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Non-linear surface wave phase velocity inversion based on ray theory
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S U M M A R Y
The development of temporary and permanent broad-band seismic arrays reinforces the need
for advanced interpretation techniques in surface-wave analysis. We present a new method
based on 2-D paraxial ray theory of inverting teleseismic surface-wave phase information and
constructing phase velocity maps on a regional scale. Measurements of local phase velocities
and propagation directions of Rayleigh waves taken from full waveform synthetic seismograms
are used to validate the ray theory for smooth structures on a regional scale. Curved wavefronts
created by heterogeneous structure outside the study area are taken into account through joint
inversion for the phase velocity field and the shape of the incoming wavefronts. In the forward
ray tracing procedure, the curved wavefronts are introduced through the boundary conditions by
equating the slowness vector of the ray at the edge of the study region with the known gradient
of the arrival time of the wave. To make the inverse problem non-singular we constrain the
parameters in the inversion primarily by applying a smoothness criteria on the velocity field
and on the incoming wave-field. Inversions of synthetic data sets computed by direct ray
tracing and by full waveform modelling show that for 100 km spacing between stations the
minimum size of structure that we can image is approximately 150 km. Heterogeneities with a
size approximately equal to the wavelength are reconstructed by the ray-based inversion even
though velocity variations are underestimated due to the wave-field smoothing of the structures.
A minimum signal-to-noise ratio of 3.5 is necessary in order to correctly retrieve the phase
velocity field. Inversion of a subset of the SVEKALAPKO data for 60 s period demonstrates
the applicability of the method on real data.
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1 I N T R O D U C T I O N

Fundamental mode surface waves of 10 to 100 s period provide in-
formation on the shear-velocity of the upper 200 km of the Earth.
Such studies are useful to complement lithospheric models obtained
using body-wave tomography as these models are mostly based
on P-wave traveltime inversion and are therefore sensitive to the
P-velocity structure. S-wave tomography is difficult to conduct as
low velocity zones, which are more pronounced in S than P-wave
velocity, introduce non-linearity into the inversion. Surface waves
therefore provide a more reliable means to retrieve the S-wave struc-
ture. P and surface wave tomographies are also complementary in
terms of resolution as the former has very good lateral resolution
and the latter better vertical resolution.

To date, inversions for lithospheric structures using surface waves
on a regional scale have mostly been based either on the classical
two-station method (see, for example, Calcagnile 1991), or on net-
work analysis. One alternative approach is to measure local phase
velocities by analyzing data from small aperture arrays (Cotte et al.

2000). Larger scale arrays have been used for regional studies using
various methods such as the 2-D group velocity ray-based tomogra-
phy of Yanovskaya et al. (1998). Several inversion methods are based
on waveform modelling, for example the path-average approxima-
tion with modal summations (Nolet 1990; Zielhuis & Nolet 1994;
Simons et al. 1999), linearized scattering (Snieder 1988a,b), mode
coupling (Maupin 1988; Marquering & Snieder 1996; Marquering
et al. 1996) and multiple scattering using Born’s approximation
(Friederich & Wielandt 1995; Friederich 1998; Pollitz 1999). The
last three cited studies have the advantage that the shapes of the in-
coming wave-fields need not be planar, so reducing artefacts due to
non-planar wavefronts incident upon the array. However, they use the
acoustic approximation and can be applied only to the vertical com-
ponent of the seismograms, that is to the Rayleigh wave (Friederich
et al. 1993). As van der Lee (1998) shows, one should be cau-
tious in interpreting the entire waveform of a seismogram in terms
of heterogeneities along the propagation path. Amplitude anoma-
lies of intermediate-period fundamental-mode Rayleigh waves are
dominated by earthquake source parameters and heterogeneous
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structures near the source, unlike phase anomalies which mostly
depend on the structure along the wave path. Yanovskaya (1996)
proposes a tomographic method based on inversion of azimuthal
anomalies measured from polarization analysis, while still remain-
ing within the framework of geometrical ray theory.

The aim of the present study is to invert the data set recorded dur-
ing the SVEKALAPKO deep seismic experiment (SVEKALAPKO
Seismic Tomography Working Group 2001), to determine the litho-
spheric structure of the Baltic Shield and its lateral variations be-
neath Finland. Improved knowledge of this structure should advance
our understanding of plate-tectonic processes in the early history of
the Earth, as it contains traces of a 1.9 Ga collision (for a summary
of the geology and techtonic feature of the Fennoscandian Shield,
see for example Korja et al. 1993).

