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Kirchhoff-approximate inversion of teleseismic wavefields
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S U M M A R Y
We derive Kirchhoff-approximate inversion formulae for elastic wavefields that recover the
location of discontinuity surfaces and associated material property contrasts in laterally vary-
ing, stratified media. The derivation is cast in the context of teleseismic wavefield scattering
in a 2-D medium with allowance made for oblique incidence, although a fully general deriva-
tion for 3-D media follows in straightforward fashion. We exploit a little-used variant of the
isotropic, elastic Kirchhoff-Helmholtz integral in which individual terms are directly identified
with scattered P- and S-wave contributions prior to approximation using ray-theoretic forms.
This approach yields relatively simple formulae for Kirchhoff-approximate forward modelling
that bear a closer resemblance to their acoustic counterpart than standard elastic formulations
cast in terms of traction and displacement. Using micro-local analysis, inversion formulae are
readily derived using the generalized Radon transform. Our approach represents an extension
of the Kirchhoff-approximate inversion scheme outlined by Beylkin & Burridge (1990) to
S-waves and conversions. We demonstrate application of the method to field data recorded
during the IRIS-PASSCAL CASC93 experiment.
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1 I N T R O D U C T I O N

Multichannel processing of scattered teleseismic body waves has be-
come a topic of considerable interest in recent years owing to the in-
creased availability of large numbers of multicomponent seismome-
ters (e.g. Dueker & Sheehan 1997; Revenaugh 1995; Ryberg &
Weber 2000; Shearer et al. 1999). A majority of these studies has
drawn heavily on a strong analogy with reflection seismology. In
particular, the near-vertical propagation paths represented in both
instances, together with a dominantly vertical variation in Earth’s
material properties, allow the assumption of single scattering to be
made in imaging (migration) and inversion (migration and material
property estimation).

There are two different integral formulations of the wave equation
that are often adopted as the starting point for migration/inversion
in reflection seismology. Scattering from localized volume hetero-
geneity is most readily treated using the so-called Born approxi-
mation, the linearization of an exact integral equation of Lippman-
Schwinger type. Recently, a (high-frequency) asymptotic method
based on the Born approximation and accommodating realistic
receiver-array geometries and source distributions, has been adapted
for inverting scattered teleseismic waveforms recorded on dense lin-
ear arrays of three-component seismometers (Bostock et al. 2001).
The method relies on the identification of the inverse scattering
problem with a generalized Radon transform (Beylkin 1985; Miller
et al. 1987; Beylkin & Burridge 1990), and effectively recovers a
high-pass filtered version of the perturbations in material parameters
defined with respect to some smoothly varying reference medium.

The viability of this approach has been demonstrated through its ap-
plication to field data recorded over the Cascadia subduction zone
(Rondenay et al. 2001).

In many circumstances, however, the structures of interest may
be better characterized by laterally variable stratification than by
localized heterogeneity, as, for example, in typical applications of
the widely used receiver-function technique (Langston 1979; Vinnik
1977). This latter observation serves as motivation for the current
study where we examine the application to teleseismic data sets of
a second, widely used integral formulation of inverse scattering:
the Kirchhoff-Helmholtz integral. Through its representation of the
wavefield as a surface integral, this formulation and its asymptotic
implementation, the Kirchhoff approximation, afford a description
of scattering from laterally variable but dominantly stratified media
that may be a useful alternative to the Born approximation in some
environments.

In this paper, we derive the Kirchhoff-Helmholtz integral for an
acquisition geometry corresponding to typical teleseismic experi-
ments. Specifically, this geometry involves the oblique incidence of
a plane wave upon a non-planar interface separating two slowly vary-
ing, two-dimensional (2-D) media. Although formally equivalent to
more widely employed versions of the Kirchhoff-Helmholtz integral
cast in terms of traction and displacement (e.g. Kuo & Dai 1984;
Frazer & Sen 1985; Sumner 1987), the variant we adopt (Morse &
Feshbach 1953; Waterman 1978) permits a more direct identification
of individual wave modes as specified in the Kirchhoff approxima-
tion. We are thereby able to identify relatively simple forms for the
elastic Kirchhoff approximation corresponding directly to P- and
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S-waves, that bear a closer resemblance to their extensively cited
acoustic counterpart. Using micro-local analysis, approximate in-
verse formulae for material property contrasts across singular func-
tions of discontinuities (Bleistein 1987; Beylkin & Burridge 1990)
can be derived, once more, in terms of generalized Radon trans-
forms. By including S-waves and conversions, our study extends the
approach of Beylkin & Burridge (1990) (who outlined a Kirchhoff-
approximate inversion formalism for P-to-P reflections) to general
isotropic, elastic scattering. We demonstrate application of of this
approach to synthetic and field data sets.

