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Abstract A robust classification scheme for partitioning
water chemistry samples into homogeneous groups is an
important tool for the characterization of hydrologic sys-
tems. In this paper we test the performance of the many
available graphical and statistical methodologies used to
classify water samples including: Collins bar diagram,
pie diagram, Stiff pattern diagram, Schoeller plot, Piper
diagram, Q-mode hierarchical cluster analysis, K-means
clustering, principal components analysis, and fuzzy 
k-means clustering. All the methods are discussed and
compared as to their ability to cluster, ease of use, and
ease of interpretation. In addition, several issues related
to data preparation, database editing, data-gap filling, 
data screening, and data quality assurance are discussed
and a database construction methodology is presented.

The use of graphical techniques proved to have limi-
tations compared with the multivariate methods for large
data sets. Principal components analysis is useful for da-
ta reduction and to assess the continuity/overlap of clus-
ters or clustering/similarities in the data. The most effi-
cient grouping was achieved by statistical clustering
techniques. However, these techniques do not provide in-
formation on the chemistry of the statistical groups. The
combination of graphical and statistical techniques pro-
vides a consistent and objective means to classify large
numbers of samples while retaining the ease of classic
graphical presentations.

Résumé Un système robuste de classification pour ré-
partir des échantillons de chimie de l’eau en groupes ho-
mogènes est un outil important pour la caractérisation
des hydrosystèmes. Dans ce papier nous testons les per-
formances des nombreuses méthodes graphiques et sta-
tistiques disponibles utilisées pour réaliser une classifi-

cation des échantillons d’eau; ces méthodes sont les sui-
vantes: les diagrammes en barres de Collins, en camem-
bert, de Stiff, de Schoeller, de Piper, l’analyse hiérarchi-
que en grappe en mode Q, le regroupement de moyennes
K, l’analyse en composantes principales et le regroupe-
ment flou de moyennes K. Toutes ces méthodes sont dis-
cutées et comparées quant à leur aptitude à regrouper et
leur facilité de mise en œuvre et d’interprétation. En ou-
tre, plusieurs points relatifs à la préparation des données,
à l’édition des bases de données, à la reconstitution de
données manquantes, à l’examen des données et au con-
trôle de validité des données sont discutés et une métho-
dologie d’élaboration d’une base de données est propo-
sée.

L’utilisation de techniques graphiques a démontré
qu’elle présente des limites par rapport aux méthodes
multidimensionnelles, pour les jeux importants de don-
nées. L’analyse en composantes principales est utile 
pour réduire les données et pour évaluer la continuité/
recouvrement des groupes ou le groupement/similitude
dans les données. Le groupement le plus efficace est as-
suré par les techniques statistiques de regroupement en
grappes. Cependant, ces techniques ne fournissent pas
d’information sur le chimisme des groupes statistiques.
La combinaison de techniques graphiques et statistiques
donne les moyens solides et objectifs de faire une classi-
fication d’un grand nombre d’échantillons tout en con-
servant la facilité des représentations graphiques classi-
ques.

Resumen Disponer de un esquema sólido de clasifica-
ción química de muestras de agua en grupos homogéne-
os es una herramienta importante para la caracterización
de sistemas hidrológicos. En este artículo, contrastamos
la utilidad de muchas metodologías gráficas y estadísti-
cas disponibles para clasificar muestras de aguas; entre
ellas, hay que citar el diagrama de barras de Collins, 
diagramas de sectores, diagrama de Stiff, gráfico de
Schoeller, diagrama de Piper, análisis jerárquico de con-
glomerados en modo-Q, conglomerados de K-medias,
análisis de componentes principales, y conglomerados
difusos de k-medias. Se discute todos los métodos, com-
parándolos en función de su capacidad para establecer
agrupaciones, de su facilidad de uso y de su facilidad de
interpretación. Además, se discute varios aspectos rela-
cionados con la entrada de datos, edición de bases de da-
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tos, extrapolación de datos en series incompletas, visua-
lización de datos, y garantía de calidad de los datos, y se
presenta una metodología para elaborar una base de da-
tos.

Se demuestra que el uso de técnicas gráficas padece
limitaciones respecto a los métodos multivariados para
conjuntos de datos numerosos. El análisis de componen-
tes principales es útil para reducir el número de datos y
establecer la continuidad/superposición de grupos o
agrupaciones/similaridades en los datos. Los resultados
más efectivos se logran mediante técnicas estadísticas de
agrupamiento; sin embargo, éstas no proporcionan infor-
mación sobre la química de los grupos estadísticos. La
combinación de técnicas gráficas y estadísticas posibilita
un enfoque coherente y objetivo para clasificar números
elevados de muestras y, a la vez, mantener la facilidad de
las presentaciones gráficas convencionales.

Keywords Classification techniques · Cluster analysis ·
Database construction · Fuzzy k-means clustering · 
Water chemistry

Introduction

The chemical composition of surface and groundwater is
controlled by many factors that include composition of
precipitation, mineralogy of the watershed and aquifers,
climate, and topography. These factors combine to create
diverse water types that change spatially and temporally.
In our study area, which lies within the south Lahontan
hydrologic region of southeastern California (Fig. 1),
there is a wide variety of climatic conditions (high alpine
to desert), hydrologic regimes (alluvial basin-fill aqui-
fers, fractured rock aquifers, and playas) and geologic
environments (igneous rocks, volcanic rocks, metamor-
phic rocks, sedimentary deposits, evaporites, and miner-
alized zones). Thus, the samples from the area could po-
tentially represent a variety of water types providing an
opportunity to test the performance of many of the avail-
able graphical and statistical methodologies used to clas-
sify water samples.

The use of major ions as natural tracers (Back 1966)
has become a very common method to delineate flow
paths in aquifers. Generally, the approach is to divide the
samples into hydrochemical facies (aka water types), that
is groups of samples with similar chemical characteris-
tics that can then be correlated with location. The spatial
variability observed in the composition of these natural
tracers can provide insight into aquifer heterogeneity and
connectivity, as well as the physical and chemical pro-
cesses controlling water chemistry. Thus, a robust classi-
fication scheme for partitioning water chemistry samples
into homogeneous groups can be an important tool for
the successful characterization of hydrogeologic sys-
tems. A variety of graphical and multivariate statistical
techniques have been devised since the early 1920s in
order to facilitate the classification of waters, with the
ultimate goal of dividing a group of samples into similar

homogeneous groups (each representing a hydrochemi-
cal facies). Several commonly used graphical methods
and multivariate statistical techniques are available in-
cluding: Collins bar diagram, pie diagram, Stiff pattern
diagram, Schoeller semi-logarithmic diagram, Piper 
diagram, Q-mode hierarchical cluster analysis (HCA),
K-means clustering (KMC), principal components analy-
sis (PCA), and fuzzy k-means clustering (FKM). This
paper utilizes a relatively large data set to review these
techniques and compare their ease of use and ability to
sort water chemistry samples into groups.