The lateral lithospheric heterogeneities in the Fennoscandian
Shield are generally considered to be smooth. Several deep seismic
sounding profiles have been carried out in the region (Luosto 1997),
revealing, in particular, an anomalously deep Moho at approximately
60 km depth under the eastern part of the Ladoga-Bothnian Bay
zone, which is also associated with very high seismic velocities in
the lower crust. The lithosphere has been shown to be at least 170 km
thick beneath the area (Babuška et al. 1988; Calcagnile 1991).

To obtain 2-D phase velocity maps of the individual Rayleigh
and Love modes, we adapted the paraxial ray tracing method de-
veloped by Farra (1990, 1993). The use of ray theory limits us to
smoothly varying structures as mode coupling is not taken into ac-
count. We extend Farra’s method to take into account non-planar
incoming wave-fields and simultaneously invert for the phase ve-
locity field and the shape of the incident wavefronts. In the first part
of the paper, we demonstrate the validity of ray theory for surface
wave propagation in smooth regional structures—local propagation
directions and velocities are calculated from synthetic seismograms
computed using the Indirect Boundary Element Method (IBEM)
for multilayered media (Pedersen et al. 1996), and compared with
the results expected from ray theory. We then define the ray tracing
procedure and the inversion method we use to invert for the phase ve-
locity field. Finally, we present numerical examples from inversion
of synthetic data sets computed by ray tracing and IBEM, as well as
a preliminary inversion of a subset of the SVEKALAPKO data.

2 A P P L I C A B I L I T Y O F R A Y T H E O R Y

A major drawback to the use of ray theory is that it derives from
a high frequency approximation and therefore does not take into
account heterogeneities smaller than the wavelength of the incident
wave. In this section, we justify the use of ray theory to obtain
2-D velocity maps of structures of the type encountered beneath
SVEKALAPKO through analysis of full waveform synthetic seis-
mograms. To compute the synthetic seismograms, we use a 2-D
structure composed of a single layer (the crust) over a half space (the
mantle). The model shown in Fig. 1 is a simplified north–south cross-
section of the Moho depth map obtained by Luosto (1990) from a
compilation of seismic profiles in Fennoscandia. The thickness of
the crust varies smoothly from 44 to 60 km in the central part of the
region, in an area 350 km wide. On each side of the trough, the crust
thins out to 43 km over a distance of 100 km. In this model, we prop-
agate a plane Rayleigh wave with a backazimuth of 60 degrees (that
is, coming from approximately the north-east). Synthetic seismo-
grams are computed using the Indirect Boundary Element Method
(IBEM) developed by Sánchez-Sesma & Campillo, and extended to
2.5-D multilayered media (Pedersen et al. 1996). IBEM solves the
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Figure 1. 2-D crustal model used to compute synthetic seismograms by the
Indirect Boundary Elements Method. (a) North-South cross-section; (b) map
view of the propagating surface wave, black arrows give the initial direction
of the wave, dotted lines are successive wavefronts.

full wave equation so multiple scattering and all coupling effects
between waves are taken into account. Even though lateral varia-
tions in the model are smooth, they are distributed over distances
comparable to a wavelength (varying between 40 and 460 km in the
10–100 s period interval).

2.1 Comparison of measured and predicted
phase velocities

We compute seismograms for a receiver geometry similar to that of
the SVEKALAPKO experiment, a regular grid with 90 km between
pairs of adjacent stations. The time delays between pairs of traces
are computed in two steps. The first step consists of finding the best
fitting dispersion curve for all the data from one event using the
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Figure 2. Phase velocities obtained from synthetic seismograms computed
with IBEM, on the structure of Fig. 1.

slant-stack method developed by McMechan & Yedlin (1981) by
computing the image of the wave-fields in the (p, ω) plane, where
p is the slowness and ω the frequency. The maximum amplitudes
at each frequency define the best fitting phase velocity curve. We
correct the synthetic seismograms for this dispersion, and then com-
pute the remaining small time delays for each pair of traces using
Wiener filtering. Only frequencies with high coherency (>0.9) are
considered. To obtain the total delay between the original seismo-
grams we add the delays computed at each of the two steps. The
phase velocity between each neighbouring station pair is calculated
as the inverse of the gradient of the time delay.