2 T H E 2 - D K I R C H H O F F - H E L M H O L T Z
I N T E G R A L F O R O B L I Q U E I N C I D E N C E

Consider the situation depicted in Fig. 1. An irregular boundary, SB ,
with strike parallel to coordinate x2 separates two smoothly varying,
2-D elastic half-spaces. For the present, we shall focus our atten-
tion upon an upgoing wavefield U 0

i (x) of, yet, unspecified type (i.e.
compressional or shear) incident upon SB from below. In anticipa-
tion of the teleseismic application, we will require this wavefield
to be approximately planar, and, in particular, that it be accurately
characterized by a harmonic dependence on the x2 coordinate as
U 0

i (x) = u0
i (x1, x3)eiωp2x2 , where ω is radial frequency and p2 is the

component of phase slowness in the x2 direction. The interaction
of this wavefield with the boundary SB produces a reflected wave
propagating downward into medium 2 (with which we shall be con-
cerned no further) and a transmitted wave that propagates upward
into medium 1. The displacement wavefield in the upper medium
Ui (x) = ui (x1, x3)eiωp2x2 retains the harmonic dependence in x2 by
virtue of the inherent two dimensionality, and satisfies

LikUk = ∂ j

(
c(1)

i jkl∂lUk

) + ρ1ω
2Ui = 0, (1)

where c(1)
i jkl = c(1)

i jkl (x1, x3) and ρ1 = ρ1(x1, x3) are the elastic tensor
and density, respectively, in the upper medium. To proceed we must

Figure 1. Model geometry for derivation of 2-D Kirchhoff modelling for-
mulae. A laterally variable boundary SB separates two slowly varying,
isotropic media characterized by velocities and density α1, β1, ρ1 and α2, β2,
ρ2. The volume V is enclosed by a surface defined by the union of interface
SB and a semi-circular surface S∞.

introduce the adjoint operator L†
ik and its associated Green’s function

G†
in(x, x′) = g†

in(x1, x3; x ′
1x ′

3)e−iωp2x2 (see Bostock et al. 2001) for
the upper medium that, together, satisfy

L†
ik G†

kn = −δinδ(x1 − x ′
1)δ(x3 − x ′

3)e−iωp2x2 . (2)

We now contract (1) with G†
in(x, x′) and (2) with Ui (x), subtract,

and integrate through a semi-cylindrical volume V as depicted in
Fig. 1. By employing the divergence theorem, and noting that the
resulting integral is independent of x2, we are able to recast the
volume integral as a 2-D surface integral

un(x ′
1, x ′

3) =
∫

S

d Sn j c
(1)
i jkl

[
∂lUk(x)G†

in(x, x′) − ∂l G
†
kn(x, x′)Ui (x)

]
,

(3)

confined to the (x1, x3) plane (we have specified the general de-
pendence on x, x′ within the integrand to allow a compact indicial
expression in terms of the operator ∂2). The surface S is defined by
an outward normal n j lying within the (x1, x3) plane and consists of
2 parts: a semi-circular cap S∞ and that portion of the boundary SB

which underlies it. Eq. (3) is one form of the Kirchhoff-Helmholtz
integral (Pao & Varatharajulu 1976) tailored to the 2-D, oblique
incidence geometry we have specified.

We will henceforth restrict our attention to isotropic media, for
which the elastic tensor of the upper medium is written as

c(1)
i jkl = λ1δi jδkl + µ1(δilδ jk + δikδ jl ), (4)

where λ1 = λ1(x1, x3), µ1 = µ1(x1, x3) are the Lamé parameters. In
most seismological applications, the Kirchhoff approximation is
made at this point to avoid having to solve a Fredholm equation.
More specifically, the Kirchhoff approximation involves adopting
high frequency (i.e. ray-theoretic) approximations for the (displace-
ment and traction) wavefields and replacing Ui (x1, x3) in (3) by the
product of the incident wave-amplitude in the lower medium and
the local plane-wave transmission coefficient at (x1, x3). We shall,
however, postpone this step and follow Pao & Varatharajulu (1976)
by subtracting the null quantity∫

V

dV µ1∇ · [∇ × (
U × G†

n

)] = 0

=
∫

S

d Sµ1n · [∇ × (
U × G†

n

)]
(5)

from (3). In this and ensuing developments, it will prove convenient
to express quantities in a more compact vector notation, and we
define, for example, G†

n (x, x′) to be the nth column of the 2nd rank
tensor G†

in(x, x′). Using elementary vector identities it is easy to
show that (3) can then be recast as

un(x ′
1, x ′

3) =
∫

S

d S(λ1 + 2µ1)
[(

n · G†
n

)
(∇ · U) − (n · U)

(∇ · G†
n

)]
+ µ1

[(
n × G†

n

) · (∇ × U) − (n × U) · (∇ × G†
n

)]
.

