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What criticality in cellular automata models of earthquakes?

Silvia Castellaro and Francesco Mulargia
Settore di Geofisica, Dipartimento di Fisica, viale Berti Pichat 8, 40127 Bologna, Italy.
E-mails: silvia@ibogeo.df.unibo.it; mulargia@ibogfs.df.unibo.it

Accepted 2002 February 19. Received 2001 June 22; in original from 2002 February 11

S U M M A R Y
Six different 2-D prototype cellular automata models are developed to analyse the main vari-
ants of the massless automata proposed so far to reproduce earthquake physics. The analysis
aims at identifying the existence of features common to these models, if any. The different
model variants were studied with regard to: (1) initial grid configuration, homogeneous or ran-
dom heterogeneous; (2) loading function, random or uniform; (3) local dissipation; (4) local
redistribution. As a first general result, it is found that the models exhibit criticality over a very
restricted range of spatial scales, much smaller than that imposed by the geometrical dimen-
sions of the grid alone. The latter, in contrast, governs the initial transient dynamics, which
exhibits much larger events. As a second general result, the foreshocks are found to increase
systematically in both rate of occurrence and size prior to main shocks, with a simultaneous
progressive deficit of small events. This, in turn, implies an increase in correlation length and
a ‘precursor’ decrease in the b-value. As a third general result, the presence of foreshocks
in cellular automata and the difficulties in detecting them in real earthquakes still only give
a limited applicability of the present cellular automata models to the real world. As a final
general result, periodic recurrence of main shocks is found only for locally dissipative models.
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1 I N T R O D U C T I O N

In physics, a critical point is defined as a point at which a system
radically changes its behaviour or structure at all scales. This shows
up as a power-law distribution of the fundamental observables. In
general, some parameters of the system must be tuned to achieve
critical behaviour. A particular case is that of self-organized critical
systems (Bak & Tang 1989), which reach their critical state by self-
tuning their intrinsic dynamics.

The Gutenberg–Richter law (Gutenberg & Richter 1954) for
earthquakes, spanning over at least five decades, is one of the best
examples of power-law behaviour in natural phenomena and it has
often been interpreted as proof of the fact that the Earth’s lithosphere
is a critical, possibly self-organized, system. This issue has been cor-
roborated by the findings of the many cellular automata models that
have been developed. However, most of these models have com-
mon features and it is not known to what extent this coincidence of
the results is a result of common premises. Lomnitz-Adler (1993)
examined 40 variants of cellular automata focusing on their capabil-
ity to reproduce a Gutenberg–Richter-type power-law distribution.
His study was performed on automata of small dimensions, gener-
ally 242, 322, 482 and only occasionally 642 elements. In our previous
work (Castellaro & Mulargia 2001) we noted how such small sizes
(particularly grids up to 40 × 40 cells) can substantially affect the
observed properties.

In this paper, we focus our attention on the effect of the com-
mon premises adopted by the principal automata that have been

proposed by using grids large enough to avoid the most obvious
size effects. To start with, all models appear to be based on more or
less homogeneous grids of elements for which a threshold level for
cell failure can be reached by ‘loading’ the sample. When a failure
event occurs at a cell, the load is redistributed to its neighbours. The
rules governing such transitions can be defined a priori or derived
from constitutive equations. The latter is the case when the cells are
defined as harmonic oscillators with masses connected by elastic
springs. In the present work we will only consider massless cellular
automata, since they are more flexible in representing intrinsic non-
linearities. As regards the premises of massless cellular automata,
we will investigate the consequences of:

(1) the starting configuration, namely the initial state of the grid
elements, which can be homogeneous or heterogeneous;

(2) the loading function, that is the rules according to which the
grid is loaded – we will discuss random and uniform loading;

(3) the local energy dissipation, which mimics the effect of
frictional heat loss on real faults;

(4) the local redistribution accompanying cell failure.

