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Abstract

This paper presents an analytical solution to describe tidal groundwater level fluctuations in a coastal leaky aquifer system

bounded by water–land boundaries that form a right angle (referred to as L-shaped coastlines). The system consists of an

unconfined aquifer, a confined aquifer and a leaky layer between them. Previously published analytical solutions that discuss

only single aquifer constitute a special case of the new solution when the permeability of leaky layer approaches zero. A simple

approximate solution without integral is presented. Error analysis and hypothetical example show that the approximate solution

has adequate accuracy for both groundwater level prediction and parameter estimation for an L-shaped leaky aquifer

system. q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Analytical studies of tidal effects play an important

role in coastal hydrogeology. For example, Jacob

(1950), Nielsen (1990), Li and Chen (1991), and Sun

(1997) derived various solutions to describe the tidal

groundwater fluctuations in a single coastal confined

aquifer under the assumption that the coastline is

straight. Jiao and Tang (1999), Li and Jiao (2001a,b),

and Tang and Jiao (2001) derived analytical solutions

for multi-layer coastal leaky aquifer systems. All

these previous studies, however, assumed that the

coastline is straight.

As the first work to address the impact of the

coastline shape on tidal groundwater fluctuation in

coastal aquifers, Li et al. (2000) derived a 2D

analytical solution in an unconfined aquifer cut by

coastlines which form a right angle (for simplicity, the

coastlines are referred to as ‘L-shaped coastlines’

hereafter). Li and Jiao (2002b) improved their work

by providing more simple analytical solutions to the

same problem. Both of them, however, only consider

a single aquifer.

In reality, coastal areas are not only bounded by

very irregular coastlines full of inlets, bays, and

headlands that cannot always be, even approximately,

regarded as straight lines, but also composed of multi-

layered aquifers separated by leaky layer(s) (Cheng

and Chen, 2001; Carr and van der Kamp, 1969; Maas

and De Lange, 1987; Liu, 1996). In this case, tidal

wave propagation in the confined aquifer is affected
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by three factors: the irregular water–land boundaries,

the leaky layer and the tidal wave interference from

the adjacent aquifer via the leaky layer. These will

lead to a complicated problem. As an attempt to attack

this problem, this paper considers an L-shaped coastal

leaky aquifer system consisting of an unconfined

aquifer, a confined aquifer and a leaky layer between

them. An analytical solution to describe tidal

groundwater head fluctuation in the semi-confined

aquifer is derived. The assumptions underlying the

solutions are: (a) negligible watertable variation in the

upper unconfined aquifer, (b) negligible horizontal

flow in the leaky layer, negligible vertical flow in the

confined aquifer and (c) all formations have a clear-

cut vertical boundary with seawater. Assumption (a)

was proposed by Jiao and Tang (1999) and used by Li

and Jiao (2001a,b). The discussions about assumption

(a) by Volker and Zhang (2001), Jiao and Tang

(2000), Li et al. (2001), Li and Jiao (2002a,c), and

Jeng et al. (2002) show that the assumption is valid for

realistic aquifer systems because the leakance of a

realistic leaky layer is small and the specific yield of

the unconfined aquifer is several orders of magnitude

greater than the storativity of the confined aquifer.

Assumption (b) was proposed by Hantush (1960) in

the case of radial groundwater flow to a well. The

validity of this assumption for coastal aquifer systems

was examined using numerical solutions in Li and

Jiao (2002a). Assumption (c) is used to simplify the

geometry of the boundary so that analytical solutions

can be derived. After the solution is derived, an

attempt is made to compare this solution with

previous solutions by various researchers for coastal

leaky aquifer systems. Since the solution is compli-

cated, an attempt is also made to derive an

approximate solution. The accuracy of the approxi-

mate solution will be analyzed. Finally, a hypothetical

inverse problem of aquifer parameter estimation is

solved to examine the parameter estimation errors of

the approximate solution.