(6)

We emphasize that this equation is valid for variable λ1, µ1 and
is similar to eq. (13.1.40) of Morse & Feshbach (1953), although
more symmetric in form and without the volume source term. As
such, it represents a variant of the Kirchhoff-Helmholtz integral
that has, apparently, received scant attention in seismology. The dot
product in (5) represents a solenoidal contribution that integrates
to zero over a closed surface and can be associated with the near-
field (Waterman 1978). Eq. (6) holds the advantage that (curl-free)
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P-wave and (divergence-free) S-wave contributions are immediately
evident and isolated within the individual terms. This is clearly
useful in circumstances where the surface boundary conditions are
specified in terms of wave modes (vs traction and displacement), as
for example, in the Kirchhoff approximation.

To complete the derivation, we extend the radius of the surface
S∞ out to infinity where we note that the individual P- and S-wave
components of U and G†

n are outgoing (assuming that scattering
within the slowly varying 2-D medium is negligible) such that this
portion of the surface integral vanishes by virtue of the Sommerfeld
radiation condition. Thus we may restrict integration in (6) to the
boundary SB alone. Note, moreover, that the derivation outlined
above may be repeated for an incident wavefield impinging on SB

from above, in which case U(x) in (6) is taken to be the resulting,
upward propagating, backscattered wavefield.

3 T H E K I R C H H O F F A P P R O X I M A T I O N

Eq. (6) represents the displacement at some point (x ′
1, x ′

3) interior
to the upper medium in terms involving the curl and divergence of
both the wavefield and the Green’s function of the upper medium
evaluated at the interface SB . As mentioned above, we may further
associate the individual terms with scattered P- and S-waves. To
apply the Kirchhoff approximation, we write the Green’s function
in a high-frequency asymptotic form that identifies both P- and
S-wave contributions as

G†
in(x, x′) = ÂP (x, x′)eiωτ̂ P (x,x′)ŝ P

i (x)ŝ P
n (x′) + ÂS(x, x′)eiωτ̂ S (x,x′)

×[
ŝv

i (x)ŝv
n(x′) + ŝh

i (x)ŝh
n(x′)

]
(7)

where ÂP , ÂS incorporate geometrical spreading amplitudes, τ̂ P , τ̂ S

are traveltimes and ŝ P
i , ŝv

i , ŝh
i are polarization vectors (superscripts

v, h identify two mutually orthogonal S-polarization vectors, and
need not be tied to the specific coordinate directions). In like fash-
ion, we express the scattered wavefield within the upper medium
as

Ui (x) = ǍP (x)eiωτ̌ P (x)š P
i (x) + ǍS(x)eiωτ̌ S (x)š S

i (x), (8)

and the incident wavefield as

U 0
i (x) = ÃP (x)eiωτ̃ P (x)s̃ P

i (x) + ÃS(x)eiωτ̃ S (x)s̃ S
i (x). (9)

Note that accents ˆ, ˇ, ˜ identify quantities associated with the
Green’s function, scattered wavefield and incident wavefield, re-
spectively. The polarization directions of P-waves will be taken to
be parallel to and positive in the direction of propagation. For scat-
tered S-waves it will prove convenient to decompose the polariza-
tion vector š S

i in terms of its components in the sagittal plane and
transverse direction as defined by the local geometry of the incident
and scattered rays at SB . Accordingly, we define corresponding unit
polarization vectors as

šV = − ∇ τ̌ S × (∇ τ̌ S × ∇ τ̃ )

|∇ τ̌ S × (∇ τ̌ S × ∇ τ̃ )| , šH = − ∇ τ̌ S × ∇ τ̃ S

|∇ τ̌ S × ∇ τ̃ S| . (10)

In (10) and what follows, we omit superscripts P, S when expressing
properties of generic incident, scattered or Green’s function wave-
fields. The S-polarizations, so-defined, ensure that the corresponding
S-waves generated through reflections and conversions (assuming
that β1 < α2) comply locally (i.e. within the reference frame defined
by the local normal to SB and the plane of propagation) with the
polarization convention used by Aki & Richards (1980) to define
reflection and transmission coefficients (we shall implicitly assume
that the incident wave also adheres to this standard).