Hydrogeologic Setting
The study area is part of the Basin and Range Province
of the southwestern USA and extends from 35–37° of
latitude north and from 117–118.5° of longitude west
(Fig. 1). The area comprises a portion of the Sierra Ne-
vada mountain range, which is the recharge area, and ad-
joining alluvial basins, which are arid. Because of the
modern arid climate, surface water is scarce in the area
and groundwater is the only source of drinking and
household use water (Berenbrock and Schroeder 1994).
Thus, effective management of the groundwater resourc-
es requires an accurate model for the aquifer characteris-
tics, groundwater flow directions, recharge mechanisms,
discharge mechanisms, and water chemistry processes.

In the basin and range groundwater system, water
flows from recharge areas in the mountains to discharge
areas in the adjacent valleys (Maxey 1968). This local
flow system is often modified by local geologic, physio-
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Fig. 1 Location of the study area



graphic, and climatic factors. During the Pleistocene and
Holocene epochs, the valley floors in the study area were
periodically occupied by a chain of lakes stretching from
Mono Lake in the north to Lake Manley in Death Valley
(Duffield and Smith 1978; Lipinski and Knochenmus
1981). Present-day valley floors are occupied by playas,
known in different localities as “salt lakes,” “soda
lakes,” “alkali marshes,” “dry lakes,” or “borax lakes”,
where the majority of groundwater discharges by evapo-
transpiration (Lee 1912; Fenneman 1931; Dutcher and
Moyle 1973). Minor discharge also occurs by other ways
including discharge from springs, seeps, and pumping
from wells. The groundwater in the area occurs in two
porosity regimes: (1) intergranular porosity found mostly
in alluvial basin-fill aquifers, and (2) fracture porosity
found in the mountain watersheds. The alluvial basin-fill
aquifers can be further divided into two components: 
a shallow saline aquifer (<150 m depth), and a deep
(610 m), locally confined aquifer that extends throughout
the area (Dutcher and Moyle 1973).

Methods

The available major solute data (spring, surface, and
well water) for the area was compiled for this study in
order to create a comprehensive database, called SLH-
DATA (south Lahontan hydrochemical database), for the

classification of waters into hydrochemical facies repre-
senting “water types”. The data were arranged in rows
(for sampling locations) and in columns (for chemical
parameters). The entire database consists of chemical an-
alyses of 152 spring samples, 153 surface samples, and
1,063 well (groundwater) samples, including temporal
samples (samples collected over a period of time at the
same location). Sources of the data are presented in 
Table 1. In the case of multiple samples from the same
location, the more recent and/or the more complete sam-
ple data were included in the statistical analysis unless
evaluation of temporal effects was desired. Database
construction procedures and comparison of the results
from the various statistical and graphical techniques is
discussed in detail in the following sections. Detailed
analysis of the graphical and statistical water groups in
terms of the physical and chemical factors that control
water chemistry is not the focus of this paper. Instead,
we are interested here in the ability of available tech-
niques to classify a diverse set of samples into distinct
groups.

Of the 39 hydrochemical variables (consisting of ma-
jor ions, minor ions, trace elements, and isotope data) in
the compiled database, 11 variables (specific conduc-
tance, pH, Ca, Mg, Na, K, Cl, SO4, HCO3, SiO2, and F)
occur most often and, thus, were used in our evaluation.
It is usually assumed that adequate quality assurance
(QA) and quality control (QC) measures were performed
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Table 1 Data sources used to
create the SLHDATA database.
NWIS: US Geological Survey
National Water Storage and 
Retrieval System

Code Data sources Number of samples
number

Surface Spring Well

1 Barnes et al. (1981) – 1 –
2 Berenbrock (1987) – – 194
3 Berenbrock and Schroeder (1994) – – 108
4 Buono and Packard (1982) – – 3
5 California State University, Bakersfield, unpublished data 51 38 74
6 Dockter (1980a) – – 1
7 Dockter (1980b) – – 2
8 Feth et al. (1964) – 1 –
9 Font (1995) – 3 18

10 Fournier and Thompson (1980) 1 8 3
11 Hollett et al. (1991) – – 5
12 Houghton (1994) 10 2 25
13 Hunt et al. (1966) – 1 –
14 Johnson (1993) – – 13
15 Johnson et al. (1991) – – 6
16 Lamb et al. (1986) – – 42
17 Lopes (1987) – 14 14
18 Maltby et al. (1985) – – 45
19 McHugh et al. (1981) 70 8 –
20 Melack et al. (1985) 10 – –
21 Miller (1977) 2 7 2
22 Moyle (1963) – 1 137
23 Moyle (1969) – 24 96
24 Moyle (1971) – – 57
25 Ostdick (1997) 6 14 14
26 Robinson and Beetem (1975) – 1 –
27 US Bureau of Reclamation (1993) – – 33
28 US Geological Survey NWIS QW data – 28 154
29 Whelan et al. (1989) – 1 9
30 No source information available 3 – 8



at the time of original data collection and analysis; how-
ever, we screened the data to verify that they were usable
(see below for further discussion). The data collection
methods, which are similar are described in detail for
most of the data sources, or documented in US Geologi-
cal Survey’s “Techniques of water-resources investiga-
tions” manuals (e.g., Brown et al. 1970; Wood 1981).

The Statistica Release 5.0 (StatSoft, Inc. 1995) com-
mercial software package was utilized for the basic sta-
tistical analyses performed. Microsoft Excel 97 (Micro-
soft Corporation 1985) and RockWorks (RockWare, Inc.
1999) were used for the graphical analyses. Classifica-
tion of the data was also performed using FuzME (Fuzzy
k-Means with Extragrades; Minasny and McBratney
1999). The techniques used include cluster analysis
(HCA and KMC), principle components analysis (PCA),
fuzzy k-means clustering (FKM), and a variety of graph-
ical methods. Detailed technical descriptions of HCA,
KMC, and PCA techniques and a description of the
FKM technique are provided in StatSoft, Inc. (1997) and
Bezdek et al. (1984), respectively.

Database Editing
Figure 2 is a flow chart that summarizes the methodolo-
gy used for compiling the hydrochemical database. If re-
ported, field measurements of alkalinity and pH were
used for the construction of the database. Otherwise, lab-
oratory measurements of these variables were used.
Some of the individual data sets contained the same sam-
ple, or apparent near-duplicate analyses for minor ele-
ments. In general, there were more discrepancies for iron
than for any other minor element. This was probably be-
cause of the different ways in which iron concentrations
were expressed, or the convention being used was not
clearly stated. We have chosen not to use any minor ele-
ment data for our study because of these sorts of prob-
lems.

Samples with uncertain locations were located using
reports and maps or eliminated from the database when
such information was not available. Locations of sites
that had only the name of the well or spring were deter-
mined as accurately as possible, usually to several 
hundred meters and always within 1 km. Well-water
samples without sampling depths were retained in the
database, but eliminated from the multivariate statistical
analysis.