Fig. 2 displays the phase velocity curves obtained for periods
of 25 and 67 s (approximately 100 and 300 km wavelength) along
different profiles perpendicular to the structure. They are compared
to the theoretical phase velocities calculated assuming for every
point a horizontally stratified medium with the properties of the
model immediately below the point, using the software published
by Herrmann (1985). At 25 s period as well as at 67 s, the measured
phase velocities correctly display the geometry of the structure.
However, the structure is smoothed; the minimum velocity is slightly
larger than predicted by theory. For the longest wavelength (300 km),
the structure is also simplified and the small bumps on either side of
the trough are not resolved. At 25 s period, velocities slightly higher
than theoretically predicted appear immediately down-stream the
structure, possibly due to the interaction of the primary Rayleigh
wave with Rayleigh-Love-Rayleigh converted waves.

2.2 Comparison of measured and predicted
propagation directions

We also measured the propagation direction of the wave on the
synthetic seismograms. The backazimuth angle is measured using
the array analysis developed by Cotte et al. (2000) following the
work of Barker et al. (1996) and Poupinet et al. (1984). For each
measurement, we use a dense array of 5 × 5 stations, with 3 km
between neighbouring station pairs.

Fig. 3 displays the measured backazimuth in six frequency bands.
On each graph, the propagation angles given by Snell’s law for the
lowest and highest predicted phase velocities within the frequency
interval are also displayed.

The measured backazimuth is in close agreement with the theo-
retical deviation in all frequency bands. The largest difference be-
tween measured and theoretical values is half a degree and appears
for the higher frequencies in waves that have crossed the hetero-
geneous structure. As expected, the structure is smoothed at long
periods where the heterogeneity scale is small as compared to the
wavelength.

The part of the structure where the Moho becomes shallower is
detected at all frequencies, but displaced by a few kilometers from its
real position, probably due to the interaction of the incoming waves
with those reflected from this interface. Not withstanding these small
differences, ray theory seems to provide a good approximation to the
behaviour of Rayleigh waves propagating across a smooth structure,
even though the variation takes place over distances of the order of
the wavelength.

3 R A Y T R A C I N G F O R M U L A T I O N

Our aim is to obtain the regional distribution of phase velocity as
a function of frequency by inverting time delays of surface waves
measured on a 2-D network of receivers, repeated for each wave
mode. We first need a formulation of the forward problem: how to
compute the arrival times of the wave at every receiver. We assume
that we know the phase velocity at a given frequency throughout a
rectangular region containing the 2-D network of receivers. We then
suppose that a surface wave is incident upon this region. Surface
waves are known to be generally non-planar (Friederich et al. 1994;
Friederich 1998), so we characterize the wavefront by its arrival time
at the boundary of the model. The corresponding rays going from
the edge of the box to every receiver have to be traced in order to
compute the arrival times at the receivers.

The ray tracing method used here is derived from Farra &
Madariaga (1987) and Farra (1990). In Section 3.1 we briefly present
this method of paraxial ray tracing, and in Section 3.2 we present
the theory necessary for its extension to the geometrical setup used
here, that is, stations inside the study region and non-planar incom-
ing waves.

3.1 Paraxial ray tracing

The high frequency approximation of the wave equation leads to the
eikonal equation:

(∇xT )2 = c−2 = u2 (1)

where T is the arrival time, c the phase velocity, u the slowness, and
∇x the gradient in the horizontal plane. Eq. (1) belongs to the family
of Hamilton-Jacobi equations H (x, p, τ ) = 0 (Červený 1989). The
Hamiltonian H is a function of position x, slowness vector p =
∇xT , and sampling parameter τ along the ray. As the problem is
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Figure 3. Measured propagation angle on synthetic seismograms across the 2-D structure of Fig. 1. The period interval is given above each plot, thin lines are
the extreme values within each period interval according to ray theory. Note that the backazimuth scale is different in each plot.

two-dimensional, x = (x1, x2) and p = (p1, p2). The Hamiltonian
may take many different forms (Červený 1989) and we choose here
that used by Farra (1990):

H (x, p, τ ) = 1

2
(p2 − u2(x)) (2)

The corresponding sampling parameter τ has units km2 s−1 and is
related to traveltime by dT = u2 dτ . This parameter is chosen in-
stead of the more commonly used traveltime (in s) or arclength (in
km) because the elements of the Hamiltonian are separated, depend-
ing on slowness and position, which simplifies the computation of
the derivatives (Farra 1993).