Employing expressions (7) and (8) in (6) and retaining only those
terms of highest order in frequency yields

u(x ′
1, x ′

3) = iωŝP (x ′
1, x ′

3)

∫
SB

d Sρ1α
2
1 ÂP ǍP eiω(τ̂ P +τ̌ P )n

· (∇ τ̂ P − ∇ τ̌ P )

= iωŝP (x ′
1, x ′

3)

∫
SB

d Sρ1α
2
1 ÂP C Ãeiω(τ̂ P +τ̃ )n

· (∇ τ̂ P − ∇ τ̌ P ). (11)

for a scattering interaction producing upward propagating P-waves,
Here, we have substituted the arrival time of the incident wave on the
boundary SB for that of the scattered wave (where the two are equal),
and the amplitude of the scattered wave has been approximated
by the product of the incident wave amplitude Ã and the relevant
scattering coefficient C. This latter quantity will assume the value
of one of the reflection/transmission coefficients R P P

D , R P S
D , T P P

U ,
or T P S

U depending on the propagation direction, polarization and
mode-type of the incident wavefield (where, e.g. R P S

D is the reflec-
tion coefficient for a downward incident SV-wave converted into a
P-wave).

The corresponding equation for S-waves may be written

u(x ′
1, x ′

3) = iω

∫
SB

d Sρ1β
2
1 ÂSC Ãeiω(τ̂ S+τ̃ )

{
n · [ŝv × (∇ τ̌ S × šS)

− šS × (∇ τ̂ S × ŝv)]ŝv(x ′
1, x ′

3) + n · [ŝh × (∇ τ̌ S × šS)

− šS × (∇ τ̂ S × ŝh)]ŝh(x ′
1, x ′

3)
}
, (12)

where we must now allow for independent S-wave interactions in
the sagittal plane and transverse direction; thus C can assume val-
ues of RV V

D , RS P
D , RH H

D , T V V
U , T S P

U , or T H H
U depending, again, on

the local nature of the incident wavefield. For strictly 2-D, in-plane
propagation (i.e. p2 = 0) the two S-wave polarizations are decou-
pled, and the sum of dot products in (12) reduces to an individual
term with a form similar to that in (11) for P-waves, that is, involving
n · (∇ τ̂ S − ∇ τ̌ S). Eqs (11) and (12) (or their 3-D analogues) can be
used for forward modelling to the same order of accuracy as those
previously derived by, e.g. Kuo & Dai (1984), Frazer & Sen (1985)
and Sumner (1987).

4 I N V E R S I O N V I A G E N E R A L I Z E D
R A D O N T R A N S F O R M

Our goal in this section is to cast the integrals in (11) and (12) into
forms that will allow us to derive direct inversion formulae using
the generalized Radon transform (Beylkin 1985; Miller et al. 1987;
Beylkin & Burridge 1990). We note, however, that both integrals
contain factors that depend directly on n, that is, they require a priori
knowledge of the scattering surface geometry. This requirement
may be removed by using the so-called microlocalization technique
(Beylkin & Burridge 1990) that allows us to replace n by its value at
the specular point and to set ∇ τ̌ = −∇ τ̂ (in effect, this simply ac-
knowledges that we are interested in reconstruction of quasi-planar
discontinuities). In particular, for top-side reflections and upward
P-to-S transmission-conversions (assuming, once more, that β1 <

α2), we have

n = ∇ τ̂ + ∇ τ̃

|∇ τ̂ + ∇ τ̃ | , (13)

a relation easily derived upon application of Snell’s law. For up-
ward S-to-P transmission-conversions we must negate this quantity,
whereas the sign will depend on the polarity of the velocity contrast
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Table 1. Scattering mode related quantities.

Scattering Scattering Incident Scattered Polarization factor
mode m coefficient Cm velocity c̃ velocity ĉ Sm

n

1 R P P
D α1 α1 ŝ P

n

2 R P S
D β1 α1 ŝ P

n

3 RV V
D β1 β1 −β1

[
ŝv

n(ŝv · ∇ τ̃ S) + ŝh
n (ŝh · ∇ τ̃ S)

]/
sin θ

4 RS P
D α1 β1 −α1

[
ŝv

n(ŝv · ∇ τ̃ P ) + ŝh
n (ŝh · ∇ τ̃ P )

]/
sin θ

5 RH H
D β1 β1 β2

1

[
ŝv

n(ŝv · ∇ τ̃ S × ∇ τ̂ S) + ŝh
n (ŝh · ∇ τ̃ S × ∇ τ̂ S)

]/
sin θ

6 T P S
U β2 α1 −ŝ P

n

7 T S P
U α2 β1 −α2

[
ŝv

n(ŝv · ∇ τ̃ P ) + ŝh
n (ŝh · ∇ τ̃ P )

]/
sin θ

across the interface for intramode transmissions. We will henceforth
exclude intramode transmissions from our analysis as their relative
insensitivity to structure and difficulties in effective pre-processing
render them practically useless for imaging purposes in the present
context (e.g. Shragge et al. 2001).