Units of measurement were sometimes inconsistent
between different data sets. All values were converted to
an internally consistent format (all units are in mg L–1 in
the SLHDATA database). Common reporting units for
data sets were weight-per-volume units [milligrams per
liter (mg L–1) and micrograms per liter (µg L–1)], equiva-
lent-weight units [milliequivalents per liter (meq L–1)
and microequivalents per liter (µeq L–1)], or weight-per-
weight units [parts per million (ppm), parts per billion
(ppb), and parts per trillion (ppt)]. Conversion factors for
calculation of a unit from the other units are given by
Hem (1989).

Censored values
Water chemistry data are frequently censored, that is, con-
centrations of some elements are reported as non-
detected, less-than or greater-than. These values are created
by the lower or upper detection limit of the instrument or
method used. Censored data are not appropriate for many
multivariate statistical techniques. Therefore, the non-de-
tected, less-than, and greater-than values must be replaced
with unqualified values (Farnham et al. 2002). In our dat-
abase there were no censored values for the 11 variables
used in this study, however, because this is often not the
case we briefly discuss methods to deal with this situation.
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Fig. 2 Methodology used for compiling and editing the SLHDATA
database



A number of techniques have been suggested for re-
placement of a censored value including replacement of
the less-than values by 3/4 times the lower detection lim-
it and the greater-than values by 4/3 times upper detec-
tion limit (VanTrump and Miesch 1977). An alternative
is replacement of less-than values by 0.55 times the low-
er detection limit and the greater-than values by 1.7
times upper detection limit (Sanford et al. 1993). For da-
ta where the proportion of the censored values is >10%,
another method that was devised by Sanford et al. (1993)
can be used. This method estimates the mean of the nor-
mal distribution using a maximum likelihood estimation
method. Then, this estimated mean is used to derive an
estimated replacement value.

Data-gap filling procedures – 
estimation of the missing values
Usually the effective use of many of the methods re-
quires complete water analyses (no missing data values).
Missing data values may make the use of graphical water
chemistry techniques impossible, or limit the quality of
the statistical analysis. During the statistical analysis,
most statistical software packages replace those missing
values with means of the variables, or prompt the user
for case-wise deletion of analytical data, both of which
are not desirable. This can bias statistical analyses if
these values represent a significant number of the data
being analyzed.

There are statistical methods and chemical relationships
that can be employed to estimate missing data values. 
For instance, missing conductance data can be calculated
from total dissolved solids (TDS) data by using a simple
linear regression method. In our database, a significantly
(p<0.001) high correlation coefficient (r=0.984) was found
to exist between these two variables. The p-value is the
significance probability for testing the null hypothesis that
true correlation in the population is zero. A small value of
p (e.g., p<0.001) indicates that there is a significant corre-
lation. Thus, missing potassium (K) values were estimated
by utilizing the linear relationship between potassium and
sodium (Na), which had a significantly (p<0.001) high cor-
relation coefficient of 0.904.

Missing bicarbonate (HCO3) data can be calculated
from alkalinity values and pH. Inverting the problem,
missing pH values can be calculated by using Eq. (1) if
the CO3 and HCO3 values were reported:

(1)

The same relationship can also be used to calculate the
missing carbonate (CO3) values if pH was reported. Fi-
nally, if there were no means of establishing a value, a
value of ‘‘–9,999” was entered for the missing value, in-
dicating that no data were available for that entry. In our
data set there were very few (3%) samples with censored
or missing values.

459

Hydrogeology Journal (2002) 10:455–474 DOI 10.1007/s10040-002-0196-6

Table 2 Charge balance (CB)
statistics for the individual data
sources

Code no.a Years collected – + CB error range Median Mean (±1σ)

1 1981 1 0 –1.04 – –1.04 –1.04 (±0.00)
2 1977–1984 82 112 –10.31 7.75 0.35 0.16 (±2.87)
3 1987–1989 54 54 –9.43 8.66 –0.11 0.24 (±3.95)
4 1968–1980 2 1 –2.05 0.96 –1.31 –0.80 (±1.57)
5 1994–1998 61 102 –9.44 10.04 1.33 1.88 (±3.73)
6 1978 0 1 – 0.32 0.32 0.32 (±0.00)
7 1978 1 1 –0.02 0.52 0.25 0.25 (±0.38)
8 1959 1 0 –1.14 – –1.14 –1.14 (±0.00)
9 1989–1994 14 7 –3.70 3.03 –1.25 –0.83 (±2.01)

10 1974–1979 7 5 –5.71 9.41 –0.30 0.82 (±4.31)
11 1945–1978 1 4 –0.12 5.30 1.69 2.03 (±2.15)
12 1993–1994 12 25 –8.39 10.40 0.87 0.90 (±4.01)
13 Unknown 0 1 – 0.34 0.34 0.34 (±0.00)
14 1993 9 4 –8.94 8.16 –1.43 –1.04 (±4.34)
15 1990 4 2 –3.30 8.33 –0.28 0.56 (±4.34)
16 1986–1991 34 8 –5.14 2.05 –2.20 –1.82 (±1.80)
17 1986 10 18 –2.65 10.39 0.84 1.35 (±2.92)
18 1984–1985 30 15 –6.02 8.51 –0.86 –0.92 (±2.97)
19 1979 64 14 –9.45 9.10 –5.00 –4.02 (±4.38)
20 1982 7 3 –6.17 4.75 –2.68 –2.01 (±3.56)
21 1967–1972 4 7 –2.31 4.67 0.79 0.89 (±2.02)
22 1917–1960 28 110 –2.34 10.13 0.13 1.13 (±2.23)
23 1917–1967 17 103 –9.55 8.74 1.89 2.00 (±2.28)
24 1916–1969 22 35 –3.81 8.84 0.20 0.74 (±1.94)
25 1996 17 17 –8.70 10.32 0.03 1.14 (±5.32)
26 1965 1 0 –0.09 – –0.09 –0.09 (±0.00)
27 1990–1992 8 25 –3.13 6.88 2.38 1.99 (±2.55)
28 1945–1990 119 63 –8.10 9.92 –0.94 –0.75 (±2.69)
29 1976–1987 1 9 –0.76 9.99 6.54 5.18 (±3.52)
30 1989–1996 3 8 –10.04 9.58 2.59 2.35 (±5.63)

a Data sources corresponding 
to code numbers are listed in
Table 1. The + and – columns
refer to the number of analyses
from a data source having posi-
tive and negative CB errors



Charge balance error
The edited chemical analyses in the SLHDATA database
were tested for charge balance (Freeze and Cherry
1979):

(2)

where z is the absolute value of the ionic valence, mc the
molality of cationic species and ma the molality of the
anionic species. Conventions and assumptions used in
balancing the analyses included:

1. When bicarbonate and carbonate data were not given,
alkalinity, if available, was used to estimate a bicar-
bonate concentration.

2. In the few cases where the calcium and magnesium
data were missing, hardness was used to estimate the
sum of calcium and magnesium concentrations.

