can completely shield the body. Nevertheless, we expect
to obtain a poor understanding concerning the vertical variation
of conductivity from only surface measurements. To illustrate this,
consider the anomalous surface field By resulting from a cube buried
in different 1-D conductivities. The cross-section of the 3-D model
is shown in Fig. 5(d). The conductivities of the first layer and the
3-D cube are unchanged for three models, but the conductivity of
the second layer varies from 0.001 to 0.1 S m−1. The corresponding
anomalous By components at the surface are displayed in Figs 5(a)–
(c). As the conductivity of the second layer increases, the amplitude
of By decreases significantly from about 80 to 12 pT. Two factors
contribute to this change. As mentioned earlier, the magnetic field
is related to the ratio of the conductivities. In this example, the ratio
σb/σ2 decreases from 100 to 1, certainly causing a major reduction of
the By field. At the same time, the magnetic field is also proportional
to the amount of anomalous current flowing in the 3-D body, and this
is controlled by the 1-D background conductivity. In addition, we
see that the three By responses have identical shapes, quite similar
to a dipole field, and the major difference is only the amplitude. This
suggests that it is unlikely that we can distinguish a 3-D body in a
layered earth or in a uniform half-space if only the surface MMR
data are used.

3 3 - D I N V E R S I O N O F M M R D A T A

As shown in the previous section, the magnetic field Bg, or Ba, is non-
linearly related to the conductivityσ . The goal of the inverse problem
is to find a conductivity distribution that can reproduce the observed
data to a desired degree. It is well known that the inverse problem is
not unique. There are generally infinitely many conductivity models
that can fit the observed data equally well. To find a particular model,
we can formulate the inverse problem as an optimization problem
where an objective function of the model is minimized subject to

a constraint that the misfit between the observed and the predicted
data is in a desired value. We will briefly outline this approach
below.

For MMR inversion, the first question that arises concerns the def-
inition of the ‘model’ parameter. Conductivity is a positive quantity
that can vary by orders of magnitude. We thus define the model pa-
rameter as m = ln σ . We next construct a model objective function
φm . Our choice for φm is guided by the fact that we often wish to find
a model that has minimum structure in the three spatial directions,
and at the same time is close to the reference model m0. An objective
function that has the flexibility to accomplish these goals is

φm(m, m0) = αs

∫
v

[m(r) − m0]2 dv + αx

∫
v

{
∂[m(r) − m0]

∂x

}2

dv

+ αy

∫
v

{
∂[m(r) − m0]

∂y

}2

dv

+ αz

∫
v

{
∂[m(r) − m0]

∂z

}2

dv, (21)

where αs, αx , αy and αz are coefficients that affect the relative im-
portance of different components in the function.

The form of objective function is particularly appropriate for an
MMR investigation. With the choice of m = ln σ , then m − m0 =
ln(σ/σ0). If σ0 is a constant, then σ/σ0 reflects the information that is
available from the MMR data alone, namely that the MMR data are
not sensitive to the absolute conductivity but are indeterminate by a
constant factor. In the absence of a priori information we can obtain
information only about σ/σ0. The final conductivity obtained from
inversion will be ‘floating’ on this constant reference conductivity.
If σ0 happens to be the conductivity of the real background geol-
ogy, the inverted σ (x, y, z) might be a good approximation to the
conductivity distribution of the true geological model. Otherwise,
σ (x, y, z) can only reveal the relative conductivity variations with
respect to the reference model provided.

To perform a numerical implementation, we discretize the model
objective function in eq. (21) using a finite-difference approximation
according to the mesh defining the conductivity model. The discrete
form of eq. (21) is

φm(m) = ‖Wm(m − m0)‖2 . (22)

The derivation of the matrix Wm , which has incorporated the small-
est and three derivative components, can be found in Li & Oldenburg
(1996).

The next step in setting up the inversion is to define a data misfit
between the observed and predicted data. With the same model
parametrization, the forward modelling operator is assumed to be
written as d = F[m], and we can use the 2-norm measure as the data
misfit

φd =
∥∥Wd(d − dobs)

∥∥2
, (23)

where Wd is a diagonal matrix. If the noise contaminated in the
ith observation is an uncorrelated Gaussian random variable having
zero mean and standard deviation εi , then an appropriate form for
Wd is Wd = diag{1/ε1, . . . , 1/εN }, where N is the number of ob-
servations. This assumption makes φd a random variable distributed
as chi-squared with N degrees of freedom, and thus the expected
value of φd is approximately equal to N, assuming the errors are
correctly estimated. Therefore, our target misfit φ∗

d for the model
sought from the inversion should be set around this value.