The Method of Characteristics (Courant & Hilbert 1966) is used
to solve the eikonal equation. The rays, described in terms of position
x(τ ) and slowness vector p(τ ) satisfy the canonical equations:

ẋ=∇p H = p

ṗ=−∇x H = 1

2
∇xu2 (3)

where dot means derivative with respect to τ and ∇p is the gradient
with respect to the slowness vector.

Suppose that a ray has been traced in the known medium using
eq. (3). Around this ray, called the central ray, we can obtain neigh-
bouring rays by means of first order perturbation theory. Paraxial
rays deviate from the reference ray by small perturbations in position

(x = x0 +δx) and slowness vector (p = p0 +δp). The perturbations
of position and slowness satisfy the paraxial ray tracing equations
deduced from (3):

δẋ = ∇x∇p Hδx + ∇p∇p Hδp = δp

δṗ = −∇x∇x Hδx − ∇p∇x Hδp = Uδx
(4)

where U is a 2 × 2 matrix whose elements Ui j = 1
2

∂2u2

∂xi ∂x j
are calcu-

lated along the reference ray.
The paraxial propagator of system (4) is used to compute the

evolution of δx and δp along the ray.
The rays that are solution of eq. (4) also have to satisfy another

relation derived from the perturbation of the eikonal equation (2):

δH (τ ) = ∇p H · δp + ∇x H · δx = 0 (5)

where the partial derivatives of H are taken along the reference ray.
As δH is invariant along any solution of system (4), eq. (5) merely
needs to be satisfied at τ = 0.

3.2 Two-point ray tracing

Our aim is to compute the ray going from a curved wavefront, known
on the edges of a rectangular region, through a medium of known
velocity, to a given receiver, so as to compute the arrival time at
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the receiver. To simplify the computation, the rays are traced from
τ = 0 at the receiver back to the edge of the box.

The boundary conditions are as follows: first, the ray goes through
the receiver position xr at τ = 0, that is

x(0) = xr (6)

Second, the projections of the slowness vector of the ray and of
the arrival time gradient onto the edge of the model must be equal.
The arrival time T0 of the incident wave at the edge of the model
is known, its definition along the edge allowing the wavefront to
be non-planar. The slowness vector of a ray intersecting the edge
of the model across a boundary parallel to the xi axis satisfies the
boundary condition:

pi = −∂T0

∂xi
(7)

where we use the definition of the slowness vector p = ∇xT , and
the negative sign comes from the fact that the ray is traced from the
station to the edge of the model.

The reference ray with initial slowness vector p0(0) in the direc-
tion given by the theoretical backazimuth of the wave is first traced
from the receiver to the edge of the medium. All quantities on this
central ray are identified by the subscript 0. This ray satisfies the
boundary condition (6), but not necessarily (7) as four initial scalar
conditions are needed to define the ray at τ = 0 (x1(0), x2(0), p1(0)
and p2(0)), and we have chosen p0(0) arbitrarily.

We therefore calculate the paraxial ray associated with this ref-
erence ray which satisfies both boundary conditions (6) and (7) to
first order. The four required initial conditions of the paraxial ray
may be obtained from the following boundary conditions:

(1 + 2) The paraxial ray as well as the central ray goes through
the receiver at τ = 0 so that:

δx1(0) = 0 and δx2(0) = 0 (8)

(3) From eqs (5) and (8) and taking into account the canonical
equation (3), we obtain

p0(0) · δp(0) = 0 (9)

(4) The last expression is less straightforward. Let us denote by
τi and τ ′

i the τ -values of the reference ray and the paraxial ray
at their respective intersection points with the edge of the model
(Fig. 4). From the values x0(τi ) and p0(τi ) of the central ray on the
edge of the model, the values x(τ ′

i ) and p(τ ′
i ) of the paraxial ray at

the same edge can be derived from a projection. Let n be the unit
vector normal to the edge and let us define dx = x(τ ′

i ) − x0(τi ) and
dp = p(τ ′

i ) − p0(τi ). To first order, the relation between (dx, dp)
and (δx(τi ), δp(τi )) is (Farra 1990)

dx = �1δx(τi )

dp = �2δx(τi ) + δp(τi ) (10)

where the projection matrices �1 and �2 are defined by:

�1 = I − ∇p HnT

∇p H · n
and �2 = ∇x HnT

∇p H · n
(11)

I is a 2 × 2 identity matrix; nT is the transpose of vector n so that
(∇p HnT )i j = (∇p H )i n j . All computations are made on the central
ray at (x0(τi ), p0(τi )). Replacing pi by p0i + dpi and ∂T0

∂xi
(x) by

∂T0
∂xi

(x0 + dx) in eq. (7), and expanding ∂T0/∂xi to first order, we
obtain the final condition:

∂2T0(x0)

∂x2
i

dxi + dpi = −∂T0(x0)

∂xi
− p0i (12)
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Figure 4. Paraxial ray tracing. p: slowness vector; x: position vector; τ :
sampling parameter; see main text for the definition of the other terms.