Calculated charge balance errors are less than or equal to
±10.4% for SLHDATA database, which is an acceptable
error for the purpose of this study (Table 2). Samples
with errors greater than ±10.4% were not used. For the
spring-water and well-water (groundwater) data, errors
are evenly distributed between positive and negative 
values, and, thus, are not systematic (Fig. 3a–d). The
charge balance errors of the surface water data showed 
a bimodal distribution and had a skewed distribution
(Fig. 3e, f). Accordingly, the surface water samples were
further studied. The samples were split into those from
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Fig. 3 Distribution of percent
charge balance error for a, b
spring, c, d well, and e, f sur-
face water samples



the Sierra Nevada mountain block and the Indian Wells-
Owens Valley area (see Fig. 4 for locations). The Indian
Wells-Owens Valley area samples have charge balance
errors that approach a normal distribution and range
from –6% to +10%, whereas the Sierra Nevadan samples
had a strongly skewed distribution. The Sierra Nevada
data included 78 samples collected for the Domeland
Wilderness study (McHugh et al. 1981), which were
identified as the source of the skewed distribution and
indicates a systematic error in that particular set of ana-
lyses. However, the error is not sufficient to remove the
data set from the database. 

Data screening
The purpose of data screening is to evaluate the distri-
bution characteristics of each variable in the database.

We used univariate and bivariate statistical methods to
assess each variable independently, and the relationship
between variable pairs. The physical and chemical
properties were evaluated using central tendency
(mean, median, mode) and dispersion (standard devia-
tion, skewness), and by graphical displays such as his-
tograms, scatter plots, probability plots, and box plots.
Based on these analyses, decisions were made concern-
ing the need for, and selection of, appropriate transfor-
mations to achieve a better approximation of the nor-
mal distribution. This is important because most of the
statistical analyses assume that data are normally dis-
tributed.

The data screening showed that the data used in this
study were universally skewed positively; the data con-
tained a small number of high values. Most naturally oc-
curring element distributions follow this pattern (Miesch
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Fig. 4 Map view of HCA-
derived subgroup and group
values for the spring water
samples



1976). The data were log-transformed (except for pH) so
that they more closely corresponded to normally distrib-
uted data. Then, all the 11 variables were standardized
by calculating their standard scores (z-scores) as follows:

(3)

where zi= standard score of the sample i; xi= value of
sample i; x̄ = mean; s= standard deviation.

Standardization scales the log-transformed data to a
range of approximately –3 to +3 standard deviations,
centered about a mean of zero. In this way, each variable
has equal weight in the statistical analyses. Otherwise,
the Euclidean distances will be influenced most strongly
by the variable that has the greatest magnitude (Judd
1980; Berry 1995). Besides normalizing and reducing
outliers, these transformations also tend to homogenize
the variance of the distribution (Rummel 1970). The raw
data (with data-gaps filled) were used for the graphical
analyses, whereas the transformed (log-transformed and
standardized) data were used for the hierarchical cluster
analysis (HCA), K-means cluster analysis (KMC), prin-
cipal components analysis (PCA), and fuzzy k-means
clustering (FKM).

Results

The fundamental aim of the techniques compared here
is to identify the chemical relationships between water
samples. Samples with similar chemical characteristics
often have similar hydrologic histories, similar recharge
areas, infiltration pathways, and flow paths in terms of
climate, mineralogy, and residence time. Table 3  shows

the various techniques and the required input data. For
brevity, only the 152 spring water samples are discussed
in the following text. The other subsets of the complete
database produced similar results. A preliminary analy-
sis of temporal effects, based on examination of individ-
ual analyses, suggested that relatively little change oc-
curred in the water quality of samples with time. This
indicates that the spatial variability is the most impor-
tant source of variation in the data, rather than the tem-
poral factor. This conclusion was later tested and con-
firmed as discussed in the statistical methods section.
For that reason, we did not include samples from tempo-
ral series to statistical analysis. This reduced the total
number of samples to 118.The fundamental aim of the
techniques compared here is to identify the chemical re-
lationships between water samples. Samples with simi-
lar chemical characteristics often have similar hydrolog-
ic histories, similar recharge areas, infiltration path-
ways, and flow paths in terms of climate, mineralogy,
and residence time. Table 3  shows the various tech-
niques and the required input data. For brevity, only the
152 spring water samples are discussed in the following
text. The other subsets of the complete database pro-
duced similar results. A preliminary analysis of tempo-
ral effects, based on examination of individual analyses,
suggested that relatively little change occurred in the
water quality of samples with time. This indicates that
the spatial variability is the most important source of
variation in the data, rather than the temporal factor.
This conclusion was later tested and confirmed as dis-
cussed in the statistical methods section. For that rea-
son, we did not include samples from temporal series to
statistical analysis. This reduced the total number of
samples to 118.
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Table 3 Statistical and graphical techniques evaluated for the classification of water samples

Method Cations used Anions used Other parameters Input data and plotting units

Cluster analysis All major, minor All major, minor All applicable parameters Input: z-scores of the log-transformed data
(HCA and KMC) and trace elements and trace elements Yes (1) or no (0) statements, Output: distance matrix (KMC) and 

discrete variables dendogram (HCA)
Principal All major, minor All major, minor All applicable parameters Input: z-scores of the log-transformed data
components and trace elements and trace elements Yes (1) or no (0) statements, Output: PCA scores
analysis (PCA) discrete variables
Fuzzy k-means All major, minor All major, minor Same as above Input: same as above  matrix
Clustering (FKM) and trace elements and trace elements Output: membership
Piper diagram Na + K, Ca, Mg Cl, SO4, n/a Relative %meq L–1

HCO3 + CO3

Collins bar Na + K, Ca, Mg Cl, SO4, HCO3 n/a Relative %meq L–1 or meq L–1

diagram (or HCO3 + CO3)
Pie diagram Na + K, Ca, Mg Cl, SO4, HCO3 n/a Relative %meq L–1

Stiff pattern Na (or Na + K), Cl, SO4, n/a meq L–1

diagram Ca, Mg Fe HCO3 CO3
(optional) (optional)

Schoeller Na + K, Ca, Mg Cl, SO4, HCO3 n/a meq L–1 in log-scale
semi-logarithmic 
diagram
Chernoff faces Up to 20 parameters can be plotted meq L–1 or mg L–1

Other parameters in their respective units



Graphical Methods
Most of the graphical methods are designed to simulta-
neously represent the total dissolved solid concentration
and the relative proportions of certain major ionic spe-
cies (Hem 1989). All the graphical methods use a limited
number of parameters, usually a subset of the available
data, unlike the statistical methods that can utilize all the
available parameters. The Piper diagram (Piper 1944;
Fig. 5) is the most widely used graphical form and it is
quite similar to the diagram proposed by Hill (1940,
1942). The diagram displays the relative concentrations
of the major cations and anions on two separate trilinear
plots, together with a central diamond plot where the
points from the two trilinear plots are projected. The
central diamond-shaped field (quadrilateral field) is used
to show overall chemical character of the water (Hill
1940; Piper 1944). Back (1961) and Back and Hanshaw
(1965) defined subdivisions of the diamond field, which

represent water-type categories that form the basis for
one common classification scheme for natural waters.
The mixing of water from different sources or evolution
pathways can also be illustrated by this diagram (Freeze
and Cherry 1979). Symbol sizes can be scaled to TDS on
the diamond-shaped field to add even more information
(Domenico and Schwartz 1997).