In our analysis we use square grids of fixed dimension, of 104

cells. This is a size easily manageable by normal computers and large
enough to avoid all the obvious instabilities of some parameters,
such as the average dimension of the main shocks and the number of
foreshocks and aftershocks with respect to the main shock, which are
most sensitive to small grid sizes. Note how this does not dissipate
all doubts concerning the grid size dependence. However, studying
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this problem ab initio has so far proven to be prohibitive even for
the most powerful parallel machines (Kinouchi & Prado 1999).

The models we analyse do not exhaust the range of cellular
automata presented in the literature (see e.g. Steacy & McCloskey
1998).

2 T H E M O D E L S

We perform our analysis by means of six different prototype cellu-
lar automata models, which are designed to incorporate the basic
features of the massless cellular automata presented so far. As an-
ticipated, ‘massy’ cellular automata are not discussed in this paper
because of their inferior flexibility as well as to avoid all compli-
cations introduced by the numerical treatment they require, which
may confound the basic physical issues. The basis for cellular au-
tomata models, which are all related to the original (Bak & Tang
1989) paradigm, is a 2-D square grid of cells, which can be thought
of representing both a fault surface and the projection of a hypo-
thetic set of faults on the Earth’s surface. ‘Particles’ representing
energy, stress or strain or, more generally, ruptini (unit of increase
in the ‘strain’ level of a cell or unit of decrease in the threshold
value for its failure, cf. Castellaro & Mulargia 2001) are added to
the grids according to some prescribed rules until the failure value
is reached at some cell. This event is taken as a rupture and starts
the redistribution of the ruptini lost from the ‘broken’ element to its
neighbours, according to other prescribed rules. This redistribution
can lead other cells to instability and continues in a cascade until the
whole grid is stable again. The number of cells that fail constitutes
the event size.

Our aim is to investigate the extent to which the different con-
stitutive rules of the principal cellular automata presented in the
literature lead to common properties, especially those related to
self-organization. We have therefore built six different prototype
models that differ in the initial state of the cells, in the method and
amount of loading, in the redistribution rules and in the energy lost
by each failing cell.

The first model is a basic automaton of Bak–Tang type, involving
just the nearest neighbours in the redistribution of ruptini after cell
failure. The second one shows larger interactions: after the rupture
of a cell, the energy redistribution around it involves a larger neigh-
bourhood and the system is conservative. The third model considers
long-range interactions as the second one but it is non-conservative,
with a small amount of energy lost locally from the grid at each
redistribution. The fourth model mimics the third one for the long-
range interactions and the local dissipation but energy redistribution
is ‘smoother’. The fifth model is again non-conservative and with
long-distance interactions but the amount of dissipation is about
eight times larger than in the third model. The last model is also
non-conservative and with long-range interactions but it is built on
a heterogeneous grid.

Let us now describe these variants in detail.

(1) Small-neighbourhood (SN) model. This model mimics the
Bak & Tang redistribution and loading (Bak & Tang 1989).

Neighbourhood: only the four nearest neighbours to the unstable
cell are involved in the redistribution, that is

if N (i, j) ≥ τ then

N (i, j) = N (i, j) − τ

N (i ± 1, j) = N (i ± 1, j) + τ/4

N (i, j ± 1) = N (i, j ± 1) + τ/4,

(1)

where N (i, j) is the state of the (i, j) element of the system and τ

is the threshold level for rupture.
Initial grid condition: the grid is initially empty.
Loading function: a ruptino is randomly added to the grid at each

time step.
Dissipation: no energy is dissipated from the unstable elements,

apart from the grid borders.
(2) Large-neighbourhood (LN) model. In this model, energy

redistributions from each unstable element involves a number of
neighbours larger than the SN model and in a time-dependent way.