The two components of δp(0) may be obtained from relations (9)
and (12), using the paraxial propagator of system (4) between τi and
0 and relation (10).

Due to the use of first order approximations, the two-point ray
tracing procedure is iterative. We first trace the ray with initial slow-
ness vector p0(0), of which the direction is given by the theoretical
backazimuth of the wave, to the edge of the model; then the paraxial
propagator is computed. The initial conditions of the paraxial ray
are determined to satisfy the boundary conditions (8), (9) and (12).
Then, a fresh iteration starts with p0(0) + δp(0) as the revised ini-
tial slowness vector for the reference ray. The process stops when
the central ray satisfies the boundary conditions (6) and (7) within
predefined convergence criteria.

Finally, the traveltime of the wave at the station is derived by
integration along the ray:

T =
∫

ray
p · ẋ dτ =

∫
ray

u2(x(τ )) dτ (13)

4 I N V E R S E P R O B L E M

The data are the arrival times T obs
i measured for each event at each

receiver. We denote by T c
i the traveltimes calculated with the ray

tracing procedure explained above, using as input a 2-D velocity
model and for each wavefront the arrival time T0 at the edges of the
study region. The inverse problem consists of estimating the model
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m that explains the observed traveltimes in a least-squares sense,
that is, that minimizes the least-squares misfit function S defined
as:

S(m) = [Tobs − Tc(m)]T C−1
T [Tobs − Tc(m)]

+ [Fm − F(m)]T C−1
F [Fm − F(m)] (14)

where Tobs and Tc(m) are vectors containing the observed and cal-
culated traveltimes respectively, CT is the covariance matrix of ob-
served traveltime data and m is a vector containing the velocity
model, or more precisely the square of the slowness in a grid cover-
ing the study area, and the arrival times T0 of the incoming wavefront
at the appropriate edges of the model. To constrain the solution, we
introduce a priori values Fm of some parameter combinations F(m)
(see Section 4.3). The model covariance matrix CF describes the
uncertainties in the a priori values Fm (Farra & Madariaga 1988).

The non-linear least-squares problem (14) can be solved itera-
tively by the Gauss-Newton method. The functions Tc(m) and F(m)
in expression (14) are linearized around a current model m0 to ob-
tain the quadratic approximation E(
m) of the least-squares misfit
function S:

E(
m) = [
T − AT 
m]T C−1
T [
T − AT 
m]

+ [
Fm − AF
m]T C−1
F [
Fm − AF
m] (15)

where 
T = Tobs − Tc(m0) contains the arrival time residuals, that
is, the differences between the measured and the computed arrival
times; 
m is the parameter perturbation; and AT = ∂Tc/∂m is
a matrix containing the partial derivatives of the traveltime with
respect to the parameters, also known as Fréchet derivatives (see
Section 4.2). The vector 
Fm = Fm − F(m0) and the matrix AF =
∂F/∂m describe additional constraints such as a priori information
and regularization, which we describe in more detail in Section
4.3. As the data are assumed to be uncorrelated, we set the non-
diagonal terms of matrices CT and CF to zero. The diagonal terms
are computed from uncertainties in the traveltime measurements
(see Section 6 for estimation on real data) and a priori values of the
combinations of the parameters F(m).

Let us introduce the diagonal matrices σT and σF defined as σ 2
T =

CT and σ 2
F = CF and the matrix D as D = (

σ−1
T AT

σ−1
F AF

). The least-
squares solution of the misfit function (15)


m = (DT D)−1DT

(
σ−1

T 
T

σ−1
F 
Fm

)
(16)

is obtained by singular value decomposition of matrix D. As the
problem is non-linear, the process is repeated until the residuals 
T
drop to the level of measurement error. At each iteration the rays
are traced using the procedure described in Section 3.