Figure 5 shows the results of plotting the 118 spring
samples on the Piper diagram. The data are broadly dis-
tributed rather than forming distinct clusters. Employing
the water classification scheme of Back and Hanshaw
(1965), the samples are classified into a variety of water
types including Ca-HCO3, Ca–Mg-HCO3, Ca–Na-HCO3,
Na-HCO3, Na–Ca-HCO3, Na-Cl and Ca–Mg-SO4 types,
with no dominant type. This diagram provides little in-
formation that allows us to discriminate between sepa-
rate clusters (groups) of samples.

The Collins bar diagram (Collins 1923) and the pie
diagram (Fig. 6) are easy to construct and present rela-
tive major ion composition in percent milliequivalents
per liter (relative %meq L–1). The constituents can also
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Fig. 5 Piper diagram of the 118 spring water samples



be plotted in meq L–1 with an appropriate scaling. For
the Collins bar diagram, major cations are plotted on the
left and major anions are plotted on the right. For the pie
diagram, the cations are plotted in the upper half and an-
ions are plotted in the lower half of the circle. The pie 
diagram is usually drawn with a radius proportional to
TDS.

The Stiff pattern (Fig. 6) is a polygon that is created
from three (or four) parallel horizontal axes extending on
either side of a vertical zero axis (Stiff 1951). In this dia-
gram, cations are plotted on the left of the axes and an-
ions are plotted on the right, in units of milliequivalents
per liter (meq L–1). The Stiff diagram is usually plotted
without the labeled axis and is useful making visual
comparison of waters with different characteristics. The
patterns tend to maintain its shape upon concentration or
dilution, thus visually allowing us to trace the flow paths
on maps (Stiff 1951).

The Schoeller semi-logarithmic diagram (Schoeller
1955, 1962; Fig. 6) allows the major ions of many sam-
ples to be represented on a single graph, in which sam-
ples with similar patterns can be easily discriminated.
The Schoeller diagram shows the total concentration of
major ions in log-scale.

As we can see from Fig. 6, the Collins, pie, and Stiff
methods produce a single diagram for each sample.
Clearly, it is not practical to produce and manually sort
118 separate figures (e.g., Stiff diagrams), one for each

sample, in order to sort and classify large data sets. The
choice of similarity would be based on the evaluation of
the analyst, which is highly subjective. Therefore, we
suggest that using purely graphical methods to group the
samples is not efficient and can produce biased results.
However, these methods are useful for presentation of
maps showing hydrochemical facies, and software is
available (e.g., RockWorks) to automatically and rapidly
prepare such maps.

Multivariate Statistical Techniques
Another approach to understanding the chemistry of wa-
ter samples is to investigate statistical relationships
among their dissolved constituents and environmental
parameters, such as lithology, using multivariate statis-
tics (Drever 1997). Statistical associations do not neces-
sarily establish cause-and-effect relationships, but do
present the information in a compact format as the first
step in the complete analysis of the data and can assist in
generating hypothesis for the interpretation of hydro-
chemical processes.

Statistical techniques, such as cluster analysis, can
provide a powerful tool for analyzing water-chemistry
data. These methods can be used to test water quality da-
ta and determine if samples can be grouped into distinct
populations (hydrochemical groups) that may be signifi-
cant in the geologic context, as well as from a statistical
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Fig. 6 Plots for a single 
sample using several different
graphical methods (Collins,
pie, Schoeller and Stiff)



point of view. Cluster analysis was successfully used, for
instance, to classify lake samples into geochemical fa-
cies (Jaquet et al. 1975). Alther (1979), Williams (1982),
and Farnham et al. (2000) also applied cluster analysis to
classify water-chemistry data.

The assumptions of cluster analysis techniques in-
clude homoscedasticity (equal variance) and normal dis-
tribution of the variables (Alther 1979). Equal weighing
of all variables requires the log-transformation and stan-
dardization (z-scores) of the data, as discussed above.
Comparisons based on multiple parameters from differ-
ent samples are made and the samples grouped according
to their “similarity” to each other. The classification of
samples according to their parameters is termed Q-mode
classification. This approach is commonly applied to wa-
ter-chemistry investigations in order to define groups of
samples that have similar chemical and physical charac-
teristics because rarely is a single parameter sufficient to
distinguish between different water types.

Both the hierarchical cluster analysis (HCA) and 
K-means clustering (KMC) were used to classify the
samples into distinct hydrochemical groups based on
their similarity. In order to determine the relation be-
tween groups, the r×c data matrix (r samples with c vari-
ables) is imported into a statistics package. The Statistica
(StatSoft, Inc. 1995) has seven similarity/dissimilarity
measurements and seven linkage methods and supports
up to 300 cases for the amalgamation process in the clus-
ter analysis. Individual samples are compared with the
specified similarity/dissimilarity and linkage methods
and then grouped into clusters.

The linkage rule used here is Ward’s method (Ward
1963). Linkage rules iteratively link nearby points (sam-

ples) by using the similarity matrix. The initial cluster is
formed by linkage of the two samples with the greatest
similarity. Ward’s method is distinct from all other 
methods because it uses an analysis of variance 
(ANOVA) approach to evaluate the distances between
clusters. Ward’s method calculates the error sum of
squares, which is the sum of the distances from each in-
dividual to the center of its parent group (Judd 1980) and
forms smaller distinct clusters than those formed by 
other methods (StatSoft, Inc. 1995).

Similarity/dissimilarity measurements and linkage
methods used for clustering greatly affects the outcome
of the HCA results. After careful examinations of avail-
able combinations of similarity/dissimilarity measure-
ments, it was found that using Euclidean distance
(straight line distance between two points in c-dimen-
sional space defined by c variables) as similarity mea-
surement, together with Ward’s method for linkage, pro-
duced the most distinctive groups where each member
within the group is more similar to its fellow members
than to any member from outside the group. The HCA
technique does not provide a statistical test of group dif-
ferences; however, there are tests that can be applied ex-
ternally for this purpose (e.g., Student’s t-test). It is also
possible in HCA results that one single sample that does
not belong to any of the groups is placed in a group by
itself. This unusual sample is considered as residue.