2. Conceptual model and analytical solution

Consider an L-shaped subsurface system consist-

ing of a leaky confined aquifer, an unconfined aquifer

and a leaky layer between them. Assume that all the

layers are homogeneous, horizontal, with constant

thickness, and that the three assumptions in Section 1

applies. Choose an x–y–z coordinate system so that

the positive parts of both the x and y axes being the L-

shaped coastlines, and the z-axis be vertical, positive

upward with the x–y plane coincides with the bottom

plane of the leaky layer (Fig. 1). Then, according to

the theory of Hantush (1960), similar to Li and Jiao

(2001a), the groundwater head hðx; y; z; tÞ in the leaky

layer satisfies the following differential equation and

boundary conditions

S0
S

›h

›t
¼ K 0 ›

2h

›z2
; 21 , t , 1; 0 , z , b0

; ð1Þ

hðx; y; b0
; tÞ ¼ hz ¼ 0; ð2Þ

hðx; y; 0; tÞ ¼ Hðx; y; tÞ; ð3Þ

Fig. 1. An L-shaped leaky coastal aquifer system: (a) bird’s eye view and (b) cross-section along the diagonal O–O0.
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where S0
S; K0 and b0 are the specific storativity [L21],

the vertical permeability [LT21] and thickness [L] of

the leaky layer, respectively, hz ¼ 0 is the mean sea

level, Hðx; y; tÞ is the hydraulic head [L] in the

confined aquifer and satisfies the following differen-

tial equation

S
›H

›t
¼ T

›2H

›x2
þ

›2H

›y2

 !
þ K 0 ›H

›z
ðx; y; 0; tÞ;

21 , t , 1; x; y . 0;

ð4Þ

where S and T are the storativity (dimensionless) and

the transmissivity [L2T21] of the confined aquifer,

respectively (Hantush, 1960). On one side (y ¼ 0;

x . 0), which represents the ocean–land boundary,

the spatially constant tidal boundary condition

Hðx; 0; tÞ ¼ A cosðvt þ cÞ ¼ A Re{exp½iðvt þ cÞ�};

x . 0; ð5Þ

is used, where Re denotes the real part of the complex

expression, i ¼
ffiffiffiffi
21

p
; A and v are the tidal amplitude

[L] and frequency [T21], respectively, and c is the

phase shift (dimensionless). On the other side (y . 0;

x ¼ 0), which represents the boundary in the estuary,

the tidal attenuation is considered by the spatially

variable tidal boundary condition (Li et al., 2000; Sun,

1997)

Hð0; y; tÞ ¼ A e2kery cosðvt 2 keiy þ cÞ

¼ A Reðexpð2key þ iðvt þ cÞÞÞ; y . 0;

ð6Þ

where y denotes the distance along the estuary from

the entry; ker $ 0 and kei $ 0 are the amplitude

damping coefficient [L21] and wave number [L21] of

the tidal wave in the estuary, respectively; ke ¼

ker þ ikei: The datum of the hydraulic head of the

aquifer is set to be the mean sea level. In inland places

far from the origin, no-flow boundary condition is

used, i.e.