Neighbourhood: at t = 0 such as in eq. (1) and at the successive
time steps (namely at the successive iterations),

t = 1, N (i, j) = N (i, j) − 2

3
τ

N (i ± 1, j ± 1) = N (i ± 1, j ± 1) + τ/6
(2)

t = 2, N (i, j) = N (i, j) − τ/3

N (i ± 2, j) = N (i ± 2, j) + τ/12

N (i, j ± 2) = N (i, j ± 2) + τ/12

(3)

t = 3, N (i, j) = N (i, j) − τ/3

N (i ± 1, j ± 2) = N (i ± 1, j ± 2) + τ/12

N (i ± 2, j ± 1) = N (i ± 2, j ± 1) + τ/12.

(4)

The rationale for this model and its details are described in Castellaro
& Mulargia (2001).

Initial grid condition: the grid is initially empty, i.e. all cells are
set at a zero level.

Loading function: a ruptino is injected at a uniformly random
position of the grid at each time step.

Dissipation: no energy is locally dissipated from unstable cells.
Dissipation only occurs at the grid borders that are totally lossy, in
the sense that all ruptini redistributed at borders are lost.

(3) Small-dissipation, large-neighbourhood (SDLN) method.
Neighbourhood: it involves all four successive sets of nearest

neighbours as described in the LN model above.
Initial grid condition: the grid is initially empty.
Loading function: a ruptino is injected at a random position at

each time step.
Dissipation one ruptino is locally dissipated from each unstable

cell.
(4) redSDLN. Identical to SDLN but with different redistribution

rules for the unstable elements. The differences in the level between
the broken and the surrounding elements are smaller.

Neighbourhood: it involves all four successive sets of neighbours
as described in the LN model above but with a reduced ‘strain’ dif-
ference between the ruptured element and its nearest neighbours.
The transition rule at the first stage after rupture (t = 0, eq. 1),
becomes:

if N (i, j) ≥ τ then

N (i, j) = N (i, j) − τ

N (i ± 1, j) = N (i ± 1, j) + τ/6

N (i, j ± 1) = N (i, j ± 1) + τ/6.

(5)

Initial grid condition: the grid is initially empty.
Loading function: a ruptino is injected at a random position at

each time step.
Dissipation: it follows from the transition rules governing the first

time step, that four ruptini are locally dissipated at each unstable
cell.
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Table 1. Summary of the properties of the models studied.

Model Neighbours Starting Loading Dissipation
grid function

SN Four nearest Empty Random None
neighbours

LN 21 nearest Empty Random None
neighbours

SDLN 21 nearest Empty Random One ruptino
neighbours (10 per cent

energy)
redSDLN 21 nearest Empty Random One ruptino but

neighbours smoothed laws
LDLN 21 nearest Empty Random 66 per cent

neighbours energy
LDLNEt 21 nearest Heterogeneous Uniform 66 per cent

neighbours energy

(5) Large-dissipation, large-neighbourhood (LDLN) model. In
this model all four successive rims of neighbours are involved in the
redistribution of energy from the unstable cells and the amount of
dissipation is high. The transition rules are those explained in the
LN model.

Neighbourhood: as in the LN model.
Initial grid condition: the grid is initially empty.
Loading function: a ruptino is injected at a random position at

each time step.
Dissipation: eight ruptini are locally dissipated at the originally

unstable cell.
(6) LDLNEt. Follows the redistribution rules given for the LN

model but with different initial grid conditions and a large dissipa-
tion level.

Figure 1. Cell averaged energy in the prototype models during their evolution. Energy (y-axis) is expressed in ruptino2 units (see text). Time (x-axis) is
expressed in number of iterations. From the top left to the bottom right, the plots show, in order, the SN, LN, SDLN, redSDLN, LDLN and LDLNEt models
(see text).

Neighbourhood: as in the LN model.
Initial grid condition: each cell of the grid is initially randomly

loaded with a number of ruptini ranging from 0 to the threshold
level for rupture τ .

Loading function: a ruptino is added to each cell at each time
step.

Dissipation: eight ruptini are lost from the originally unstable
cell.

A summary of the parameters associated with the different models
is reported in Table 1.