HCA classifies the data in a relatively simple and di-
rect manner, with the results being presented as a dendo-
gram, an easily understood and familiar diagram (Davis
1986). In the present case, we selected the number of
groups based on visual examination of the dendogram
(Fig. 7). The resulting dendogram was interpreted to
have classified the 118 spring water samples into three
major groups (I–III) and nine subgroups (1–9) using 11
variables; this, however, is a subjective evaluation.
Greater or fewer groups could be defined by moving the
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Fig. 7 Dendogram from the HCA for the 118 spring water sam-
ples. Line of asterisks defines “phenon line”, which is chosen by
analyst to select number of groups or subgroups



dashed horizontal line (phenon line) up or down. In addi-
tion, the dendogram does not give information about the
distribution of the chemical constituents that form each
group: a distinct limitation when compared with the
graphical techniques. The differences among subgroups
defined by the HCA (Fig. 7) were determined to be sta-
tistically significant (p<0.001), except the subgroups 2
and 3 of group I, which were significant only at p<0.05.

Table 4 shows the means for each of the parameters
produced by the HCA analysis. These values reveal
some trends between the major groups. Group I samples
all have significantly higher TDS than group II or III
samples. Subgroup 6 has only one member (Table 4,
Fig. 7), a sample that is distinguished by an abnormally
low SiO2 value. This value is probably an analytical or
typographic error, and was removed from the database.
Groups II and III also appear to be separated based on
TDS. The basis for the division into subgroups is not so
apparent. For instance, subgroups 1 and 2 appear to be
distinguished from subgroup 3 by the lower pH values
and higher Ca and Mg values. However, the differences
between subgroups 5 and 7 are subtle.

At this point, it is fair to ask if these clusters of sam-
ples have any physical significance/meaning, or are just
a statistical result. The relationship of the statistically de-
fined clusters of samples to geographic location was test-
ed by plotting the subgroup value for each sample on a
site map (Fig. 4). The figure shows that there is a good
correspondence between spatial locations and the statis-
tical groups as determined by the HCA. For instance, the
spring samples composing group I are usually found
close to playa or nearby discharge areas on the basin
floors and have the highest TDS concentration in the ar-
ea (Table 4). Group II samples are mostly located below
the 2,000-m contour line in the Sierra Nevada and also
found at the ranges surrounding the valleys (Fig. 4).
Group III samples plot above the 2,000-m contour line in
the high Sierra Nevada and are characterized by low
TDS concentrations (Table 4). The majority of recharge
to the basin-fill aquifers occurs from areas where group
II and III samples are located. It appears that the tech-
nique can provide valuable information to help define
the hydrologic system. For instance, the high degree of

spatial and statistical coherence in this data set could be
used to support a model of hydrochemical evolution
where the changes in water chemistry are a result of in-
creasing rock–water interactions along hydrological flow
paths.

K-means clustering (KMC) has also been used to
classify water samples into distinct hydrochemical
groups (Johnson and Wichern 1992). This method of
clustering is different from the HCA because the number
of clusters is pre-selected at the start of the analysis, pro-
ducing a subjective bias. The KMC method will produce
exactly K different clusters with the greatest possible
distinction. Computationally, this method can be thought
of as an analysis of variance (ANOVA) in reverse. The
clustering starts with K random clusters, and then moves
objects between those clusters with the goal to (1) mini-
mize variability within clusters, and (2) maximize vari-
ability between clusters (StatSoft, Inc. 1995). Unlike
HCA, the results from KMC cannot be presented in a
dendogram for a quick visual assessment of the results.
Instead, the results are presented in a large table that
shows members of clusters and their distances from re-
spective cluster centers.

As discussed previously, we did not include samples
from temporal series because the preliminary analysis
showed that there was little temporal variation. To verify
that analysis, we included the entire 152 spring samples
in an hierarchical cluster analysis (HCA) and examined
the resulting dendogram. The dendogram had the tempo-
ral series samples placed together, suggesting that little
change occurs in the water quality with time period of
sampling. This agrees with the preliminary analysis that
spatial variability is the most important source of varia-
tion in the data.

Another type of data analysis sometimes used is prin-
cipal components analysis (PCA). This technique reduc-
es the number of dimensions present in data (reducing 11
variables to 2 variables in our study). The PCA-defined
new variables can then be displayed in a scatter diagram,
presenting the individual water samples as points in 
a lower-dimensional (generally 2-D) space. This tech-
nique, strictly speaking, is not a multivariate statistical
technique, but a mathematical manipulation that may
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Table 4 Mean water chemistry of the spring water subgroups determined from HCA. pH (standard units); specific conductance 
(µSiemens cm–1), mean concentrations (mg L–1)

Group Sub- na pH S. cond. Ca Mg Na K Cl SO4 HCO3 SiO2 F TDS
group

I 1 10 7.92 1,657.00 53.99 32.01 261.23 22.01 224.16 175.51 453.39 46.07 2.20 1,063.45
2 7 7.04 6,264.17 70.69 75.10 1,287.00 77.64 1,165.71 433.71 1,541.14 101.83 1.70 4,347.86
3 4 9.12 4,160.00 4.40 3.44 967.75 77.25 464.50 336.25 1,122.25 50.50 – 3,206.34

II 4 27 7.70 855.10 95.91 29.09 70.76 3.92 46.34 211.92 274.82 36.44 1.24 646.22
5 28 7.92 550.19 62.96 15.20 32.87 3.20 25.64 68.69 220.58 25.10 0.26 344.17
6 1 8.08 400.00 25.43 5.76 44.57 5.83 40.90 16.49 155.00 0.61 0.00 200.00
7 18 7.09 397.79 42.26 8.57 29.28 2.80 15.20 37.96 177.50 37.34 0.59 308.11

III 8 8 8.03 272.57 22.38 1.81 30.99 1.03 5.61 19.70 124.37 32.29 2.62 205.18
9 15 7.24 92.50 11.59 1.21 12.10 0.92 1.23 0.82 70.56 22.23 0.75 70.73

a Number of samples within subgroups



provide a certain amount of insight into the structure of
the data matrix (Davis 1986) by reducing the dimensions
of the data matrix. Figure 8 shows the results of the prin-
ciple components analysis of the 118 samples. The first
principal component (PC1) contains 54.5% of the total
variance and the second component (PC2) represents
14.5% of the total variance. Although there appears to be
reasonable statistical discrimination between the three
major groups as defined by HCA, there is no objective
means to clearly distinguish boundaries between the
groups or subgroups, nor does this type of analysis pro-
vide any information about chemical composition. This
method was used to investigate the degree of continuity
or clustering of the samples and to determine if over-
lapping water types exist within the data. The scatter 
of points in Fig. 8 suggest that there is continuous varia-
tion of the chemical and physical properties of the sam-
ples.

The HCA clustering scheme was also repeated using
just the two principal components scores (reduced two-
dimensional data). The resulting classification differs
very little from the first HCA classification, suggesting
that employing PCA has not improved the clustering re-
sults here. However, other data sets may benefit because
using lower dimensional data (defined by PCA) may im-
prove the clustering results by reducing the redundancy
in the data. The use of variables that have specific rela-
tionships can cause undesirable redundancies in cluster
analysis. For instance, TDS (related to total ions present
and also specific conductance), alkalinity (related to bi-
carbonate), and hardness (related to calcium and magne-
sium) were not used in our cluster analyses (HCA and
KMC) because they are directly related.