lim
x!1

›H

›x
ðx; y; tÞ ¼ lim

y!1

›H

›y
ðx; y; tÞ ¼ 0: ð7Þ

The derivation of the solution hðx; y; z; tÞ and Hðx; y; tÞ

to the boundary value problem (1)–(7) is presented in

Appendix A. The analysis will focus on the ground-

water head Hðx; y; tÞ in the confined aquifer because,

in reality, it is much more useful than the groundwater

head hðx; y; z; tÞ in the leaky layer. Hence, only the

expression of Hðx; y; tÞ will be given here. Details

about hðx; y; z; tÞ are presented in Appendix A. For the

sake of clarity, three aquifer parameters are intro-

duced. They are the aquifer’s tidal propagation

parameter a [L21], the leaky layer’s buffer capacity

[dimensionless] u and dimensionless leakage u

a ¼

ffiffiffiffiffi
vS

2T

r
; ð8Þ

u ¼ b0

ffiffiffiffiffiffiffi
vS0

S

2K 0

s
¼

ffiffiffiffiffiffi
vS0

2L

s
; ð9Þ

u ¼
L

vS
¼

K 0

vSb0
; ð10Þ

where S0 ¼ S0
Sb0; and L ¼ K 0=b0 [T21] is the specific

leakage of the leaky layer (Hantush, 1960). The

solution reads

Hðx; y; tÞ ¼ A Re½ðIðapx; apy; 1 þ iq; 1 þ iqÞ

þ Iðapy; apx;m þ in; 1 þ iqÞ þ e2ð1þiqÞapy

þ e2key2ðmþinÞapxÞeiðvtþcÞ�; ð11Þ

where

Iðj;h;m; lÞ ¼ 2
lj

p

ð1

0
e2mt

 
K1ðlrðj;h2 tÞÞ

rðj;h2 tÞ

2
K1ðlrðj;hþ tÞÞ

rðj;hþ tÞ

!
dt ð12Þ

with KnðzcÞ being the modified second kind Bessel

function of nth order and

rðj;hÞ ¼

ffiffiffiffiffiffiffiffiffiffi
j2 þ h2

q
; ð13Þ

the four dimensionless constants p¼pðu; uÞ; q¼qðu; uÞ;

m ¼ mða; u; u; ker;keiÞ and n ¼ nða; u; u; ker;keiÞ are

defined as

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ LiÞ

2 þ L2
r

q
þ Lr

r
; ð14aÞ

q ¼
1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ LiÞ

2 þ L2
r

q
2 Lr

r
¼

1 þ Li

p2
; ð14bÞ
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in which the functions Li ¼ Liðu; uÞ and Lr ¼ Lrðu; uÞ

are given by

Li ¼ uu
1 2 2 e22u sin 2u2 e24u

1 2 2 e22u cosð2uÞ þ e24u
; ð15aÞ

Lr ¼ uu
1 þ 2 e22u sin 2u2 e24u

1 2 2 e22u cosð2uÞ þ e24u
: ð15bÞ

3. Discussion of solution

If the leaky layer is very thin, then according to Eq.

(9), one has u < 0: Let u! 0 in Eqs. (15a) and (15b),

it follows that

lim
u!þ0

Li ¼ 0; lim
u!þ0

Lr ¼ u: ð16Þ

Therefore, for thin leaky layer which satisfies u < 0;

the parameters p, q, m and n defined in Eqs. (14a)–

(14d) can be significantly simplified.

3.1. Analytical solution for single aquifer

If the middle layer becomes completely imperme-

able, i.e. K 0 ¼ 0; then one has

lim
K 0!þ0

Li ¼ lim
K 0!þ0

Lr ¼ 0: ð17Þ

In fact, in the case of S0
S . 0; according to Eqs. (9) and

(10), it follows that

lim
K 0!þ0

u S0
S
.0

��� ¼ 1; lim
K 0!þ0

u ¼ 0; lim
K 0!þ0

uu ¼ 0:

ð18Þ

Based on Eqs. (18), (15a) and (15b), one immediately

obtains Eq. (17). In the case that S0
S ¼ 0; using Eq.

(16), one will find that Eq. (17) still holds. Hence Eq.

(17) applies for both S0
S . 0 and S0

S ¼ 0: Substituting

Eq. (17) into Eqs. (14a)–(14d), one finds that

lim
K 0!þ0

pðs; uÞ ¼ lim
K 0!þ0

qðs; uÞ ¼ 1; ð19Þ

and m and n become the same as Eqs. (8) and (9) of Li

and Jiao (2002b), which are for single confined

aquifer. Therefore, solution (11) becomes the Li and

Jiao (2002b) solution if the leaky layer becomes

completely impermeable.