3 T H E M E A N E N E R G Y

The mean energy of a system is a variable that efficiently illustrates,
when it exists, the procedure of self-organization (Rundle et al.
1999). In all the cases we analysed, the mean energy, defined as
being proportional to the square of the cell level averaged over the
whole grid, shows a first transient during which the system is not
under stationary conditions, and then tends towards an equilibrium
value. For all the non-dissipative automata, we find that this value is
constant while in the locally dissipative ones oscillations are present
that are proportional to the degree of local dissipation. For highly
dissipative systems the evolution is very slow and even after 40×106

iterations the system does not reach a stationary dynamics.
As we can see from Fig. 1, after the initial linear increase in the

mean energy (which is proportional to the strain squared) owing to
the loading rules that prescribe that the system should start from an
empty grid, the systems SN and LN do not show any oscillation in the
mean energy. As expected from the time-domain series, the energy
power spectra do not exhibit significant peaks for any of the locally
non-dissipative systems. Spectral analysis has been performed via
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Table 2. The most significant peaks in the power spectra for the
average energy of the different models. The period is given in
number of iterations. The significance for each peak is evaluated
in terms of the ratio ḡ/g, which increases with the peak signif-
icance. g = 1 − e(log p − log m)/m , where m is the number of data
divided by 2 and p is the threshold level for significance taken at
1 per cent. ḡ = V 2/2s2 in which V is the amplitude of the peak
and s is the sum of the powers at each frequency.

Model Period Peak significance ratio related
to the 1 per cent critical value

SN None —
LN None —
SDLN T1 = 74 898 ḡ/g0.01 = 540
redSDLN T1 = 262 144 ḡ/g0.01 = 526

T2 = 87 381 ḡ/g0.01 = 302
LDLN T1 = 209 715 ḡ/g0.01 = 75

T2 = 131 072 ḡ/g0.01 = 37
T3 = 104 858 ḡ/g0.01 = 29

LDLNEt T1 = 8

fast Fourier transform using a Welch window after detrending the
data, which had been previously piecewise linearly interpolated.

As pointed out by Sammis & Smith (1999), Main et al. (2000)
and Castellaro & Mulargia (2001), the picture for the dissipative
systems is different. In this case, the mean energy has an apparent
oscillation in time, which is a result of a sort of shadow left behind
by large events. Calling f the fraction of energy lost, that is 1/r ,
where r is the number of ruptini lost by local dissipation, the period
T of the oscillation increases with decreasing f as T ∝ f −1.

The spectral analysis performed on the energy time-series clearly
shows some significant peaks, which are summarized in Table 2

Figure 2. Power spectra of the average energy in the non-conservative prototype models. The frequencies (x-axis) are expressed in iteration−1 units, while
the peak amplitude (y-axis) is in arbitrary units. From the top left to the bottom right, the spectra show, in order, the SDLN, redSDLN, LDLN and LDLNEt
models. The conservative models do not show any significant peak and their spectra are not represented here.

and shown in Fig. 2. As we can see from the table, the higher the
local dissipation, the longer the period of oscillation shown by the
automata. It also emerges that the most complex behaviour, namely
that with many frequency peaks, occurs for models in which a large
neighbourhood is involved in the redistribution following the failure
of a cell. Since in the real Earth the region affected by an earthquake
in terms of strain redistribution is likely to have a complex geome-
try, this could be taken as a possible explanation for the fact that no
periodicity is observed in earthquake sequences. The sharp periodic-
ity displayed by the LDLNEt model was expected since this model
is based on a homogeneous loading of a random heterogeneous
basis.

In our exploration of the dependence of the results on parameter
tuning, we have first of all to face the problem of the definition of
criticality. The correlation length, which is the ‘size’ of the maxi-
mum cluster in a given system, is by definition infinite at the critical
point, where clusters of all dimensions occur. The correlation length
is linked to the maximum size of rupture events, and therefore the
latter provides a direct measure of criticality. The mean energy is
expected to increase with correlation length, although the former
can also increase owing to many smaller and uncorrelated ruptures.
Provided that the first hypothesis is correct, one may expect that, if
the energy is constant, the correlation length also remains constant
and if its maximum value coincides with the maximum possible
for the system, a critical state has been reached. Note also how, in
this case, since there is no external parameter tuning, this should be
interpreted as self-organized criticality.