Fuzzy k-Means Clustering
Geological and hydrochemical systems are sometimes
too complex to analyze easily using conventional graphi-
cal or statistical methods. Often the chemical and physi-
cal properties of the natural system vary continuously,
rather than abruptly. In other words, these underlying
physical and chemical processes do not always produce
discrete outcomes. Because of this continuity, statistical
clusters may not be well separated and instead may form
a sequence of overlapping clusters. Therefore, methods
related to “fuzzy logic” may be useful for modeling and
classification purposes.

Application of fuzzy logic in Earth sciences is still in
its early stages. On this topic, there are only a small
number of papers published in the areas of geophysics,
geology, petroleum, and geotechnical engineering. For
example, McBratney and Moore (1985) applied fuzzy
sets to climatic classification and, later, McBratney and
deGruijter (1992) and Odeh et al. (1992) used the Fuzzy
k-means approach for classification of soils. Nordlund
(1996) applied a rule-based Fuzzy logic to model deposi-
tion and erosion processes.

Traditional Aristotelian logic (binary logic) imposes
sharp boundaries (Sibigtroth 1998); however, fuzzy logic
has no sharp boundaries (Fang and Chen 1990). Fuzzy
logic is basically a multi-valued logic that allows inter-
mediate values to be defined between conventional eval-
uations like yes/no, 0/1, true/false, black/white, and so
on (Zadeh 1965; McNeill and Freiberger 1993). Fuzzy
logic also allows for formalization of qualitative state-
ments, which are widely used in Earth sciences. Both
fuzziness and probability describe uncertainty numeri-
cally; however, probability treats yes/no occurrences and
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Fig. 8 Plot of the principal
components analysis showing
the distribution of HCA-
derived classification of sam-
ples for the spring water



is inherently a statistical method. Fuzziness deals with
degrees and is a non-statistical method (Zadeh 1965).

One approach to fuzzy classification, and probably
the best and most commonly used, is fuzzy c-means 
(Bezdek 1981), later renamed to fuzzy k-means (FKM)
by deGruijter and McBratney (1988). This method mini-
mizes the within-class sum of square errors. In this tech-
nique, samples may not be a 100% member of a group,
instead the membership of samples are graded (parti-
tioned) between groups. For example, a water sample
may be mostly a member of a certain group, but it may
be also a partial member of other groups. The analysis
produces membership grades for each sample between 0
and 1. The higher the membership value for a group, the
more closely the sample resembles the other members of
this group. The FKM method does not impose any limi-
tations on the number of samples or objects that can be
clustered in one batch. Some clustering programs limit
the amount of samples that can be clustered in one batch
(e.g., MVSP: Kovach 1990, 100 samples; and Statistica:
StatSoft, Inc. 1995, 300 samples). Others use a two-step
approach (pre-clustering and clustering) to cluster sam-
ples (SAS Institute Inc. 1988). In this respect, FKM may
provide a better tool for clustering a larger data set (e.g.,
combination of spring, surface, and well-water data)
with overlapping or continuous clusters.

We employed the program FuzME (Minasny and
McBratney 1999), which uses Brent’s algorithm (Press et
al. 1992), when searching for an optimal value (deGruijter
and McBratney 1988). In this method, a parameter called
“fuzziness exponent” (f) is selected before application of
the method. It determines the degree of fuzziness of the fi-
nal solution, which is the degree of overlap between
groups. With the minimum meaningful value of f=1, the
solution is a hard partition, that is, the result obtained is not
fuzzy at all. As f approaches infinity (∞) the solution ap-

proaches its highest degree of fuzziness (Bezdek 1981).
For most data, 1.5≤ f ≤3.0 produces satisfactory results
(Bezdek et al. 1984). The fuzzy k-means algorithm is ap-
plied as follows (Minasny and McBratney 1999):

1. Choose the number of classes K (which is equivalent
to HCA subgroups), with 1<K<n.

2. Choose a value for the fuzziness exponent f, with f>1.
3. Choose a definition of distance in the variable-space

(Euclidean, diagonal, or Mahalanobis distance).
4. Choose a value for the stopping criterion e (e.g.,

e=0.001 gives reasonable convergence).
5. Initialize with random memberships or with member-

ships from a hard K-means partition (e.g., HCA or
KMC).

Odeh et al. (1992) suggested methods for choosing 
fuzziness exponent and number of classes. For our study,
a value of 1.5 was used for the fuzziness exponent (f)
and Euclidean distance was chosen as the distance mea-
sure. Like the KMC, the selection of the optimal number
of groups was based on the results of the HCA technique
(nine subgroups).

In the FKM method, the results are strongly influ-
enced by those variables that have large variances.
Therefore, log-transformed and standardized data matrix
were used as input data for the FKM analysis. The FKM
analysis reduced the original 118×11 data matrix to a
9×11 matrix of class centers. Table 5  shows the mem-
bership matrix for the first 20 samples (the complete 
table is too large to present).

Discussion

A direct comparison of the results of the three types of
cluster analysis (HCA, KMC, and FKM) is difficult be-
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Table 5 First 20 rows of the
FKM membership matrix for
the spring water data. Class
memberships are equivalent to
HCA subgroups

Sample Classa Membership
no.

1 2 3 4 5 6 7 8 9

SP33 9 0.000 0.002 0.001 0.003 0.033 0.001 0.000 0.004 0.955
SP35 9 0.000 0.002 0.001 0.003 0.043 0.001 0.000 0.005 0.944
SP36 9 0.000 0.003 0.001 0.003 0.110 0.001 0.000 0.006 0.875
SP34 9 0.000 0.001 0.000 0.001 0.020 0.000 0.000 0.002 0.975
SP52 5 0.001 0.008 0.004 0.015 0.736 0.002 0.001 0.017 0.216
SP32 5 0.000 0.002 0.001 0.003 0.687 0.001 0.000 0.005 0.300
SP29 9 0.000 0.002 0.001 0.004 0.203 0.001 0.000 0.005 0.783
SP31 5 0.001 0.003 0.002 0.004 0.952 0.001 0.000 0.006 0.031
SP27 9 0.000 0.001 0.000 0.001 0.009 0.000 0.000 0.002 0.987
SP28 5 0.000 0.002 0.001 0.002 0.948 0.000 0.000 0.003 0.043
SP37 5 0.000 0.001 0.000 0.001 0.988 0.000 0.000 0.001 0.008
SP116 9 0.002 0.038 0.016 0.074 0.068 0.005 0.001 0.077 0.718
SP86 7 0.019 0.021 0.026 0.014 0.004 0.081 0.813 0.018 0.005
SP47 5 0.000 0.002 0.001 0.003 0.935 0.001 0.000 0.006 0.050
SP30 5 0.001 0.005 0.002 0.008 0.939 0.001 0.000 0.009 0.034
SP24 9 0.047 0.074 0.064 0.076 0.113 0.037 0.011 0.110 0.468
SP38 5 0.003 0.019 0.011 0.021 0.619 0.006 0.002 0.057 0.262
SP21 9 0.022 0.142 0.151 0.101 0.033 0.050 0.008 0.217 0.274
SP20 8 0.004 0.202 0.183 0.060 0.005 0.051 0.004 0.469 0.021
SP25 9 0.001 0.008 0.004 0.010 0.033 0.002 0.000 0.015 0.928

