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Abstract

We document the exsolution of phlogopite and coesite/quartz from pre-existing super-silicic cli-
nopyroxene in dolomite marble from the Kokchetav massif, northern Kazakhstan. The exsolution
texture was formed by clinopyroxene decomposition through the reaction (3enstatite +
2KAlSi2O6)cpx = phlogopite + 4coesite. Phlogopite exsolution must have occurred at pressures less
than 8.0 GPa (at 1000°C), where the garnet + super-silicic clinopyroxene + phlogopite assemblage
was stable, based on experimentally defined phase relations. Observations described in this report
suggest that the precursor clinopyroxene was stable at pressures higher than 8 GPa (>1000°C),
implying that the dolomite marble was subducted to mantle depths greater than 240 km. Such pro-
found subduction could be an important mechanism to transport abundant H2O and potassium into
the deep Earth.

Introduction

DEEP SUBDUCTION OF crustal material significantly
effects mantle convection and Earth dynamics (e.g.,
Ernst, 2001). During this process, important
amounts of H2O and potassium may be transported
into the deep mantle, which affects its rheology.
Exsolution textures, formed during the exhumation
of a subducted slab, constitute an indicator of ultra-
high pressure (UHP) metamorphism (e.g., Liou et
al., 1998). Exsolution lamellae of quartz (e.g.,
Smith, 1984) and garnet (e.g., Smyth et al., 1989) in
clinopyroxenes are well documented for UHP eclog-
ites. A much more complex exsolution texture was
identified by Schmadicke and Muller (2000); they
described quartz + oligoclase + K-white mica lamel-
lae in omphacite from an Erzgebirge eclogite, and
demonstrated that such an exsolution texture was
formed at pressure >3 GPa as a result of Ca-Eskola
decomposition. Their interpretation is consistent
with the mechanism proposed by Katayama et al.
(2000) for quartz exsolution from super-silicic cli-
nopyroxene. Here we report an unusual exsolution
texture in clinopyroxene from the Kokchetav UHP
dolomite marble, propose a mechanism for phlogo-

pite and coesite exsolution (different from the com-
monly accepted quartz exsolution mechanism), and
discuss the implications for deep subduction as well
as potassium recycling.

Geologic Background 
and Sample Descriptions

Rocks from the Kokchetav UHP massif have
been extensively studied (e.g., Shatsky et al.,
1995; Zhang et al., 1997; Maruyama and Parkin-
son, 2000; Dobrzhinetskaya et al., 2001) inasmuch
as these rocks have been subducted into the man-
tle from continental crust levels, experienced UHP
metamorphism, and then were exhumed to the
Earth surface. The Kokchetav UHP massif consists
of several metamorphosed lithotectonic units with
Precambrian protolith ages, intruded by Ordovi-
cian island-arc granites and gabbros, and overlain
by Devonian volcaniclastic rocks, Carboniferous–
Triassic shallow-water marine and lacustrine
deposits (Dobretsov et al., 1995). The Kumdy-kol
region is situated in the central part of the
Kokchetav UHP massif, where pelitic gneiss,
eclogite, and various marbles crop out. Diamond-
bearing dolomite marble, coexisting with eclogite
lenses (Ogasawara et al., 2000), is coarse,1Corresponding author; email: yzhu@geoms.geo.pku.edu.cn
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equigranular, and heterogeneous in terms of dolo-
mite and silicate mineral contents. Silicates con-
stitute up to 50 vol % of the bulk rocks. Besides
dolomite, garnet + clinopyroxene assemblages are
most abundant, and account for more than 40 vol%
of the bulk rocks. Most garnet and clinopyroxene
grains contain microdiamond inclusions. Clinopy-
roxene (15–30 vol%, 0.2–2.0mm in size) occurs as
a major silicate mineral in the Kokchetav dia-
mond-bearing dolomite marble. The assemblage of
clinopyroxene + garnet together with diamond
inclusions was thought to represent the peak meta-
morphic phases (Zhang et al., 1997; Ogasawara et
al., 2000). 