This issue has to face some practical difficulties since, owing to
present limitations in computing power, scale-invariant behaviour
in cellular automata models can only be verified over two orders
of magnitude at most. Therefore, any issue of criticality must rely
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Figure 3. In an initially randomly heterogeneous LN system, the energy
level decreases a little with the evolution of the system according to the
established rules. This implies that some order does emerge.

on large extrapolations of what can be seen on such a restricted
range.

In practice, what we generally observe is that the mean value
around which the systems stabilize is not the maximum geomet-
rically possible for that grid. During the initial transient stage of
the automata dynamics, as apparent from Fig. 1, the average energy
is much higher than in the following, and the same is true for the
event sizes. Barring the SN model, which has a simple redistribution
rule and no local dissipation and which shows a modest average grid
energy decrease with respect to the initial transient value (Fig. 1), all
other models show a mean energy after the initial transient, which
is only about 50 per cent of that attained during the first initial
transient.

A similar behaviour is apparent, irrespective of local dissipa-
tion, if the grid starts from a random heterogeneous state (Fig. 3).
This is remarkable since it indicates that the system stabilizes in
a state, which is far from being both homogeneous and random
heterogeneous.

A basic question is in order here: is it more appropriate to repre-
sent the fault, or a portion of lithosphere, with the transient or the
subsequent ‘stationary’ dynamics? The answer is not obvious, since
stationary dynamics is favoured by the trivial tectonic arguments of
long evolutionary timescales, while transient dynamics is favoured
by the fact that the transient interval lasts for a very large number,
typically 105, of system-size events.

Under the hypothesis of accepting both the stationary hypothesis
as well as that of ‘criticality’, if the Earth’s crust were really in a
state similar to that described by the dissipative automata, then it
would not be in a state of continuous self-organized criticality. This
issue of approach and retreat from a critical dynamics has been
somehow suggested to coincide with a feature of real earthquakes.
Jaumé & Sykes (1999) and Jaumé (2000), studying the last large
North American earthquakes, apparently recognized an increase in
the rate of energy release prior to the main events. This would imply
that the lithosphere is not always ready to break with the maximum
possible events but that the strain-energy level needs to increase,
incrementing the correlation length, up to a critical point, which
therefore would be, in principle, predictable.

We recall here that both organized criticality and self-organized
criticality must be referred to sufficiently long periods of time in

which a system can show a ‘stable’ metastability, and therefore this
issue is tied to the observation time with respect to the timescale
of the process. Also in this case, as in that of transient/stationary
dynamics, there seems to be no obvious answer. The reason lies in
the fact that cellular automata models have an evolution time, which
cannot be directly tied to that of real phenomena. This means that an
iteration cycle may correspond to seconds, days or months at various
points of the simulation. In any case, some insight concerning the
features of a possible intermittent criticality can be gathered by the
following arguments.

4 T H E M A I N S H O C K S

The constancy of the mean grid energy and the constancy of the
mainshock size would suggest that the system has reached a ‘critical’
condition, even if the values attained are much lower than those
corresponding to the maximum geometrically possible in the sys-
tem. Further insight on this point can be gathered from the time-
series of the mainshocks and of the foreshocks. In Figs 4 and 5
we report the picture of all the event (fore-, main- and aftershocks)
time-series and that of the mainshocks alone for non-dissipative
and dissipative cases. The initial non-stationarity owing to the load-
ing function and to the initially homogeneous empty grid has been
removed in the former case. Note that, in the non-dissipative models,
the maximum mainshock size is approximately constant.