The inverse problem is now formulated as the optimization prob-
lem: minimize an objective function
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Figure 5. y-components of the anomalous magnetic field at the surface produced by 3-D models shown in (d). The conductivity of the basement varies: (a)
0.001 S m−1; (b) 0.01 S m−1; and (c) 0.1 S m−1.

φ(m) = φd + βφm(m), (24)

where β is a regularization parameter.
This problem is non-linear and iteration is required. We use a

standard Gauss–Newton approach. At each iteration a model per-
turbation δm is found by solving(
JTWT

dWdJ + βWT
mWm

)
δm = −JTWT

dWd

{
F
[
m(n)
]− dobs

}
− βWT

mWm

(
m(n) − m0

)
, (25)

where J is the sensitivity matrix (or Jacobian matrix) of N × M ,
having elements

Ji j = ∂di

∂m j
. (26)

Details regarding the calculation of J, and the product of J or its
transpose with a vector, will be postponed to an appendix. The
choice of regularization parameter β has been addressed by many
researchers. We adopt a simple cooling procedure in which β starts
at a large value and is slowly reduced. We choose an initial β0 that is
sufficiently large so that β0W

T
mWm dominates the JTJ component in

eq. (25) and hence the problem is nearly quadratic. At the (k + 1)th
iteration we set

βk+1 = λβk, (27)

where λ is a constant, usually chosen to be about 0.5. We solve
eq. (25) for δm and form

mk+1 = mk + αδm, (28)

where α is a constant step length. A weak line search, initiated by
setting α = 1, is used to estimate α. This constitutes an inner-loop
iteration and the maximum number of iterations is limited to 8. For
any α, the updated model mk+1, and associated βk+1, are accepted
if the consistency condition (Haber & Oldenburg 2000)

φk+1
d + βk+1φ

k+1
m < φk

d + βk+1φ
k
m, (29)

is satisfied. That is, the updated method results in a reduced value for
the objective function. If this inequality is not satisfied, we conclude
that the reduction in βk+1 has been too large. We therefore increase
λ and begin from eq. (27). This process is repeated until the target
misfit is achieved.
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Figure 6. 3-D inversion results of a synthetic MMR anomaly (y-component) without depth weighting. The true model is the same as that described in Fig. 1.
(a) Cross-section through the centre of the cube; (b) cross-section of the inverted model. The reference model is a half-space of 0.001 S m−1. The greyscales
beside both indicates the conductivity (S m−1) in a logarithmic scale. (c) The synthetic anomaly produced by the cube model. Uncorrelated Gaussian noise,
with a standard deviation of 5 per cent of the datum magnitude plus 0.5, is added to form the data; (d) the predicted data produced by the inverted model. The
greyscales on the bottom two plots show the MMR anomaly as a percentage.

Now we need to address how to solve the matrix equation in
eq. (25) for the perturbation δm at each iteration. Solving eq. (25)
is identical to solving the equivalent least-squares problem(

WdJ
√

βWm

)
δm =

(
−Wd

(
F
[
m(n)
]− dobs

)
−√

βWm

(
m(n) − m0

)
)

. (30)

We use the conjugate gradient least-squares algorithm (CGLS)
(Golub & van Loan 1996) to solve eq. (30). The main computa-
tions required for this algorithm are the product of the matrix J with
a vector and the product of the its transpose matrix JT with a vector.
The derivation is carefully explained in the Appendix.