Clinopyroxene contains abundant lamellae,
which are very thin and rigorously parallel to each
other with regard to orientation and homogeneity

(Fig. 1A). In some cases, the cross-sections of
lamellae were investigated (Fig. 1B). By combining
the images of lamellae and their cross-sections, we
can demonstrate that the exsolved lamellae are nee-
dle-like rods. The lamellae typically have widths
less than 1 µm; such tiny lamellae consist of phlogo-
pite only. However, some lamellae are thicker than 1
µm, and these consist of phlogopite and quartz/coes-
ite (Figs. 1C–D). The coexistence of phlogopite and
coesite even in a single lamella strongly suggests
that phlogopite and coesite exsolved simultaneously
from the precursor clinopyroxene. In rare cases,
inclusions consisting of quartz and graphite occur in
clinopyroxene (Fig. 1D). The petrological signifi-
cance of these inclusions is still unclear, but the
quartz in such inclusions is different from the
quartz/coesite lamellae coexisting with phlogopite.

FIG. 1. A. Microphotograph showing a clinopyroxene containing abundant lamellae, and a single graphite inclusion,
plane-polarized light. B. Cross-section of the lamellae in clinopyroxene, plane-polarized light. C and D. Back-scattered
electron (BSE) images showing lamellae composed of phlogopite and quartz in clinopyroxene. The phlogopite and quartz
coexist even in a single lamella. A rare graphite + quartz inclusion occurs in clinopyroxene (D). The scale bars in C and
D represent 10 µm. Abbreviations: Cpx = clinopyroxene; Phl = phlogopite; Qz = quartz/coesite; Gr = graphite. 
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Mineral Chemistry

All textural relationships described here were
investigated employing a JEOL Superprobe 8900
using the backscattered-electron (BSE) image
mode, combined with wavelength-dispersive X-ray
spectroscopy (WDS). The analyses conditions were
15 kV, 1nA, with probe diameter of 1 µm and a
counting time of 40s for every element. Representa-
tive compositions of host clinopyroxene and phlogo-
pite lamellae are listed in Table 1. Eight pyroxene

end-members (Ca-Eskola, Ca-Tschermak, jadeite,
acmite, augite-diopside + hedenbergite, orthopyrox-
ene = enstatite + ferrosilite, Na(Mg,Fe)0.5Ti0.5Si2O6,
and KAlSi2O6) were assumed, and calculated based
on the method of Smyth (1980), assuming Fe3+ = Na
(Al – 2 IVAl – K). The calculated KAlSi2O6 compo-
nents vary from 0.7 to 3.3 mol%, with an average of
1.5% (49 analyses). Ca-Eskola components in cli-
nopyroxene vary between 0 and 2.7 mol%, with an
average of 0.5%, and negatively correlate with total
cations (Fig. 2A, Table 1). Similar to super-silicic
clinopyroxene in the Kokchetav eclogites and pel-
itic gneisses (Katayama et al., 2000), the amount of
Ca-Eskola components in the studied dolomite mar-
ble increases roughly with the number of cation
vacancies. This therefore suggests that Ca-Eskola
components can account for the clinopyroxene com-
position. The Si contents in clinopyroxene are close
to 2.0, with an average of 1.985 pfu (Table 1). Some
analyses have Si contents higher than 2.0 pfu (Fig.
2B). Although no correlation exists between Ca-
Eskola components and Si contents, the analyses
with higher Si contents generally contain relatively
higher Ca-Eskola components (Fig. 2B). This obser-
vation indicates that high-Si clinopyroxene contains
relatively large numbers of vacancies. 

Phlogopite lamellae are close to the phlogopite
end-member composition. Mg/(Mg+Fe) ratios higher
than 0.88 and Si values higher than 5.50 pfu are
observed (Fig. 2C). 

Discussion

Quartz exsolution from the precursor clinopyrox-
ene is explained by decomposition of the Ca-Eskola
component as the reaction of 2Ca-Eskola = CaSi2O6
+ 3quartz (Katayama et al., 2000). This mechanism
obviously cannot explain the observed phlogopite-
coesite exsolution texture in clinopyroxene. We pro-
pose that phlogopite lamellae coexisting with coes-
ite are the decomposition products of combined
enstatite and KAlSi2O6 components in super-silicic
clinopyroxene, based on the following mass-bal-
anced reaction:

(3Mg2Si2O6 + 2KAlSi2O6)cpx = 

K2Mg6Si6Al2O20(OH)4 (phl) + 4SiO2 (coesite).