In order to check whether an intermittent criticality (periodic or
not) exists in these systems, we have studied the interevent times
between mainshocks. The distribution of these time intervals is also
found to be power law (Fig. 6). Its spectral analysis (Fig. 7) shows no
significant peak for any of the models analysed except for LDLNEt.
We considered only the sequences of the largest 20 per cent of
mainshocks because we aimed to mimick the generalized inter-
est in the largest earthquakes. However, no substantial difference
was found by lowering the threshold values. The reason for the
‘anomalous’ behaviour of the LDLNEt model appears again owing
to the uniform load and the consequent cyclical rupturing.

The latter results are in partial agreement with those of Sammis
& Smith (1999), who found a perfectly regular periodicity in their
interevent times of a uniform homogeneous automaton with local
dissipation. Our LDLNEt model, which is very similar to the model
used by these authors except for the extended local redistribution,
presents a similar regularity, albeit less evident. The perfect regular-
ity found by Sammis & Smith (1999), should then be traced to their
very simple redistribution scheme, which is limited to the nearest
neighbours alone.

5 FO R E S H O C K P R O P E R T I E S

According to the definition we gave in our previous work (Castellaro
& Mulargia 2001) we define a cluster as an uninterrupted series
of ruptures within which the mainshock is the largest event. The
rupture events preceding it in the same cluster are its foreshocks and
those following it are its aftershocks. Note how this definition does
not totally match the seismological definition of foreshocks, which
means events correlated in time and hypocentre to the mainshock.
Our definition is dictated by the lack of an absolute timescale in the
cellular automata (cf. above), where time is only represented by an
iteration number and where the small grid size implies that all the
events on the grid are correlated.

It has been proposed by several authors that earthquakes do not
occur completely at random but rather follow some specific patterns.
Changes in the rate of seismic moment or energy release before a
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Figure 4. Time-series of all the events (top) and of the mainshocks sampled each 10 events (bottom) in 106 iterations of a LDLN model under stationary
conditions (see text). Note that mainshock size is stationary.

big earthquake have often been suggested. Bufe & Varnes (1993),
Jaumé & Sykes (1999) and Jaumé (2000) claim that, at least for the
(mostly North American) earthquakes they have studied, the cumu-
lated magnitude–frequency distributions for the largest events show
a change in slope. In particular, the slope decreases, indicating an in-
creasing number of large events while approaching the mainshock.
This is consistent with the critical point hypothesis of a correlation-
length increase (Rundle et al. 1999). It should be noted that similar,
although somewhat different, views regarding seismicity changes

Figure 5. Time-series of all the events (top) and of the mainshocks only (bottom) in 4 × 106 iterations of LDLN model. The emergence of periodic clusters
of decreasing amplitude typical of highly dissipative systems is apparent.

before large earthquakes have also been proposed, ranging from
variations in b-values (Main 1996) to changes in intermediate size
seismicity (Knopoff et al. 1996).

We have checked this issue on our prototype models by analysing
the foreshock behaviour when approaching the mainshock. We first
of all normalized each foreshock series to the ‘precursor’ time in
each cluster, which for us is the number of cycles before the main-
shock. We analysed the general foreshock behaviour by dividing
the normalized precursor time into three time-series of the same
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Figure 6. Distribution of the time intervals between mainshocks of comparable sizes for the LN model.

Figure 7. Power spectra of the time-series of the 20 per cent largest mainshocks. Since no significant peak arises in all the cases except the LDLNEt model
(bottom), the LN spectra (top) is shown for sake of comparison. Frequencies (x-axis) are expressed in iteration−1 units, while peak amplitude (y-axis) is in
arbitrary units.
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Figure 8. Non-cumulated distributions of the foreshocks in model SDLN, divided into classes according to their occurrence time before the mainshock. Note
how this implies they coincide with the related Gutenberg–Richter distribution at the largest event size. The blue curve refers to the first 33 per cent (in time) of
foreshocks, the green curve to the second 33 per cent, the red one to the third 33 per cent and the magenta one to the last 10 per cent. The cumulated distributions
for all the other models show the same pattern and are therefore not reported here.