4 P R A C T I C A L C O N S I D E R A T I O N S
O F T H E I N V E R S I O N

4.1 Depth weighting

As the first example of synthetic data study, we invert the single-
component MMR anomaly data (y-component) as defined in the

previous section. The model consists of a 3-D cube buried in a
uniform half-space. The conductivities of the cube and half-space
are set to be 0.1 and 0.001 S m−1, respectively. For simplicity, the
cube is located right below the origin of the coordinates, with a
top depth of 80 m and a side length of 400 m. Fig. 6(a) shows the
cross-section of the true model at the y = 0 plane. The source and
sink electrodes are located at −600 and 600 m along the x-axis.
The measurement area at the surface extends from −400 to 400 m
in both directions, with 25 survey lines and 25 sites on each line,
resulting in a total number of 625 data points. The cube produces the
MMR anomalies that are shown in Fig. 6(c). The MMR anomaly is
obtained by normalizing the anomaly magnetic field (y-component
here) by the normal field Bn at the centre of the survey area, defining
the so-called ‘MMR anomaly’ as a percentage,

MMR anomaly = 100 × Ba

Bn
. (31)

The data have independent Gaussian noise added, the standard de-
viation of which is equal to 5 per cent of the accurate datum plus
a constant error of 0.5 pT. We invert these 625 noise-contaminated
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data to recover the conductivity of an earth model parametrized by
32×32×15 cells (the air layer is excluded). The reference model is
the same as the true uniform half-space of 0.001 S m−1. After seven
iterations, the final misfit is 586 and the cross-section through the
centre of the recovered model is shown in Fig. 6(b). The predicted
MMR data are also shown in Fig. 6(d) for comparison with Fig. 6(c).

The inverted conductivity model tends to be concentrated near
the surface of the earth. The contrast in conductivity between the
target and the host (0.6 in a log scale) is also much smaller than
the true value of 2 (or 100:1 on a linear scale). These results may
have been anticipated because of the close relationship between the
magnetic field owing to a volume current distribution and the gravity
field owing to a volume density variation. The magnetic field B is
obtained by the Biot–Savart law, which is given by

B = µ

4π

∫
v

J × ∇
(

1

r

)
dv, (32)

while the gravity field g is given by

g = G

∫
v

ρ∇
(

1

r

)
dv, (33)

where G is the universal gravitational constant and ρ is the den-
sity. Both have the same kernel function ∇(1/r ). When expanding
eq. (32), it is easy to find that each component of B can be expressed
as a linear combination of two components of the gravity field. For
example, the By component can be written as By = gx −gz , provided
that the density ρ is replaced with µ

4πG Jz when computing gx and
with µ

4πG Jx when computing gz . For a 2-D structure, as first recog-
nized by Szarka (1987), By = −gz if the current flows only parallel
to the strike direction (x-direction here). Thus the magnetic field can
be estimated using existing gravity formulae (Asten 1988).

It is well known that gravity data have no inherent depth res-
olution. To counteract the geometric decay of the kernels and to
distribute the density with depth, Li & Oldenburg (1998) introduce
a depth weighting into the model objective function. The established
similarity between the magnetic field and gravity allows us to use the
same depth weighting for inversion of the MMR data. The weighting
is incorporated into the inversion, by altering the model objective
function given by

φm(m, m0) = αs

∫
v

{w(z)[m(r) − m0]}2 dv

+ αx

∫
v

{
∂w(z)[m(r) − m0]

∂x

}2

dv

+ αy

∫
v

{
∂w(z)[m(r) − m0]

∂y

}2

dv

+ αz

∫
v

{
∂w(z)[m(r) − m0]

∂z

}2

dv, (34)

where w(z) is the depth weighting function. This is discretized in
the same manner as eq. (21).

For a surface MMR survey, the depth weighting w(z), similar
to that implemented in Li & Oldenburg (1996), takes the form of
w(z) = 2z0/(z + z0)γ . The parameters z0 and γ are chosen so that
w2(z) is approximately equal to the decay of the kernels, so γ ≈ 1
emulates the 1/r 2 decay of gravity kernels. z0 depends upon the
cell size and the observation height (if there is topography). Here
we choose z0 to be half the thickness of the cell just below the
surface, z is the depth to a cell centre, and γ = 0.95.

We have tested the weighting functions by inverting the noise-
contaminated data from the buried cube in the first example. z0

Figure 7. Cross-sections through the centre of the inverted model using the
y-component data. The true model is shown in Fig. 6(a). The inversion uses
the depth-weighting function discussed in the text. The reference model is a
half-space of 0.001 S m−1.

is equal to 10 m. The reference model is the uniform half-space of
0.001 S m−1. Fig. 7 shows the cross-section through the centre of the
inverted conductivity model, which can be compared with Fig. 6(a).
The model recovered with the depth weighting is shifted to depth
and approximately coincides with the true model. The outline of the
constructed model is in reasonable agreement with the true model,
and the contrast of the conductivities is increased to about 1.5 (on a
log scale), which is much closer to the true contrast of 2.