3.2. Approximate simplification of solution (11)

Since solution (11) is very complicated, an

approximate simplification will be helpful. It will be

shown that the following simple expression

Happroxðx; y; tÞ ¼ A Re½ð2e2ð1þiqÞapy2ðmþinÞapx

þ e2ð1þiqÞapy þ e2key2ðmþinÞapxÞeivtþc�

ð20Þ

is an adequate approximation to solution (11),

although solution (20) does not exactly satisfy the

differential equation (4). In order to show this, let

Rr ¼ Re½Iðapx; apy; 1 þ iq; 1 þ iqÞ

þ Iðapy; apx;m þ in; 1 þ iqÞ

þ e2ð1þiqÞapy2ðmþinÞapx�; ð21aÞ

Ri ¼ Im½Iðapx; apy; 1 þ iq; 1 þ iqÞ

þ Iðapy; apx;m þ in; 1 þ iqÞ

þ e2ð1þiqÞapy2ðmþinÞapx�; ð21bÞ

then the spatial maximum error distribution of the

approximate solution (20) relative to the tidal

m ¼
1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
1 þ Li 2

kerkei

a2

!2

þ

 
Lr 2

k2
er 2 k2

ei

2a2

!2
vuut þ Lr 2

k2
er 2 k2

ei

2a2

vuuut ; ð14dÞ

n ¼
1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Li 2

kerkei

a2

� 
2

þ Lr 2
k2

er 2 k2
ei

2a2

 !2
vuut 2 Lr þ

k2
er 2 k2

ei

2a2

vuuut ; ð14eÞ
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amplitude A is given by

Rðapx; apy; q;m þ inÞ ¼
def

max
t

lHðx; y; tÞ

2 Happoxðx; y; tÞl=A

¼

ffiffiffiffiffiffiffiffiffiffi
R2

r þ R2
i

q
: ð22Þ

To discuss the error distribution Rðapx; apy; q;m þ inÞ

in the apx–apy space for all possible values of the

parameter q and m þ in, it is necessary to find the

ranges of q and m þ in values. According to Eqs.

(14a) and (14b), it follows that

0 , q # 1; ð23Þ

and that q ¼ 1 if and only if p ¼ 1: From Eqs. (14c)

and (14d), the range of m þ in value depends on ker

and kei. The field values of ker and kei are less than

1025 m21 (Li et al., 2000; Sun, 1997). They are

always several orders of magnitude smaller than the

aquifer’s tidal propagation parameter a, which is

usually greater than 1023 m21. Therefore, the

inequalities

ker , 0:1a; kei , 0:1a ð24Þ

hold for all kinds of field data. Using Eqs. (24) and

(14a)–(14d), one can show that (see Appendix B for

the proof)

lm þ in 2 ð1 þ iqÞl , 0:0072; ð25Þ

namely, m þ in < 1 þ iq: For example, when p ¼

q ¼ 1; ker ¼ kei ¼ 0:1a; from Eqs. (14c) and (14d)

one has m ¼ n ¼ 0:995: Due to this reason, it is

enough to discuss the error distribution

Rðapx; apy; q;m þ inÞ when m þ in ¼ 1 þ iq (or

equivalently, ker ¼ kei ¼ 0). In this case, the error

becomes Rðapx; apy; q; 1 þ iqÞ; which has only one

parameter q. Table 1 shows the maximum values of

Rðapx; apy; q; 1 þ iqÞ corresponding to six values of q

ranging from 0.01 to 1. One can see that the maximum

of Rðapx; apy; q; 1 þ iqÞ ranges from 5.03% to 8.12%

when q ranges from 0.01 to 1, and that all the

maximum are on the diagonal line apx ¼ apy: Fig. 2

shows how the contours Rðapx; apy; 0:01; 1 þ

0:01iÞ ¼ 1 change with 1 (when ker ¼ kei ¼ 0 and

q ¼ 0:01). At inland point ðapx; apyÞ ¼ ð0:75; 0:75Þ;

the dimensionless error Rðapx; apy; 0:01; 1 þ 0:01iÞ

reaches its maximum of 5.03%. Li and Jiao (2002b)

shows how the contours Rðax; ay; 1; 1 þ iÞ ¼ 1 change

with 1 when ker ¼ kei ¼ 0 and q ¼ 1 (hence p ¼ 1).