This reaction explains the coexistence of phlogo-
pite and coesite lamellae observed in the studied
clinopyroxene (Fig. 1). Although the formation of
phlogopite and coesite lamellae consumed enstatite

FIG. 2. Compositional variations of host clinopyroxene (A,
B) and exsolved phlogopite lamellae (C). The reference line in
A represents the ideal relation between Ca-Eskola component
and cation vacancies (from Smyth, 1980).
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PHLOGOPITE AND COESITE EXSOLUTION 835

and KAlSi2O6 components in precursor clinopyrox-
ene, the studied clinopyroxene with exsolution tex-
tures still contains up to 3.3 mol% KAlSi2O6
components. This indicates that the precursor cli-
nopyroxene must have been even more K-rich. The
analyzed K2O contents in clinopyroxene vary
between 0.16 and 0.72 wt% (with an average of 0.33
wt%, Table 1). High-K clinopyroxene is stable at
high pressure based on experimental studies (e.g.,
Harlow, 1997; Luth, 1997). Clinopyroxene with K2O
>0.5 wt% in the diopside-phlogopite system is sta-
ble at pressures >7.5 GPa (Luth, 1997). 

Early experiments suggested that stoichiometric
phlogopite cannot survive at pressure higher than 7
GPa (~1000°C) based on experimental studies
(Tronnes, 1990; Luth et al., 1993). At high tempera-
tures (>1200°C), both pure phlogopite and the phlo-
gopite + enstatite assemblage undergo partial
melting at 5 GPa (Sato et al., 1997), and phlogopite
+ clinopyroxene will partially melt at higher temper-
atures (>1350°C) at the same pressure conditions
(Luth, 1997). The assemblage phlogopite + diopside

transforms to the phlogopite + diopside + garnet
assemblage at pressures of >6.5–7.4 GPa (at
>1000–1300°C), and the latter is stable up to 8.0–
8.5 GPa at the same temperature ranges (Sudo and
Tatsumi, 1990; Luth, 1997). Thus either phlogopite
in the diopside + garnet assemblage must be “off
composition” and stabilized at pressures greater
than that for pure phlogopite, or some of the phase
equilibrium results must be in error. Here we accept
the latest results by Luth (1997). 

The observed phlogopite + clinopyroxene assem-
blage coexists with garnet in the studied dolomite
marble. The phlogopite + clinopyroxene + garnet
assemblage can survive in a wide pressure range
from 6.5 to 8.0 GPa (at 1000°C, Fig. 3). Phlogopite
and coesite exsolution from the pre-existing super-
silicic clinopyroxene should take place at pressures
less than 8 GPa (1000°C) based on the phase dia-
gram shown in Figure 3. The precursor clinopyrox-
ene must have formed in a higher-pressure
environment (>8.0GPa, >1000°C), because exsolu-
tion textures formed during pressure decrease. This
is consistent with the observations made by Zhu and
Ogasawara (2002), demonstrating that dolomite
decomposition to magnesite + aragonite occurred in
the Kokchetav dolomite marble.

Conclusions

Phlogopite and coesite lamellae in super-silicic
clinopyroxene formed as the decomposition prod-
ucts of enstatite + KAlSi2O6 components in clinopy-
roxene at pressures lower than about 8.0 GPa (at
1000°C). The pre-exsolution super-silicic clinopy-
roxene must have been stable at pressures of >8
GPa. This suggests that the studied dolomite marble
reached depths >240 km in the mantle, and brought
H2O and potassium into the deep Earth. This pro-
cess may effect the rheology of the mantle, and prob-
ably is an important factor triggering the generation
of potassic magmas. The “lamproite” croping out in
the Kokchetav UHP massif (Zhu et al., 2002) proba-
bly is related to such potassium recycling. 
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