Substitution of (13) into (11) and (12) using the relation (10)
enables us, after some algebra, to write the scattering integrals in a
compact form as

um
n (x ′

1, x ′
3) = −√−iω

∫
SB

d SCm(θ )Am
n eiωT m

, (14)

where we have extracted the frequency dependence 1/
√−iω from

the amplitudes Â of the 2-D Green’s function (see e.g. Bostock et al.
2001, Appendix A). The index m identifies the scattering mode
interaction as defined in Table 1, whereas T m and Am

n represent
compound traveltime and amplitude quantities defined by

T m = τ̃ + τ̂ . (15)

and

Am
n = 2

√−iωρ1ĉ2 Ã Â
∇ τ̂ · ∇T m

|∇T m | Sm
n (x, x′), (16)

Note that Ã, τ̃ and Â, τ̂ are the amplitude and traveltime of incident
wave and Green’s function, respectively, corresponding to mode
interaction m. The relevant reflection/transmission coefficient is now
identified by Cm(θ ) where θ is the so-called scattering angle between
the incident and Green’s function rays (see Fig. 2), i.e.

cos θ = c̃ĉ∇ τ̃ · ∇ τ̂ . (17)

The velocities of the incident and scattered waves for mode-
interaction m are represented by c̃ and ĉ, respectively, and are defined
explicitly along with the polarization-dependent factors Sm

n (x, x′) in
Table 1. Note that for strictly 2-D in-plane propagation (i.e. p2 = 0),
the polarization factors Sm

n (x, x′) involving S-waves reduce to single
terms analogous to those for P-waves.

Before proceeding, we observe that evaluation (16) will, for
transmitted conversions, require a knowledge of material veloci-
ties both above and below the interface SB . For reflected waves the
requirement is less stringent and only velocities above the reflector
are needed. Thus, whereas it is possible to contemplate inversion
schemes involving reflected waves in which one might iteratively
bootstrap the model solution (including both interface locations and
layer velocities) in depth (Bleistein 1987), it would appear that trans-
mitted waves alone could afford the location of interfaces only once
layer velocities are known. From a practical point of view, however,
velocities will not be known exactly either above or below an inter-
face; rather, we will have, at best, an accurate a priori appreciation of

the slowly varying component of velocity structure. Consequently,
we shall take the view that we know this slowly varying compo-
nent, and adopt a small contrast, perturbative approximation for
short-wavelength structure. Accordingly, we shall replace the exact
velocities across the interface in (16) and Table 1 with corresponding
(slowly varying) reference values,

α1, α2 → α, β1, β2 → β, ρ1, ρ2 → ρ, (18)

and allow the true values to be recovered through a set of correspond-
ing (small) perturbations, �α, �β, �ρ as, e.g. α1 = α − �α/2, α2 =
α + �α/2.

We proceed to introduce the singular function d(s) of the surface
SB (Bleistein 1987) that allows us to recast the surface integrals in
(14) as (2-D) volume integrals, that is

um
n (x ′

1, x ′
3) = −√−iω

∫
V

dV d(s)CmAm
n eiωT m

. (19)

By applying a filter F(ω) = −√−iωi sgn(ω) to um
n (x ′

1, x ′
3), followed

by inverse Fourier transformation, we define a new, time-domain
quantity vm

n (x ′
1, x ′

3, t)

vm
n (x ′

1, x ′
3, t) = 1

2π

∫
dωe−iωt F(ω)um

n (x ′
1, x ′

3)

= −
∫

dV d(s)CmAm
n H{δ′(t − T m)}, (20)

Figure 2. Geometrical variables employed in the derivation of Kirchhoff-
approximate inversion formulae for 2-D structure. Note that quantities n,
∇T m and ψ are measured within the x1 − x3 plane whereas ∇ τ̂ , ∇ τ̃ and θ ,
in general, possess out-of-plane components.
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where H{·} denotes Hilbert transform. This last integral can be
identified as a 2-D inverse generalized Radon transform, (see Miller
et al. 1987; Bostock et al. 2001) and approximately inverted using
the corresponding forward transform as

〈d(s)Cm〉 = 1

4π

∫
dψ

|∇T m |2
|Am |2

∑
n

Am
n vm

n (x ′
1, x ′

3, t = T m), (21)

where the angle ψ is defined in Fig. 2 and |Am |2 = ∑
n Am

n Am
n . The

recovered quantity identifies both the location of the interface d(s)
and the strength of the scattering coefficient Cm(θ ) for the angular
sampling afforded by any particular source.