4.2 Issues related to reference model

The choice of reference model is another key element in our in-
version algorithm. As explained in the previous section, the MMR
anomaly is only sensitive to the relative conductivity contrast be-
tween targets and their surroundings. Therefore, the inverted model
must be interpreted in conjunction with the reference model. In or-
der to reveal the true conductivity structures, the reference model
should be as close to the true background as possible. Without this
knowledge of the background to calibrate the models, however, the
MMR inversion can still provide useful information concerning the
relative conductivity contrast. We use the following example to il-
lustrate this point.

We return to the cube model with all inversion parameters be-
ing exactly the same as those used in the depth weighting exper-
iment. The only difference is the choice of the reference model.
Two reference models are tested. One is a uniform half-space of
0.01 S m−1, the other 0.1 S m−1. The cross-sections of the inverted
models through the centre of the true cube model are shown in
Figs 8(a) and (b), respectively. For comparison, these results can be
judged in conjunction with the true model and the inverted model
using the 0.001 S m−1 reference model, both of those are shown in
Figs 6(a) and 7. Clearly, the shapes of the inverted anomalies are
almost identical for the three different models. They all match quite
well with the outline of the true cube. Although the conductivity val-
ues shown in the grey bar are changed with the reference models,
the contrast (1.5 on a log scale) is almost maintained. This verifies
that the choice of constant for a reference model does not affect the
recovery of the conductivity contrast structure in our inversion.

The effect of a conductive overburden on the MMR inversion is
closely related to the choice of reference model. Suppose that there is
a moderately conductive overburden overlying a basement in which
a target resides. Surface measurements are acquired with the goal of
recovering structures below the overburden. There are two practical
issues to be addressed. First, can a significant MMR response from
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Figure 8. Cross-sections through the centre of the inverted models with a reference model of (a) 0.01 S m−1 and (b) 0.1 S m−1. Note the inverted conductivity
values, denoted as a logarithm, change with the reference models, but the relative conductivity contrast is principally unchanged.

the target be obtained in the presence of the conductive overburden.
In the conventional DC electrical survey, the ‘masking effect’ has
severely limited application in areas where the conductivity of an
overburden or weathered layer is one or more orders of magnitude
higher than the conductivity of the underlying rock. The second
aspect addresses the question of whether the relative conductivity
structure of the target can be recovered even though a uniform half-
space is specified as the reference model.

To obtain some insight concerning the first issue, we take the cube
model as an example, but add an overburden with conductivity of
0.01 S m−1 and thickness of 30 m. Other geometric and electrical pa-
rameters remain unchanged. Figs 9(a) and (b) show the y-component
of the anomalous magnetic field for the models without, and with,
the conductive overburden, respectively. The maximum magnitude
of the magnetic field decreases from 72 to 65 pT, a change of only
about 10 per cent. This indicates that we may ‘see’ the target of
interest through a moderately conductive cover layer, and this con-
stitutes a principal advantage of the MMR survey versus the direct
current resistivity method. The signal strength for the DC electrical
potentials decreases by 50 per cent in this same example.

To address the second question, we invert the MMR data pro-
duced from the cube model with the conductive overburden. The

Figure 9. Synthetic y-components of the anomalous magnetic field for the cube model: (a) without and (b) with a 30 m thick conductive overburden of
0.01 S m−1. The magnitudes of the magnetic field are in pT. The conductive overburden reduces the anomalous field only by 10 per cent.

data are first contaminated with random Gaussian noise of 5 per
cent, the depth weighting is imposed, and the conductivity of the
reference model is 0.001 S m−1. A cross-section of the recovered
structure in Fig. 10(b), shows that the location of the target and
conductivity contrast with the background are reasonably well de-
fined. The inversion provides no indication of the 1-D overburden
structure. This is a practical consequence of the fact that surface
data from any 1-D conductivity structure is the same as that of a
uniform half-space. The reconstruction of the target body, however,
has been good because the conductive overburden has not greatly
changed the amount and distribution of current going through the
prism. When the overburden is thicker, or more conductive, its effect
will become more pronounced. In such cases, the choice of refer-
ence model becomes more critical. Quantifying these effects is left
for future research.