At inland point ðax; ayÞ ¼ ð0:715; 0:715Þ; the dimen-

sionless error Rðax; ay; 1; 1 þ iÞ (defined as Rðax; ayÞ

in Li and Jiao (2002b)) reaches its maximum of 8.12%

(see Fig. 2 of Li and Jiao (2002b)).

The physical importance of the problem (1)–(7) is

that both the interference of the tidal groundwater

waves induced by the sea tides at the two sides of the

L-shaped coastlines and the impact of the leakance of

the semi-permeable layer are considered comprehen-

sively. Due to the simplicity of solution (20), it clearly

describes both the interference and the impact. The

interference is described by the superposition of three

sinusoidal fluctuations in Eq. (20). The impact of the

leakance is described by the parameters p and q given

by Eqs. (14a)–(14d).

3.3. Asymptotic solutions for large x and y

From the expression of the approximate solution

(20), it can be easily seen that for large x solution (11)

becomes the straight-coastline solution of Li and Jiao

(2001a), i.e.

Hðx; y; tÞlapx@1 < Happroxðx; y; tÞlapx@1

< A e2apy cosðvt 2 apqy þ cÞ; ð26Þ

and for large y it becomes

Hðx; y; tÞlapy@1 < Happroxðx; y; tÞlapy@1

< A expð2kery 2 apmxÞcosðvt 2 keiy 2 apnx þ cÞ:

ð27Þ

If the leaky layer’s storage is negligible, i.e. u ¼ 0;

then Eq. (16) applies and the parameters p, q, m and n

Table 1

Maximum values of Rðapx; apy; q; 1 þ iqÞ for different values of q

q apx apy Rðapx; apy; q; 1 þ iqÞ

0.01 0.75 0.75 0.0503

0.2 0.75 0.75 0.0518

0.4 0.74 0.74 0.0559

0.6 0.74 0.74 0.0624

0.8 0.73 0.73 0.0710

1.0 0.72 0.72 0.0812

H. Li, J.J. Jiao / Journal of Hydrology 268 (2002) 234–243238



in solution (27) can be simplified into the solution of

Tang and Jiao (2001) (see equation (4) of their paper)

by substituting Eq. (16) into Eqs. (14a)–(14d).

4. Hypothetical example of aquifer parameter

estimation

A hypothetical example is designed to understand

how much error can be introduced in estimating

aquifer’s parameters if there is observation error in the

groundwater head data, and if the approximate

solution (20) or Li and Jiao’s (2001a) straight-

coastline solution (26) are used in an L-shaped coastal

leaky aquifer system. The approach used is as follows.

A given set of aquifer parameters are used to generate

the ‘true values’ of the parameters a, u and u. Then

based on the exact solution (11), the true values of the

parameters a, u and u are used to generate exact

groundwater head fluctuation data forced by a given

sinusoidal sea tide. These data are rounded into

‘observed’ groundwater head fluctuation data within

an error of ^0.5 cm. Then assume that the parameters

a and u are unknown, the sea tide, the dimensionless

leakage u and the observed groundwater head

fluctuation data are known. Inverse problems are

solved to estimate the two unknown parameters a and

u based on the exact solution (11), the approximate

solution (20) and the straight-coastline solution (26),

respectively. By comparing the ‘estimated’ and the

‘true’ values of parameters a and u, the aquifer-

parameter-estimating applicabilities of the exact

solution (11), the approximate solution (20) and

straight-coastline solution (26) in L-shaped aquifer

are examined.