An a posteriori error analysis is performed to evaluate a model
confidence interval. This estimate is obtained by deriving the a pos-
teriori covariance matrix C′

M (Tarantola 1987):

C′
M =

(
AT

T C−1
T AT + AT

FC−1
F AF

)−1
(17)

The diagonal elements of C′
M are an estimate of the square of the

uncertainty in the model obtained from the inversion. They depend
on the array geometry and the number of data used in the inversion
rather than on the model parameters.

4.1 Parametrization

Because of the form of the ray tracing equations, the parameters of
the model m are the square of the slowness, and the arrival times of

every incoming wavefront at the edge of the parametrized region. All
these functions are modelled by B-splines (de Boor 1978; Bartels
et al. 1988; Farra & Madariaga 1988).

The square of the slowness is interpolated using third-order 2-D
B-splines:

u2(x1, x2) =
Nx1∑
i=1

Nx2∑
j=1

u2
i j Bui j (x1, x2) (18)

where u2
i j , i = 1, . . . , Nx1 , j = 1, . . . , Nx2 are the coefficients of

B-spline interpolation and Bui j are 2-D spline basis functions.
Each wavefront is described by its arrival time at the two edges of

the model first encountered by the wave (Fig. 5). Along each edge,
the arrival time is modelled using fourth order B-spline interpola-
tion:

T0(xk) =
Ntk∑
i=1

T0i Bti (xk) (19)

where T0i , i = 1, . . . , Ntk , are the spline coefficients and Bti are the
spline basis functions.

4.2 Fréchet derivatives of the arrival time

To solve the inverse problem, we need to compute the matrix AT

of eq. (15) containing the partial derivatives of traveltimes. This
requires us to compute the variation in arrival time due to velocity
perturbations, and the variation in arrival time due to perturbation
of the wavefronts, that is, the variation in the T0 parameters.

Let us first calculate the Fréchet derivatives with respect to the
square of the slowness. In the reference medium of slowness squared
u2

ref we denote by Rref the ray between station S and point M on the
edge of the model. If the square of the slowness is modified from
u2

ref to u2 = u2
ref + 
u2, we can trace the new ray R joining S and

M in the perturbed model. This new ray may not satisfy the boundary
condition (7): coherence between the slowness vector of the ray and
the gradient of T0. We denote by R′ the ray of the perturbed medium
which satisfies the boundary conditions (6–7). This ray intersects the
edge of the model at M ′. Subscript ref indicates quantities obtained
in the reference medium.

In the perturbed medium, the arrival time T (S) is:

T (S) = T0(M ′) +
∫

R′
u2dτ (20)

= T0(M ′) +
∫

R
u2dτ + p·

−→
M M ′ (21)

where p = −∇xT (M) is the slowness vector at the edge of the
model (the negative sign is due to our convention of computing the
ray from the station to the edge of the box).

Fermat’s principle implies that:∫
R

u2dτ =
∫

Rref

u2
refdτ +

∫
Rref


u2dτ (22)

To first order, we also know that T0(M ′) = T0(M) + ∇xT ·
−→

M M ′.
The relation between the arrival times at the station in the reference
medium and in the perturbed medium is:

T (S) = T0(M) +
∫

Rref

u2
ref dτ +

∫
Rref


u2 dτ (23)

= Tref (S) +
∫

Rref


u2 dτ (24)

Therefore, using parametrization (18), we derive the Fréchet deriva-
tives with respect to the square of the slowness parameters:
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∂T (S)

∂u2
i j

=
∫

Rref

Bui j (x1, x2) dτ (25)

Let us now calculate the Fréchet derivatives with respect to the
arrival time T0 of the wave at the edge of the modelled region. For
the reference arrival times T0ref and the square of the slowness model
u2, we denote by R the ray between the station S and the point M
on the edge of the model which satisfies the boundary condition
(7). Let us consider a perturbation 
T0, so that T0 = T0ref + 
T0,
and the ray R′ satisfying conditions (6–7) in the perturbed model.
The ray R′ is traced from the station S to the point M ′ on the edge
of the study region. Starting from eq. (21) and from T0(M ′) =
T0ref(M) + 
T0(M) + ∇xT ·

−→
M M ′, we obtain

T (S) = T0ref(M) + 
T0(M) +
∫

R
u2 dτ (26)

= Tref(S) + 
T0(M) (27)

Using parametrization (19), we obtain the Fréchet derivatives with
respect to the T0 parameters:

∂T (S)

∂T0i

= Bti (x(M)) (28)

4.3 A priori information

Additional a priori information is usually needed to make the inverse
problem non-singular. To limit the roughness of the solution, we
can minimize the value of the first and second order derivatives
of the square of the slowness by introducing a function F(m) in
eq. (14). This function can be used to set the first and second order
derivatives equal to zero with given uncertainties, denoted byσF1 and
σF2 respectively. In practice, the constraints are introduced through
the first and second finite differences of the B-spline parameters u2

i j .
We add two constraints on the shape of the wavefront. Each wave-

front is modelled by the arrival time T0 along two boundaries of the
region, the two sets of arrival times being treated independently
(Fig. 5). We therefore impose the condition that the values at the
point shared by the two lines at the corner of the region are identi-
cal, to within σF3 , an amount equal to the data uncertainty. We also
impose a certain degree of smoothness on the incoming wavefront.
To obtain this, the derivative of the arrival time along the edge should
not be very different from that given by the theoretical propagation
angle φ:

∂T0

∂x1
= − sin φ

c
or

∂T0

∂x2
= cos φ

c
(29)

according to the edge considered. In (29), c is the wave speed at the
point considered and φ is the theoretical backazimuth or a measured
propagation direction. The x1 and x2 axes are oriented toward the
East and South, respectively. We denote by σF4 the corresponding a
priori uncertainty. σF4 therefore controls the upper limit of allowed
variation in the local backazimuth of a wavefront, as compared to
a plane wave. This upper limit depends strongly on the theoretical
backazimuth of the incident wave. For σF4 = 0.05 s km−1 used in
the inversions presented here, the upper limit is at least 10◦. An
example of curved wavefronts is shown on Fig. 8 and discussed in
more detail in Section 5.2.

The strength of the constraints, related to σF1 , σF2 , σF3 and σF4 , is
chosen as a compromise between stability of the inversion and data
misfit.

5 N U M E R I C A L E X A M P L E S

The inversion was applied to several synthetic examples. The station
geometry is that of the SVEKALAPKO experiment (Fig. 5). This 2-
D arrangement is significantly better than that usually used for 2-D
body-wave tomography, as the receivers are distributed throughout
the modelled area and not only along one edge. The sources are
a set of 36 theoretical events evenly distributed in azimuth. We
want to obtain the phase velocity structure in the rectangular region
containing this network and shown in Fig. 5. In the first part of this
section (5.1–5.3) we use arrival times at the stations calculated by
ray tracing to study the behaviour of the inversion procedure in ideal
conditions. In Section 5.4 we use full waveform modelling with and
without noise to approach more realistic conditions.

At every run of the inversion the data misfit ‖
T‖ is computed,
that is the root mean square of the time residuals. As we know the
true velocity model, we also compute the “model misfit” 
c as
the root mean square of the difference in phase velocity c. To take
into account the lack of resolution in some areas, the differences in
velocity are weighted by the inverse of the a posteriori error in the
velocity σc.


c(m) =
√

1∑
1/σ 2

c

∑ (
ctrue − c(m)

σc

)2

(30)
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Figure 5. Setting of the problem for the SVEKALAPKO deep seismic
experiment. Position of the broad-band receivers are the black dots, the
rectangular box is the limit used in the computations. An example of a
curved wavefront propagating from the north-east outside the model is shown
together with two rays traced from the edge of the model to two stations.
The shape of the wavefront is modelled by the arrival time of the wave on
the box: T0(x1) and T0(x2).
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The a posteriori error in the velocity is obtained from that of the
square of the slowness, σu2 , using the relation:

σc = c3
trueσu2/2 (31)

σu2 is the square root of the diagonal elements of matrix C ′
M given

by (17) corresponding to the square of the slowness parameters. In
(30), the summation is made with points regularly distributed every
5 km inside the box.

The parameters of the model being of two types with different
orders of magnitude (0.1 s2 km−2 for the square of the slowness and
100 s for the arrival times), we apply a normalization in all numerical
examples and used as parameters in the inversion procedure the
square of the slowness divided by 0.1 and the wavefront arrival
times divided by 100.