4.3 Which component data to invert?

In the previous synthetic examples, we inverted only the y-
component of the anomalous MMR response. The choice was tied
to practical signal-to-noise ratio issues. With the typical acquisition
of MMR data using a horseshoe current layout for the wires, then
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Figure 10. Cross-sections through the centre of the true model with a conductive overburden (a) and of the inverted model (b) obtained by inverting the
y-component data. The depth weighting function is applied, and the reference model is a half-space of 0.001 S m−1.

the y-component of the anomalous magnetic field usually has the
highest fidelity. This can be understood as follows.

As explained in the forward modelling section, the total magnetic
field consists of three parts: Bw, Bn and Ba. The magnetic field Bw

owing to current flow in the wire can be obtained directly through
the Biot–Savart law. For the case of our cube model, the horseshoe
wire has three segments, each of those is 1200 m long, and is as-
sumed to be laid on the side of y < 0. Because the measurements
are made at the surface, Bw only has a vertical component. The other
two horizontal components are null. Deviations of the wire into the
vertical direction will generate horizontal components. It is for this
reason that the U-shape was adopted so that the wire is away from the
location at which fields are to be measured. In contrast, the normal
magnetic field Bn has no vertical component, but just two horizontal
components, which can be calculated analytically. The anomalous
magnetic fields Ba have been shown in Fig. 1. Adding Bw, Bn and
Ba generates the total magnetic field for each component. These are
shown in Fig. 11. This figure clearly shows that Bz has the largest
amplitude of about 1200 pT; the second is By , 650 pT, and the least
is Bx , 200 pT. From the viewpoint of measurements, Bz has the
highest signal strength and thus it might be the best one to invert.
However, only the anomalous field components contain useful in-
formation concerning the target of interest and so we invert them.
From Fig. 1, the amplitudes for the vertical and y-component of the
anomalous fields are about the same size, 60 and 70 pT, respectively;

Figure 11. The total magnetic fields produced by the cube model, which are composed by three parts: Bw, Bn, and Ba. Ba is shown in Fig. 1.

the x-component is roughly one-third of the y-component. Thus, Bz

and By have the largest anomalous signal strength. In practice, the
layout of the wire along the three sides may be not straight, or the
surface of the earth is not a flat as it is supposed to be. Both situa-
tions will make Bz more noise-prone compared with By and hence
it is usually only the By component, which is collected and inverted.
In principle, however, if the location of the current wire is recorded
accurately, then its effect can be subtracted and all components con-
tain valuable information concerning the subsurface conductivity
variations. As an illustration Fig. 12 shows the cross-section of the
recovered conductivity model obtained by inverting only the vertical
component data. Gaussian noise of 5 per cent plus a floor error of
0.5 pT was added to the data prior to inversion. Both the location of
the cube and the conductivity contrast are reasonably well defined,
and the recovered model compares favourably with that shown in
Fig. 10(b).

5 F I E L D E X A M P L E

Surface MMR data were collected at the Mons Cupri deposit of the
Pilbara area, Western Australia. As shown in Fig. 13, the general
strike of the formation around the Mons Cupri deposit is north–south
and dips 30◦ westward. The ore body is hosted by the Mons Cupri
rhyolite fragmental, which is sequentially overlain by the Cistern
Formation, Cap shale, Comstock andesite and Whim Creek shale.
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Figure 12. Cross-sections through the centre of the inverted model by in-
verting the z-component data. The true model is shown in Fig. 10(a). The
depth weighting function is applied, and the reference model is a half-space
of 0.001 S m−1.

Mineralization consists of a zone of iron-rich chlorite and carbon-
ate alteration containing disseminated and stockwork chalcopyrite
mineralization overlain by a shallowly dipping massive sphalerite
galena, chalcopyrite lens in volcaniclastic and cherty sediments
(Linford 1990). The stockwork zone, containing copper mineral-
ization in chalcedonic silica and carbonate veins, dips steeply to the
south, and is approximately 1 km long, extending to 200 m below
the present surface. The uppermost part of the ore body is oxidized
down to 100 m below the surface. It has been estimated that the
deposit’s resource is 1.5 Mt oxide ore at 1.13 wt per cent Cu and
1.4 Mt sulphide ore at 1.74 wt per cent Cu, 1.13 wt per cent Pb and
2.48 wt per cent Zn.