a Class memberships on the 
basis of which the rows were
selected are in boldface
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cause only the HCA technique produces a graphical out-
put. Therefore, we plotted the HCA-, KMC- and FKM-
defined means for each subgroup on a Piper diagram.
Figure 9 shows that the HCA-, KMC- and FKM-defined
means for each group overlap for most of the subgroups,
showing the similar results obtained for all three 
methods. For instance, the FKM analysis placed 97% of
the samples within the same three major groups defined
by HCA method, whereas 79% of the samples are placed
exactly into same subgroups. However, in both the KMC
and FKM analysis, we had pre-selected the number of
groups (in our case that number was based on the nine
defined by the HCA results). The similarity of the results
for all three techniques suggests that the pre-selection of
the number of groups strongly influences the outcome.
This is a serious limitation that means the investigator is
required to have performed some type of preliminary
analysis when employing the KMC and FKM tech-
niques, which could then bias the results of the statistical
analysis.

The efficiency and semi-objective nature of the statis-
tical techniques makes these techniques superior to the
graphical methods in order to group samples based on
water chemistry data. However, the graphical methods

provide valuable information about the chemical nature
of the groups. By combining the two techniques we can
gain additional information that neither technique by it-
self can offer.

Figure 10a–c shows the mean values for each of the
nine subgroups (defined by HCA) on Collins bar, pie,
and Stiff diagrams, respectively. Each graphical tech-
nique shows distinct visual differences between the sub-
groups, while providing information about the chemical
composition of each group. In Fig. 11, all the samples
are plotted on Schoeller semi-logarithmic diagrams for
each subgroup. This plot illustrates the difficulty in using
purely graphical means to cluster samples. The patterns
of subgroups 1 and 2 are distinctive, but subgroup 3 does
not appear related. However, although subgroups 4–7
show a distinct pattern that differs from the other sub-
groups, it would be difficult to discriminate between
samples belonging to subgroups 4–7. 

Although previously not utilized in the classification
of water samples, we have included an example of icon
plots that can be used to represent and visually discern
similarities between water samples. The basic idea of
icon plots is to represent individual water samples as
graphical objects where values of variables are assigned

Fig. 9 Piper diagram of the
nine subgroup means for the
clusters defined by the three
different methods
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to specific features or dimensions of the objects. The as-
signment is such that the overall appearance of the ob-
jects changes as a function of the configuration of val-
ues. Thus, the objects are given visual “identities” that
are unique for configurations of values. One of the most

elaborate type of icon plot is Chernoff faces (Chernoff
1973), which can be used to plot up to 20 parameters for
one water sample. Chernoff faces were plotted for the
subgroup means from the cluster analysis (Fig. 12). This
technique also provides an effective visualization of a

Fig. 10 Plots of a Collins bar
diagram, b pie diagram, and 
c Stiff pattern using subgroup
means defined by HCA
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Fig. 11 Plots of all spring water samples by using Schoeller diagram (subgroups and groups defined by HCA)

Fig. 12 Chernoff faces (sub-
groups and groups defined by
HCA)



small number of water samples having different charac-
teristics. The different physical and chemical characteris-
tics of the samples are shown by the changes in facial
features. Parameter values are represented in schematic
humanlike faces such that the values for each variable
are represented by the variations of specific facial fea-
tures (StatSoft, Inc. 1995). Examining such plots may
help to discover specific clusters of both simple relations
and interactions between variables.

Summary and Conclusions

Each technique that has been discussed in this paper has
advantages and disadvantages in clustering and display-
ing water samples using typical chemical and physical
parameters. The graphical techniques can provide valu-
able and rapidly accessible information about the chemi-
cal composition of water samples such as the relative
proportion of the major ions; however, these techniques
have some serious limitations when used alone. All the
graphical techniques use only a portion of the available
data. Minor constituents (0.01–10 mg L–1; e.g., boron,
fluoride, iron, nitrate, strontium) and trace constituents
(<0.1 mg L–1; e.g., aluminum, arsenic, barium, bromide,
chromium, lead, lithium) are not used. From a water-
quality standpoint, the presence of one of these minor or
trace elements may be important because small amounts
can pose threats to human health. Some of these minor
and trace constituents behave more conservatively in the
groundwater, thus, they can be used more efficiently to
classify waters (Farnham et al. 2000). Some graphical
techniques can display only one sample (or a mean) per
diagram (e.g., Collins bar, pie, Stiff), whereas others can
display multiple samples (e.g., Piper, Schoeller). Neither
type is particularly useful to produce distinct grouping of
samples because there is no objective means to discrimi-
nate the groups or to test the degree of similarity be-
tween samples in a group. Collins bar, pie, and Stiff dia-
grams are probably the best to help distinguish between
small numbers of samples that have distinct chemical
differences. For a large number of samples these dia-
grams are unwieldy. In this study, neither the Piper nor
Schoeller diagrams could group all the similar water sam-
ples (based on statistical measures) from our data set.

Unlike the graphical classification techniques, multivar-
iate statistical techniques can use any combination of
chemical and physical parameters (e.g., temperature) to
classify water samples. The HCA technique was judged
more efficient than the KMC and FKM techniques because
it offers a semi-objective graphical clustering procedure
(dendogram), which does not require pre-determining the
final number of clusters. However, none of the statistical
techniques offered easily accessible information about 
the chemical composition of the samples in the clusters
(groups). That is, these methods are very efficient at group-
ing water sample by physical and chemical similarities, but
the results are not immediately useful for identifying trends
or processes relevant to hydrogeochemical problems.

Combining the two approaches appears to offer a
methodology that retains the advantages while minimiz-
ing the limitations of either approach. Using the HCA
analysis to initially cluster the samples (into groups and
subgroups) provides an efficient means to recognize
groups of samples that have similar chemical and physi-
cal characteristics. The technique also allows discrimina-
tion of samples that have extreme values for closer eval-
uation. These statistical groups have distinct spatial pat-
terns in the study area, providing the spatial discrimina-
tion desired when determining hydrochemical facies.
The mean for each of the required chemical parameters
are then plotted on diagrams, e.g., a Piper diagram, offer-
ing easily accessible information on the chemical differ-
ences between the groups and potential information
about the physical and chemical processes in the water-
shed. The use of the hierarchical cluster analysis (HCA)
in conjunction with a multi-sample graphical technique
such as the Piper plot offers a robust methodology with
consistent and objective criteria to efficiently classify
large numbers of water samples based on common
chemical and physical parameters.
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