Figure 9. The same as Fig. 8 but for a 600 × 600 grid size.
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duration, starting from the events further from the mainshock and
then proceeding to those closer to it. Namely, we analysed the dis-
tribution of the first (in time) 33 per cent foreshocks, of the second
33 per cent and of the last 33 per cent.

This analysis produced consistent results for all of our prototype
models, and the results remained stable irrespective of the grid size
and the magnitude threshold of the mainshocks. The general be-
haviour we found is a progressive increase in foreshock size and
‘rate of occurrence’ when approaching the mainshock. This is well
apparent in the non-cumulated frequencies of occurrence of all the
mainshocks (Fig. 8), and repeats itself similarly by using any lower
threshold for the magnitude of the mainshocks.

Many artefacts of grid size are known (cf. Castellaro & Mulargia
2001) and are unavoidable owing to the limitations in computing
power, so that appropriate countermeasures have been adopted for
all the known effects (see above). In order to see the effect of grid
size on this particular result, we have checked it on grids up to
6002 cells, again finding no variation (Fig. 9).

Note how the behaviour apparent in Figs 8 and 9, with distri-
butions at different times before the mainshocks dropping down
almost parallel and progressively displaced to the right when ap-
proaching the mainshock suggests an increase in the number of
events at medium to large size. Since this behaviour has been found
to be stable irrespective of the magnitude of the mainshock, it im-
plies that prior to a large event there is a decrease in the b-value

Figure 10. Power spectra of the time intervals between earthquakes with sizes within 20 per cent of the maximum values found for each prototype. Frequency
(x-axis) is expressed in iteration−1 units, while peak amplitude (y-axis) is in arbitrary units. From the top left to the bottom right, the spectra show, in order, the
SDLN, redSDLN, LDLN and LDLNEt models.

of the Gutenberg–Richter-like distribution relative to all the events.
Note how only this behaviour is in agreement with what is pre-
dicted theoretically by Rundle et al. (1999) and apparently ob-
served for real earthquakes by Knopoff et al. (1996) and Jaumé
(2000).

In a broad sense, this finding supports the idea that the Earth’s
crust approaches and retreats from an apparently critical state. This
would also suggest that the changes in foreshock distribution, if
identified correctly, could potentially signal an impending earth-
quake.

In conclusion, we find that, not only does the total number of
foreshocks increases linearly with mainshock size (as already
pointed out by Castellaro & Mulargia 2001), but also that this gain
affects differently foreshocks at different times before the main-
shock. Summarizing the above conclusions and also considering
what emerged from our previous work (Castellaro & Mulargia
2001), we can conclude for the foreshock sequences that:

(1) the number of foreshocks increases linearly with the main-
shock dimension;

(2) an acceleration in the rate of energy release is apparent
approaching the mainshock;

(3) the number of large events increases approaching the main
event while that of small events decreases;

(4) the large foreshocks tend to cluster near the main event.
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6 T H E S E R I E S O F I N T E R E V E N T T I M E S

A common question for real earthquakes is whether some period-
icity exists in the recurrence times of large events. To analyse the
behaviour of our prototype models with respect to this feature, we
performed a spectral analysis on the time-series of event occurrences
of the mainshocks divided into classes of approximately equal size.
Significant peaks were found, as shown in Fig. 10, although all rel-
ative to the highly dissipative automata LDLN and LDLNEt. This
behaviour is similar to that of the mean energy (Fig. 1) and it could be
somehow anticipated from the apparent regularity in the clustering
patterns in the event series (Fig. 5).

7 D I S C U S S I O N

The practical relevance and the ubiquitous presence of the
Gutenberg–Richter power law has made it a candidate as the pri-
mary target for all of the cellular automata models. Most of the latter
were successful in reproducing this law. This has been interpreted,
in turn, as a suggestion that the Earth’s is in a state of criticality or
self-organized criticality. Establishing whether the Earth lithosphere
is in a critical, intermittently critical or self-organized critical state
would be of paramount importance for understanding the physics
of earthquakes.