MMR surveys, together with MIP, were conducted over the de-
posit by Scintrex (Linford 1990). The current electrodes were set
on 1000N at 1500E and 300E, and are aligned with the geological
cross-section. An area of 1000 m × 1000 m over the ore body was
surveyed. 11 survey lines parallel to the strike were 100 m apart,
and the station interval inside the central 500 m × 500 m area was
50 m and it was 100 m outside this central area. Data were acquired
at 0.3 Hz. The observed horizontal magnetic field (south-pointing)
was reduced to the MMR response in per cent by the procedure
discussed earlier. Fig. 14(a) shows the MMR responses at the 162
stations. Basically, there are two regions where the MMR response
is high. One, at line 1400N, extends from 500E to 800E, and has
a magnitude of about 104 per cent. From Fig. 13, this anomaly is
approximately coincident with the surface expression of the marked
Cu gossan and mineralization at the upper left-hand corner. The
other MMR high is much smaller and is located at about 950N, and
extends from 1100E to 1250E. Interestingly, this anomaly is directly
above the known massive sulphides. These two highs suggest that
the mineralization is more conductive compared with its surround-
ings. Other local highs may be not trustworthy because only a single
data point is involved. There is a large negative anomaly at 1000N
of the West side of survey area. The anomaly is as low as −162 per
cent, indicating a more resistive structure than the host medium.

The survey area is characterized by a flat terrain except for the
small scattered hills resistant to the erosion, so a 3-D model of
2 × 2 × 1 km3 (excluding the air space), without topography, was
designed. The model was discretized horizontally at a non-uniform
interval, from 50 m in the central 1000 m × 1000 m area, to 100 m
outside. In the vertical direction, the first 300 m was divided at
a 25 m interval so that the shallow structure could be adequately
modelled. Below that, an interval of 50–100 m was used. This re-
sulted in a mesh with 34 × 34 × 20 cells. The inverse problem was
therefore formalized by inverting 162 data points to recover the con-

ductivities in these 23 120 cells. The reference model was a uniform
half-space of 0.001 S m−1. Little is known concerning the conduc-
tivity of the different rock units but they are probably resistive. Two
core sample measurements exist (Linford 1990). The resistivity of a
copper-disseminated sulphide and oxide sample is 3000 � m, while
a copper-massive sulphide sample is less than 1 � m. For the in-
version, a depth-weighting function with γ = 0.95 and z0 = 12.5 m
was adopted. We also assumed that each datum had an error whose
standard deviation was equal to 8 per cent of its magnitude plus a
base value of 2 anomaly units. The target misfit was set to 162, but
the achieved misfit after 13 iterations was 850. Most of the misfit
comes from the isolated points such as that at the upper right-hand
corner. The predicted data are shown in Fig. 14(b).

The recovered conductivity model is shown in Fig. 15 as one
plan-section at a depth of 85 m. There are four regions of anoma-
lously high conductivity. Two regions at (1400N, 600E) and (1000N,
1100E) correspond to known ore deposits. The dotted circles indi-
cate surface locations of the deposits inferred from geology. The
maximum recovered conductivity value is about 58 mS m−1, which
is much smaller than the core sample conductivity of 1 S m−1 for the
massive sulphides. This may be explained in two ways. First, the sat-
uration effect of MMR responses prevents the algorithm from pro-
ducing a target whose conductivity value is 100 times greater than its
surrounding. In this case, the reference model has a conductivity of
1 mS m−1, and thus the maximum conductivity for any highly con-
ductive target should be less than 100 mS m−1. Secondly, the MMR
response on the surface is produced by bulk conductivities for one
discretized model. The recovered ‘bulk’ conductivity of our large
prisms is likely to be less than the ‘point’ core sample value. The
other two regions of high conductivity occur at (700N, 1000E) and
(1400N, 1400E). We have no information about them. The whitish
region in the area (800–1200N, 300–500E) indicated highly resis-
tive material (0.1 mS m−1), which accounts for the negative MMR
response on the left-hand side of the central deposit. These highly
resistive materials may be associated with Whim Creek shale and
some volcanics.

Fig. 16 compares the recovered conductivity model with the ge-
ology in the cross-section at 950N. The lead–zinc mineralization
consists of two tabular targets separated by about 200 m in depth.
The MMR results show a region of high conductivity centred be-
tween the two mineralized lenses. This is characteristic of a low-
resolution image of a complex structure. Overall, we feel that the
inversion has been successful in delineating the volume containing
the mineralization, but the resolution is poor. Acquisition of other
components of the magnetic field, and especially, obtaining data
from one or more other locations of the current electrodes, could
greatly improve the results.