While useful for imaging structure using a single event, we may
wish to advance beyond the scattering coefficient to extract estimates
of the material contrasts represented by the scattering surface SB .
Several options are open to us at this point. We may choose to adopt
the approach of Bleistein (1987) and introduce an additional factor
within (21) allowing a specular angle for the particular scattering
coefficient to be estimated. Then, using images for multiple sources,
one may perform a (post-imaging) amplitude-vs-angle analysis to
recover material properties. An alternative approach suggested by
Beylkin & Burridge (1990) and one we shall adopt, involves lin-
earization of the R/T coefficients (Aki & Richards 1980) in compli-
ance with the small-contrast approximation made earlier. This ap-
proach allows us to consider multiple source-receiver combinations
in a simultaneous inversion for material property perturbations, an
important advantage when dealing with (often noisy and sparsely
sampled) teleseismic data. Explicitly, we may write

Cm(θ ) =
∑

l

W m
l (θ )�ml , (22)

where �ml = �α/α, �β/β, �ρ/ρ for l = 1, 2, 3. The weighting
coefficients W m

l (θ ) are given in the appendix in terms of the quan-
tities defined in Fig. 2.

Following Bostock et al. (2001), we recast (21) as a least-squares
inversion for material properties in terms of variables more directly
associated with the experimental set-up, namely the (approximate)
source backazimuth γ , (absolute value of) horizontal slowness |p0

⊥|,
and receiver position x ′

1. This entails the introduction of a Jacobian
for the appropriate transformation of variables (Beylkin 1985) to
define 3 potential functions gl (x1, x3) as, e.g.

gl (x1, x3) = 1

4π

∫
d
∣∣p0

⊥
∣∣ ∫ dγ

∫
dx ′

1

∣∣∣∣ ∂(ψ, θ )

∂(x ′
1, γ )

∣∣∣∣
×

∑
m

W m
l (θ )

|∇T m |2
|Am |2

∑
n

Am
n vm

n

(
x ′

1, p0
⊥, t = T m

)
,

(23)

that are simply weighted diffraction stacks of the filtered datavm
n over

all sources and receivers. Several forms of the Jacobian valid for 1-
D reference media and potentially useful in teleseismic applications
are provided in Appendix B of Bostock et al. (2001). The material
property perturbations at any particular image point (x1, x3) can
be retrieved from these potentials through a trivial 3 × 3 matrix
inversion and multiplication as

�m = (WTW)−1g = H−1g, (24)

where the vector g contains the elements gl , matrix W contains the
elements W m

l (θ ), and the elements of H are defined by

Hlk(x1, x3) =
∫

d
∣∣p0

⊥
∣∣ ∫ dθ

∑
m

W m
l (θ )W m

k (θ ). (25)

5 G E N E R A L R E M A R K S

In the approach described above, we have considered the recon-
struction of material property contrasts across a single interface
separating two halfspaces in which material properties are slowly
varying. By assuming that single scattering dominates such that
multiple conversions/reflections are negligible (an assumption con-
sistent with other simplifications made to this point), we can extend
the Kirchhoff-approximate treatment to more complex vertical strat-
ification involving multiple layers. In practical circumstances, of
course, the presence of the free surface invalidates this assumption
by creating multiples with amplitudes of the same order of magni-
tude as the direct wave. However, in the teleseismic situation where
both the free surface and the incident wavefield can be taken to be ef-
fectively planar, we may consider the resulting free-surface (P- and
S-) reflections as new sources of plane waves that illuminate struc-
ture from above to yield reflections and backscattered conversions
(Bostock et al. 2001). Using the Kirchhoff-approximate treatment
above, these reflected waves can then be treated simultaneously with
the direct (i.e. forward-scattered) conversions to place further con-
straint on subsurface structure (Shragge et al. 2001; Rondenay et al.
2001).

Given the similarity in their derivations, it is perhaps not surpris-
ing that the Kirchhoff-approximate formalism of the present work
can be implemented with rather minor modification to the Born-
approximate algorithm presented by Bostock et al. (2001). More-
over, most of the observations made in that work concerning resolu-
tion and sensitivity of different scattering modes, also hold true here.
One difference, however, is that the raw data must be pre-processed
with different frequency filters; in particular, the Born-approximate
data are low-pass filtered whereas the Kirchhoff-approximate data
are high-pass filtered. These filters are formally required within the
respective derivations to reproduce images of herogeneity as pertur-
bations to a reference medium (Born) and as singular functions of
discontinuity surfaces (Kirchhoff ). The emphasis of high frequen-
cies in the Kirchhoff technique leads to a more localized delineation
of discontinuity surfaces. In addition, θ -dependent weighting fac-
tors applied to the material property perturbations in (16) and (22)
differ slightly in both cases.