Assume that the sea tide is semi-diurnal with the

angular velocity v ¼ 0:506 h21; amplitude A ¼

1:0 m; phase shift c ¼ 0; ker ¼ kei ¼ 0: An

Fig. 2. Spatial error distribution Rðapx; apy; q; 1 þ iqÞ of the simple approximate solution (20) when both ker ¼ kei ¼ 0; q ¼ 0:01:

H. Li, J.J. Jiao / Journal of Hydrology 268 (2002) 234–243 239



observation well is screened in an L-shaped leaky

aquifer system at an inland point ðx0; y0Þ ¼

ð102:4; 102:4 mÞ: The aquifer parameters are leaky

layer’s thickness b0 ¼ 5 m; vertical permeability K 0 ¼

1:0 m d21; specific storage S0
S ¼ 0:0036 m21 (accord-

ing to Raghunath (1987), this is reasonable for clay

layer), the semi-confined aquifer’s transmissivity T ¼

2000 m2 d21; storativity S ¼ 0:001: The true values of

the three basic parameters are a ¼ 0:00177 m21; u ¼

15:92 and u ¼ 0:752: These data leads to a value of

q ¼ 0:20 and a dimensionless ‘observation well’

position of ðapx0; apy0Þ ¼ ð0:75; 0:75Þ; where the

error Rðapx; apy; 0:2i; 1 þ 0:2iÞ of the approximate

solution (20) reaches the maximum of 5.18%.

In order to estimate the parameters a and u, the

following least-squares problem

min
a;u

X12

j¼1

½hchosenðx0; y0; tj; a; u; uÞlu¼15:92 2 hp
j �

2 ð28Þ

is solved, where hp
j ðj ¼ 1;…; 12Þ are 12 hourly

observed groundwater head data at the observation

well ðx0; y0Þ; as shown in Fig. 3,

hchosenðx0; y0; tj; a; u; uÞ is either the exact solution

(11), or the approximation solution (20), or the

straight-coastline solution (26). The results are listed

in Table 2. As indicated by the least-squares residuals,

the fit between the analytical solutions and the

observed data is the same for the three different

solutions and very good.

It can be seen from Table 2 that the values a and u

estimated by both the exact solution (11) and the

approximate solution (20) are very close to their true

values, while the straight-coastline solution (26) leads

to significant errors. Although the estimated par-

ameters a and u based on the straight-coastline

solution (26) have significant errors, the least-squares

residual remains as small as those produced by the

exact solution (11). This implies that, for the inverse

problem, a satisfactory least-squares fitting does not

necessarily mean that the parameter estimation is

reliable.

5. Conclusions

An analytical solution is derived to describe tidal

groundwater level fluctuations in an L-shaped leaky

coastal aquifer system consisting of an unconfined

aquifer, a semi-confined aquifer and a leaky layer

between them. The watertable variation in the

unconfined aquifer is neglected. The tidal attenuation

in the estuary is taken into account on the one side of

the L-shaped water–land boundaries.

Previous solutions of Jacob (1950), Sun (1997),

Jiao and Tang (1999), Li and Jiao (2001a), and Tang

Fig. 3. Hypothetical semi-diurnal tide level and observed groundwater head fluctuation data at the observation well (the least-squares fittings

based on different solutions (11), (20) and (26) coincide with the observed groundwater head data).

H. Li, J.J. Jiao / Journal of Hydrology 268 (2002) 234–243240



and Jiao (2001), which use the straight-coastline

assumption, are special cases of the new solution

when the distance from the coastline-bending point

approaches infinity. Previous solutions of Li et al.

(2000) and Li and Jiao (2002b) that discuss only

single aquifer are special cases of the new solution

when the vertical permeability of leaky layer

approaches zero. A simple approximate solution

without integral is presented. Error analysis and a

hypothetical example show that the approximate

solution has adequate accuracy for both groundwater

level prediction and parameter estimation for an L-

shaped leaky aquifer system.
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Appendix A. Derivation of the solution

Assume that

Hðx; y; tÞ ¼ A Re½Uðx; yÞexpðiðvt þ cÞÞ�; ðA1Þ

hðx; y; z; tÞ ¼ A Re½ZðzÞUðx; yÞexpðiðvt þ cÞÞ�; ðA2Þ

where Uðx; yÞ and ZðzÞ are complex functions.