6 D I S C U S S I O N S

We have developed an algorithm to compute the MMR response ow-
ing to steady current sources in a 3-D environment. This is achieved
in two consecutive steps: first, solving a DC resistivity problem and
then solving a magnetostatic subproblem. The differential equations
involved in these two problems are solved numerically using the
finite-volume technique based on a staggered grid. The algorithm is
versatile: the grounded sources can be located anywhere although
we assumed the sources were at the surface of the earth in our
examples; topography can be included into the model; and highly
discontinuous conductivity and susceptibility can also be handled.
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Figure 13. Geological plan and section view of the Mons Cupri deposit with current electrodes, connecting wires and the MMR survey area.

The algorithm has been tested against analytical models such as a
vertical contact and hemispherical depression.

We have also developed a technique to invert the surface MMR
data to recover a 3-D conductivity distribution. To overcome the
inherent non-uniqueness of the inverse problem, we obtain the so-
lution by minimizing a specific model objective function subject
to a target misfit. Because the static magnetic field has no depth
resolution, a depth-weighting function has to be included into the
objective function. The minimization is carried out using the Gauss–
Newton method in which the perturbation at each iteration is ob-
tained by solving an equivalent conjugate gradient least-squares
problem. A crucial element in solving a large-scale inverse problem
is that we avoid computing and storing the sensitivity matrix ex-
plicitly; instead, we only need to calculate the sensitivity matrix and
its transpose multiplying a vector. This is equivalent to two forward
modellings. The regularization parameter controlling the balance

between data misfit and model norm is determined pragmatically in
a cooling process.

The interpretation of MMR data is made somewhat more diffi-
cult because of the fundamental non-uniqueness. That is, the con-
ductivity obtained from inverting MMR data is always ambiguous
by a multiplicative constant. Equivalently, the MMR response is
only dependent upon the relative conductivity and not the absolute
conductivity, and this leads us to formulate the inverse problem in
terms of a quantity log(σ (z)/σref). For a body buried in a uniform
host medium we can choose a constant conductivity as a reference
model. The choice of constant reference model does not have any
effect on the recovery of the relative conductivity structure but if it
has been chosen correctly then the final conductivity will have been
properly calibrated.

A more complicated scenario is a 3-D body residing in a 1-D lay-
ered medium. The 1-D earth is a complicating factor for a number
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Figure 14. (a) The MMR response (per cent) over the Mons Cupri deposit. The survey area is 1000 m × 1000 m, with a line spacing of 100 m and a station
interval of 50 m in the central area and 100 m outside, resulting in 162 stations (marked by dots). See Fig. 13 for reference. The measured data are horizontal
(South) components of magnetic field at frequency of 0.3 Hz. (b) The predicted response from the recovered model.

of reasons. First, its surface MMR response is identical to that of a
homogenous earth and so there is another source of non-uniqueness
in the problem. Secondly, the anomalous signal we measure is not
only related to the ratio of conductivity between the 3-D body and its
surroundings, but it is also controlled by the conductivity structure
of the 1-D earth. This is because the measured signal is propor-
tional to the amount of anomalous current in the body. When the
host medium does not change the current distribution in the earth
significantly, such as a 3-D body with a thin and moderately con-

ductive overburden, the signal will not be altered much compared
with that in a uniform host, and thus it is possible to reconstruct the
relative conductivity of the 3-D body. Otherwise, the responses will
be altered significantly. Quantifying this interaction effect between
the host and the target on the inversion result is a subject for future
research.

The work provided here is general. We show how to invert mag-
netic data that arise from any steady state current. We have presented
examples that are associated with a traditional MMR geometry used
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Figure 15. The recovered conductivity model shown in plan-section at a depth of 85 m. The known Cu gossan and mineralization at the surface are also
marked.