It should also be noted that although similar in final result, the
philosophy underlying the procedure we have outlined differs in its
motivation from classical Kirchhoff migration (Schneider 1978) as
applied recently in seismological studies (Ryberg & Weber 2000;
Shearer et al. 1999). The basis of the latter approach is again the
Kirchhoff-Helmholtz integral, but it is employed using an acausal
Green’s function to back-propagate the reflected/converted wave-
field to earlier times. The result is an image of the reflected/converted
wavefield at its time of origin which should identify the reflector sur-
face with a magnitude equivalent to the reflection coefficient. Our
approach, in contrast, exploits the forward scattering Kirchhoff-
Helmholtz integral and its analogy with the (inverse) Radon trans-
form, in the construction of a formal inversion operator that al-
lows estimates to be made of the contrast in material properties
across a discontinuous structures. Although different in their start-
ing points, the two approaches can be shown to yield equivalent
results (Docherty 1991).

6 S Y N T H E T I C E X A M P L E

As a first example, we consider the inversion of pseudo-spectral
synthetic seismograms generated for the simplified continental su-
ture model of Shragge et al. (2001). The model consists of three
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Figure 3. Results of synthetic inversion. (a) Simplistic lithospheric suture model for which pseudo-spectral synthetic seismograms were generated (see text
for details). (b) Born inversion of synthetic seismograms (direct P-to-S, m = 7) for shear-velocity contrast �β/β. (c) Kirchhoff inversion of same data set for
�β/β.
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Figure 4. Results from inversion of CASC93 data. (a) Born inversion of S-response to free-surface P reflection (m = 4) for shear-velocity contrast �β/β.
(b) Kirchhoff inversion of same data set for �β/β.

components: a low-velocity (α = 6.2 km s−1, β = 3.6 km s−1) crust,
a high-velocity (α = 8.0 km s−1, β = 4.5 km s−1) mantle and under-
thrust, former crustal material with still higher velocities (α = 8.1
km s−1, β = 4.9 km s−1). The combination of quasi-planar bound-
aries and sharper corner structures present a reasonable range of
complexity for the imaging algorithm. The synthetic data comprise
six sets of synthetic seismograms corresponding to incident plane
waves with horizontal slownesses of ±0.05, 0.06, 0.07 km s−1. Each
of these data sets includes 120 seismograms separated at 3 km in-
tervals and bandpass filtered between 0.03 and 2 Hz. We have in-
verted the data using only forward-scattered P-to-S conversions for
the sake of simplicity, although a better localization of structure

could be achieved by including other scattering modes (Shragge
et al. 2001). Moreover, we have restricted the inversion of model
parameters to shear velocity contrast (i.e. �β/β) since forward
P-to-S scattering is independent, to first order, of P-velocity con-
trast and only weakly dependent upon density contrast (see e.g. A7
for θ → 180◦).

The recovered structure using the Kirchhoff-approximate ap-
proach is shown along with the original structural boundaries and
the Born-approximate result in Fig. 3. The major boundaries and as-
sociated shear velocity contrasts are readily identified in both cases.
Note that there is a slight ‘pull-up’ of underthrust material as a result
of inadequacies in the 1-D reference model. Localization of structure
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in the Kirchhoff inversion may be regarded as slightly better than
the Born-approximate result which identifies the �β/β contrast as
a perturbation to the reference model as opposed to a discontinuity
surface whose amplitude is proportional to the contrast.

7 C A S C 9 3

As a second demonstration of the Kirchhoff inversion we turn to
the IRIS-PASSCAL data set recorded over central Oregon by re-
searchers at the Oregon State University (Li 1996; Nabelek et al.
1993), (see also Rondenay et al. 2001). This experiment involved
the deployment of some 40 seismometers at a total of 69 sites be-
tween May 1993 and March 1994. The sites were located along an
east-west line extending from the coast across the Cascades well
into the backarc region with an average of 5 km spacing. We have
selected a subset of 31 events with high-signal-to-noise ratios as
input to the Kirchhoff-approximate inversion (see Rondenay et al.
2001, for details on event selection etc.). For this event sampling,
the backscattered S-response due to the free-surface P-reflection
(i.e. mode m = 4) is strongest and thus we focus on the inversion
results for this mode alone.