Substituting Eqs. (A1) and (A2) into Eqs. (1)–(3),

and extending the three resultant real equations into

complex ones with respect to the unknown complex

functions, yield

ivS0
SZ ¼ K 0Z 00

; 0 , z , b0
; ðA3Þ

Zðb0Þ ¼ hz ¼ 0; ðA4Þ

Zð0Þ ¼ 1: ðA5Þ

The solution of Eqs. (A3)–(A5) is

ZðzÞ ¼
expð2ð1 þ iÞðz=b0 2 1ÞuÞ2 expðð1 þ iÞðz=b0 2 1ÞuÞ

expðð1 þ iÞuÞ2 expð2ð1 þ iÞuÞ
:

ðA6Þ

Using Eq. (A6), one obtains

K 0Z 0ð0Þ ¼ 2vSðLr þ iLiÞ; ðA7Þ

where Li and Lr are defined in Eqs. (15a) and (15b).

Now substituting Eqs. (A1), (A2) and (A7) into Eq.

(4), and Eq. (A1) into Eqs. (5)–(7), and extending the

four resulting real equations into complex ones with

respect to the unknown functions, yield

›2U

›x2
þ

›2U

›y2
¼

vS

T
½ið1 þ LiÞ þ Lr�U;

0 , x; y , þ1;

ðA8Þ

Uðx; 0Þ ¼ 1; x . 0; ðA9Þ

Uð0; yÞ ¼ expð2keyÞ; y . 0; ðA10Þ

lim
x!1

›U

›x
ðx; yÞ ¼ lim

y!1

›U

›y
ðx; yÞ ¼ 0: ðA11Þ

Because e2ð1þiqÞapy satisfies Eqs. (A8), (A9) and

(A11), e2key2ðmþinÞapx satisfies Eqs. (A8), (A10) and

(A11), let

Vðx; yÞ ¼ Uðx; yÞ2 e2ð1þiqÞapy 2 e2key2ðmþinÞapx
;

ðA12Þ

then Vðx; yÞ satisfies

›2V

›x2
þ

›2V

›y2
¼ a2p2ð1 þ iqÞ2V ; 0 , x; y , þ1;

ðA13Þ

Table 2

Aquifer parameters estimated by least-squares fitting based on different solutions

a (m21) u Least-squares residual (m2)

True value 0.00177 (0%) 0.752 (0%) 0

Estimation of exact solution (11) 0.00180 (1.7%) 0.745 (20.9%) 2.0 £ 1024

Estimation of approx. solution (20) 0.00207 (17%) 0.685 (8.9%) 2.0 £ 1024

Estimation of straight-coastline solution (26) 0.000923 (248%) 0.946 (26%) 2.0 £ 1024

Note: the percentages in the parentheses are the relative errors defined as (estimated value 2 true value)/(true value).
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Vðx; 0Þ ¼ 2e2ðmþinÞapx
; x . 0; ðA14Þ

Vð0; yÞ ¼ 2e2ð1þiqÞapy
; y . 0; ðA15Þ

lim
x!1

›V

›x
ðx; yÞ ¼ lim

y!1

›V

›y
ðx; yÞ ¼ 0: ðA16Þ

Using the Green’s function (Shimakura, 1992)