Figure 16. Comparison of the recovered conductivity model in a cross-section (950N) with the geology for the Mons Cupri deposit. The conductivity high is
correlated to the deposit, and the resistive basement relates to the Rhyolite Fragmental.

in mineral exploration. The field example was deemed to be suc-
cessful in that the low-resolution image from the inversion seemed
to correspond with the major geological units (in particular, the min-
eralization), however, it also highlights the deficiencies in the tradi-
tional field approach. Only one source location and one component
of magnetic field data were used in the inversion. More source loca-
tions, and acquisition of full three-component data, would greatly
improve the results. We hope that the ability to invert such data will
prompt these improved survey techniques.
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A P P E N D I X : C O M P U T A T I O N
O F J · v A N D JT · v

For convenience, we use a new notation (more details can be referred
to Haber et al. 2000b)

A(m) · u = f, (A1)

to simplify the forward modelling matrix systems as given in
eq. (11). The coefficient matrix is

A(m) =
(

∇ (e)
h × M−1

e ∇ ( f )
h × −∇hM

−1
c ∇h · S∇h

0 ∇h · S∇h

)
, (A2)

the unknown vector

u =
(

Ã

φ

)
,

and the source vector

f =
(

Js

∇h · Js

)
,

where Ã is the vector potential. By doing so, the data vector d can
be written as

d = Qu, (A3)

where Q is a projection matrix that generates the data from the
computed fields. If the B field is required, Q can be obtained by
multiplying a linear interpolation matrix with the curl matrix ∇ ( f )

h ×.
Therefore, Q is independent to the model m.

To express the sensitivity matrix J explicitly in the new notation,
we differentiate the discretized differential eq. (A1) with respect to
m (assuming u is a function of m). This will yield

∂[A(m)u(m)]

∂m
= ∂[A(m)u]

∂m
+ A(m)

∂u(m)

∂m
= 0. (A4)

We take a new matrix G(m, u) to represent the first term, i.e.

G(m, u) = ∂[A(m)u]

∂m
, (A5)

where u is just a vector and not related to m. Substituting G(m, u)
into eq. (A4) will lead to

∂u(m)

∂m
= −A−1(m)G(m, u). (A6)

Thus, the sensitivity matrix J can be written symbolically as

J = ∂d

∂m
= ∂[Qu(m)]

∂m
= Q

∂u(m)

∂m
= −QA−1(m)G(m, u). (A7)

The intermediate matrix G(m, u) can be derived as follows. From
eq. (A2) we see that only the material property matrix S is related
to the model m, therefore

G(m, u) = ∂[A(m)u]

∂m
=




∂(S∇hφ)

∂m

∇h · ∂(S∇hφ)

∂m


 . (A8)

Because S is a diagonal matrix with elements that are the harmonic
average of conductivities at the two adjacent cells, ∂(S∇hφ)/∂m can
be obtained analytically without too much work.

The products of the sensitivity matrix and its transpose with a
vector are now readily computed. Consider J ·v, where v is a known
vector.
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J · v = −QA−1(m)G(m, u)v, (A9)

and we can obtain it in three steps. First compute G(m, u)v = q.
Then calculate A−1(m)q = w, which is equivalent to solving the
forward modelling problemA(m)w = q, addressed in the main body
of this paper. Once w is obtained, the last step is just to multiply w
by −Q, i.e. J · v = −Qw.

Then we turn to deal with JTv, which can be expanded as

JT · v = −(QA−1(m)G(m, u))Tv = −GT(m, u)A−T(m)QTv.

(A10)

Similarly, we can define q = QTv, and w = A−T(m)q. This means
that AT(m)w = q, i.e.((∇ (e)

h × M−1
e ∇ ( f )

h × −∇hM
−1
c ∇h ·

)T
0

(S∇h)T (∇h · S∇h)T

)
w = q.

(A11)

As mentioned earlier, eq. (A11) can be decoupled into two systems.
Let

w =
(

wa

wφ

)
and

q =
(

qa

qφ

)
,

then eq. (A11) can be written as(∇ (e)
h × M−1

e ∇ ( f )
h × −∇hM

−1
c ∇h ·

)T
wa = qa, (A12a)

and

(∇h · S∇h)Twφ = qφ − (S∇h)Twa . (A12b)

We can first solve for wa from eq. (A12a), substitute wa into the
right-hand side of eq. (A12b), and then solve for wφ from (A12b).
Once wa and wφ have been computed, JTv can be obtained from

JT · v = −GT(m, u)w. (A13)

Roughly speaking, computing J · v and JTv is equivalent to running
the forward modelling twice.
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