Fig. 4 shows the results for both Born (see Rondenay et al. 2001)
and Kirchhoff inversions of this data set. Two prominent structures
appear within the Born result. The continental Moho is evident as
a change from negative to positive shear velocity perturbation near
40 km depth, which extends from 150 km to the eastern end of the
model at 240 km. The western portion of the model is dominated
by the response of the subducting Juan de Fuca plate. At shallower
levels, the oceanic crust is evident as a low-velocity, 10 km thick
layer, dipping gently at 16 degrees and sandwiched between higher
velocity material (mantle below and the Siletz terrane above). Near
30 km depth there is a disruption in this pattern as the top of the
oceanic crust appears to deflect horizontally for a few 10’s of km and
the intensity of its signature diminishes. A weaker oceanic Moho
continues to depths of at least 100 km with a dip of approximately
30 degrees. This response is interpreted to manifest the effects of
dehydration/eclogitization in the downgoing oceanic crust and re-
hydration/mineral precipitation in the wedge above. Most of the
aforementioned structures are also evident in the Kirchhoff result,
though they are rather less well resolved. The cause of the poorer
reconstruction originates in the different frequency filters that are
used to preprocess data for the two algorithms. Because of the ef-
fects of unmodelled scattering (e.g. surface-wave scattering from
topography, 3-D scattering) and noise, the lower frequencies in the
wavefield exhibit greater coherence than the high frequencies. The
preferential weighting given to the (less-coherent) higher frequen-
cies in the Kirchhoff approach thus leads to the poorer image.

8 C O N C L U S I O N S

We have developed a 2-D Kirchhoff-approximate inversion method
for teleseismic waves that permits retrieval of isotropic, material
property contrasts across crust and mantle discontinuities. The de-
velopment relies on a form of Kirchhoff-Helmholtz integral involv-
ing wave modes (versus the more traditional formulation in terms of
traction and displacement), and the analogy of the high-frequency
scattering equations with the generalized Radon transform (Beylkin
1985). Although developed for teleseismic wavefields and 2-D struc-
tures, the approach is easily generalized to other source configura-
tions and 3-D structures. In particular, it extends the Kirchhoff-
approximate treatment of Beylkin & Burridge (1990) involving
P-to-P interactions, to S-waves and conversions.

We have compared the Kirchhoff-approximate inversion to a re-
lated method employing the Born approximation in applications to
both synthetic and field data sets. Results for the synthetic data set
indicate a better localization of stratification using the Kirchhoff
inversion, which suggests that it should be preferred in applications
to field data. However, field data suffer from contamination by inco-
herent and unmodelled scattering which becomes more pronounced
at higher frequencies. The Kirchhoff approximation requires that
data be preprocessed with a high-pass filter thereby amplifying this
contamination. The result is a rather poorer recovery of subduction
zone structure when applied to data from the CASC93 experiment.
Mitigation of the effects of unmodelled scattering from teleseismic
waveform inversion is the topic of ongoing research.
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A P P E N D I X A : L I N E A R I Z E D R / T
C O E F F I C I E N T S

The linearized R/T coefficients of Aki & Richards (1980) are written
in the notation of this study as:

R P P
D = 1

2 cos2 θ̃ P
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(
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R P S
D =

(
2 sin3 θ̃ S

cos θ̂ P
− β

α
sin 2θ̃ S

)
�β

β

−
(

sin θ̃ S cos 2θ̃ S

2 cos θ̂ P
+ β sin 2θ̃ S

2α

)
�ρ

ρ
, (A2)

RV V
D = − cos 4θ̃ S

2 cos2 θ̃ S

�β

β
− 1

2
(1 − 4 sin2 θ̃ S)

�ρ

ρ
, (A3)

RS P
D =

(
2 sin θ̃ P sin2 θ̂ S

cos θ̂ S
− β

α
sin 2θ̃ P

)
�β

β

−
(

sin θ̃ P cos 2θ̂ S

2 cos θ̂ S
+ β sin 2θ̃ P

2α

)
�ρ

ρ
, (A4)

RH H
D =

(
1 − 1

2 cos2 θ̃ S

)
�β

β
+ 1

2

�ρ

ρ
, (A5)

T P S
U = R P S

D
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D , (A7)

The angular quantities (see Fig. 2) are defined through

cos θ̃ = c̃
∇ τ̃ · ∇T m

|∇T m | , cos θ̂ = ĉ
∇ τ̂ · ∇T m

|∇T m | , (A8)

which implies θ = θ̃ + θ̂ in general, and θ̂ = θ̃ for intramode reflec-
tions. This definition of angles leads to expressions for the upward
transmission-conversion coefficients T P S

U , T S P
U , that are identical

to their topside reflection-conversion counterparts R P S
D , RS P

D , ex-
cept that they are employed over different ranges of scattering angle
θ . The linearized reflection coefficients are valid for θ close to 0◦

whereas the expressions for transmission coefficients are valid for
θ near 180◦. Accordingly, the summation in (23) should be lim-
ited to traces corresponding to scattering angles of less than some
maximum angle, say 45◦ about θ = 0◦ (reflections), or θ = 180◦

(transmissions). Note, however, that in general, the linearized ap-
proximations are stable for angles approaching critical although of-
ten inaccurate. The exceptions are R P S

D , T P S
U which exhibit singular

behaviour as θ̃ P approaches 90◦, a characteristic not shared by the
corresponding, exact expressions.
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