G ¼ Eðx; y; x0; y0Þ2 Eðx; y;2x0; y0Þ

þ Eðx; y;2x0;2y0Þ2 Eðx; y; x0;2y0Þ; ðA17Þ

where Eðx; y; x0; y0Þ ¼ ð1=2pÞK0ðð1 þ iqÞrðapðx 2

x0Þ; apðy 2 y0ÞÞÞ; KnðzcÞ denotes the modified second

kind Bessel function of nth order, implementing the

standard procedure to solve boundary value problem

(A13)–(A16) (Shimakura, 1992, p. 43), one obtains

Vðx; yÞ ¼
ð1

0
Vðx0; 0Þ

›G

›y0

����
y0¼0

dx0

þ
ð1

0
Vð0; y0Þ

›G

›x0

����
y0¼0

dx0: ðA18Þ

Using the formula (McLachlan, 1961; Shimakura,

1992, pp. 25, 26)

dK0ðzcÞ

dzc

¼ 2K1ðzcÞ; ðA19Þ

one findsð1

0
Vð0; y0Þ

›G

›x0

����
x0¼0

dy0 ¼ Iðapy; apx; 1 þ iq; 1 þ iqÞ;

ðA20aÞð1

0
Vðx0; 0Þ

›G

›y0

����
y0¼0

dx0 ¼ Iðapy; apx;m þ in; 1 þ iqÞ:

ðA20bÞ

Substituting Eqs. (A20a) and (A20b) into Eq. (A18),

then Eq. (A18) into Eq. (A12), yields

Uðx; yÞ ¼ Iðapx; apy; 1 þ iq; 1 þ iqÞ

þ Iðapy; apx;m þ in; 1 þ iqÞ þ e2ð1þiqÞapy

þ e2key2ðmþinÞapx
: ðA21Þ

Finally, substituting Eq. (A21) into Eq. (A1) yields

solution (11). The groundwater head hðx; y; z; tÞ in the

leaky layer is given in terms of Eqs. (A2), (A6) and

(A21).

Appendix B. Proof of lm 1 in 2 ð1 1 iqÞl < 0:0072

Because both e2ð1þiqÞapy and e2key2ðmþinÞapx satisfy

Eq. (A8), one has

a2p2ð1 þ iqÞ2 ¼
vS

T
½ið1 þ LiÞ þ Lr�; ðA22Þ

k2
e þ a2p2ðm þ inÞ2 ¼

vS

T
½ið1 þ LiÞ þ Lr�: ðA23Þ

Subtracting Eq. (A23) from Eq. (A22), yields

a2p2ð1 þ iqÞ2 2 a2p2ðm þ inÞ2 ¼ k2
e : ðA24Þ

Because ke ¼ ker þ ikei; using Eqs. (24) and (A24), it

follows that

lð1 þ iqÞ2 2 ðm þ inÞ2l ¼
1

p2

ke

a

����
����2, 0:02

p2
: ðA25Þ

Using Eq. (14b) and Li $ 0 one finds that 1=p2 ¼

q=ð1 þ LiÞ # q: Hence, from Eq. (A25) one obtains

lð1 þ iqÞ2 ðm þ inÞl ,
0:02

p2l1 þ iq þ m þ inl

#
0:02qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 þ mÞ2 þ ðq þ nÞ2
p : ðA26Þ

Because m . 0; n . 0; 1 $ q . 0; hence

q=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ mÞ2 þ ðq þ nÞ2

q
, q=

ffiffiffiffiffiffiffiffi
1 þ q2

q
#

ffiffi
2

p
=2:

Substituting this inequality into Eq. (A26), yields

lð1 þ iqÞ2 ðm þ inÞl , 0:01
ffiffi
2

p
: Therefore,

lð1 þ iqÞ þ ðm þ inÞl ¼ l2ð1 þ iqÞ þ ðm þ inÞ

2ð1 þ iqÞl $ 2l1 þ iql2 lðm þ inÞ2 ð1 þ iqÞl

. 2l1 þ iql2 0:01
ffiffi
2

p
: ðA27Þ

Substituting Eq. (A27) into Eq. (A26), it follows that
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lð1 þ iqÞ2 ðm þ inÞl ,
0:02q

2l1 þ iql2 0:01
ffiffi
2

p

#
0:02

2l1 þ il2 0:01
ffiffi
2

p , 0:0072:
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