In this work we analysed systematically the differences in be-
haviour of six prototype models that we identified as the principal
variants of the Bak–Tang paradigms. The first issue we investigated
is the emergence of ‘criticality’ in relation to the existence of a
‘maximum correlation length’. A stable energy value was achieved
by all the prototype models under stationary conditions, together
with a stable maximum event size. The ‘maximum length’ was
observed to be mostly affected by the cellular automaton dynam-
ics since, under non-stationary conditions, both the average energy
content and the maximum-event size were found to be systemati-
cally much larger. One could consider only the maximum values
that occur under the stationary state that follows the initial tran-
sient, in which case a condition of ‘apparent criticality’, verified in a
restricted range, is satisfied.

Similar interesting features emerge from our prototype models
also relative to the foreshock time sequence and its distribution.
The variations in the b-value of the cumulated distribution of the
events preceding mainshocks of large size, shown by all the au-
tomata, seem to mirror a mechanism of preparation preceding large
events. This involves an increase in foreshock size and rate of oc-
currence approaching each main event. If this were to occur for real
earthquakes, it would indicate for a possible predictability of earth-
quakes. However, foreshocks are identified in retrospect for less
than 20 per cent of the events and practically never in forward time
(Raesenberg 1999). This demonstrates the still limited applicability
of the slider-block and sand-pile cellular automata models to the
real world and restrains enthusiastic attitudes towards earthquake
predictability.

No periodicity in the time intervals between shocks of the same
size emerged from the conservative models with long-range redistri-
butions. This suggests that as soon as the redistribution rules become
more complex, the evolution of the system becomes less regular.
It may be that, although energy dissipation is a strong controlling
variable, the reason it has this effect is because it tends to suppress
long-range interactions.

Another interesting finding is that the realistic inclusion of local
dissipation induces a periodic behaviour of the system, although
one which is non-stationary and dispersive both in frequency and

amplitude. The existence of such periodicities in the real world
has sometimes been suggested although never firmly established,
probably because the lithosphere and the forces acting there are
more complex than the slider-block-type cellular automata models.

8 C O N C L U S I O N S

Earthquake physics has recently seen a blossoming of models based
on cellular automata. However, few attempts have been made to
analyse them under a unified picture. In this work we studied the
fundamental properties emerging from the basic variants of massless
cellular automata models for earthquakes. We analysed the main
different options for the geometry, the loading process and the local
dissipation rules to investigate the system evolution in terms of
energy, frequency-size distributions of events and periodicities.

A first problem encountered has been whether earthquake oc-
currence should be studied under stationary dynamics or not. The
answer is not obvious for a non-conservative system such as the
Earth.

As a general result, one can speak of criticality or self-organized
criticality for the cellular automata models investigated only by
accepting the definition of maximum-correlation length as the max-
imum value that appears, for the different properties investigated,
under the stationary conditions following the initial transient,
although the scale-invariant properties are apparent over a very lim-
ited range of scales.

A feature that emerged, common to all the models investi-
gated, is that the foreshock number and size increase systematically
before mainshocks. This is suggestive of the possibility to detect
an impending mainshock. However, the fact that in the real word
foreshocks can be identified in less than 20 per cent of the cases,
and only in retrospect, suggests a limited applicability of the present
cellular automata models.
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Scientifica e Tecnologica (MURST) 40 and 60 per cent.

R E F E R E N C E S

Bak, P. & Tang, C., 1989. Earthquakes as a self-organized critical phe-
nomenon, J. geophys. Res., 94, 635–637.

Bufe, C.G. & Varnes, D.J., 1993. Predictive modeling of the seismic cycle
of the Greater San Francisco Bay region, J. geophys. Res., 98, 9871–
9883.

Castellaro, S. & Mulargia, F., 2001. A simple but effective cellular automaton
for earthquakes, Geophys. J. Int., 144, 609–624.

Gutenberg, B. & Richter, C.F., 1954. Seismicity in the Earth and Related
Phenomena, 2nd ed., Princeton University Press, Princeton.
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