5.1 Sensitivity test

The checker-board test cannot reasonably be applied to a ray trac-
ing method as the condition of smooth structure is not respected.
We therefore considered a 2-D phase velocity model of a B-spline
interpolated checker-board. The cell width is 150 km and the max-
imum variation of the phase velocity is 5 per cent between 4 and
4.2 km s−1 (Fig. 6a). The synthetic data set consisted of the arrival
times of 36 wavefronts at the receivers, computed using the ray trac-
ing method described in Section 3. In this example, the wavefronts
incident upon the structure were plane.

The starting model of the inversion procedure is homogeneous
with a velocity of 4.1 km s−1. The initial incoming wavefronts are
plane. Rays are traced through this initial model and traveltimes
computed; the root mean square of the arrival time residuals is
‖
T‖ = 0.63 s.

The inverse problem consisted of evaluating the velocity field
and the 36 wavefronts. The square of the slowness is represented by
B-spline interpolation with 192 coefficients (12 × 16) correspond-
ing to a regular mesh of gridpoints distributed every 50 km (about
half of the mean distance between the stations). The arrival times
T0 of the 36 incident wavefronts are represented by B-spline inter-
polation with 11 and 15 coefficients (corresponding to grid points
regularly distributed every 50 km), along the West-East and North-
South edges of the box, that is 936 parameters. The model is then
fully described by 1128 parameters. We assume an uncertainty of
1 s in the traveltime data.

If we invert the times residuals without a priori constraints, the
velocity model obtained shows very high amplitude anomalies in
the corners with a weak station coverage. We therefore introduced a
priori information as described in Section 4.3, using the following
values: σF1 = 3 × 10−4 s2 km−3 (5 per cent variation of the velocity
is allowed over a distance of 20 km), σF2 = 6×10−6 s2 km−4 (σF2 =
σF1/50), σF3 = 1 s, and σF4 = 5×10−2 s km−1 (at least 10◦ variation
is allowed in the propagation direction). The inversion process is
stopped when the traveltime misfit no longer decreases.

Table 1 shows the number of data and parameters, and the ini-
tial and final values of the data and model misfits for comparison
between all numerical examples. The final model (Fig. 6b) was ob-
tained after 2 iterations, with final data misfit ‖
T‖ = 0.34 s. The
model misfit defined by equation (30) is 0.02 km s−1 (0.5 per cent
of the velocity). The a posteriori error in the velocity model σc,
estimated by eq. (30), shown in Fig. 6(c) has a mean of 2.6 per cent
of the true velocity. It is almost constant in the central part of the
box where the stations are located, with a value of approximately
2 per cent.

Table 1. Numerical values that characterize the inversions. N: number of
time residuals; M: total number of lines in the inversion matrix (data and
constraints); P: number of parameters. For definitions of data and model
misfits see main text. I: number of iterations; (∗) regularization constraints
used in the first iteration(s). For values of the assumed error in the data and
of the constraints see main text. cb: checker-board test; npwf: homogeneous
velocity model with non-planar incoming wavefronts; moho: input velocity
model computed from the Moho-depth map of Luosto (1990) for a 35 s
fundamental-mode Rayleigh wave; IBEM XXs: no-noise IBEM synthetic
seismograms at XX seconds, IBEM az XXs: no-noise IBEM synthetic data
set with a bad azimuthal coverage, IBEM n XXs: IBEM seismograms with
noise; SVEKA 60s: real seismograms of the SVEKALAPKO seismic to-
mography experiment at 60 s period.

data misfit model misfit

N M P initial final initial final I
s ×10−2 km s−1

cb 1573 3161 1128 0.63 0.34 5.38 2.04 2
npwf 1434 3022 1128 3.18 0.29 0 3.96 3
moho 1582 3170 1128 0.75 0.02 7.50 0.36 2
IBEM 25s 1320 2758 972 1.35 0.11 7.91 0.75 3
IBEM 33s 1320 2758 972 1.51 0.20 8.90 2.40 3*
IBEM 50s 1320 2758 972 0.88 0.25 4.90 0.90 3*
IBEM az 33s 1320 2758 972 1.63 0.16 8.90 2.52 2
IBEM n 25s 1320 2758 972 1.42 0.39 7.91 1.36 2
IBEM n 33s 1320 2758 972 1.59 0.55 8.90 2.13 3*
IBEM n 50s 1320 2758 972 1.38 1.06 4.90 7.62 3*

SVEKA 60s 1390 2942 1104 3.04 1.21 – – 4*

When the cell size of the input model is smaller than 150 km,
the data misfit hardly decreases. For 100 km cell size the checker-
board is reconstructed but with smaller velocity variations than in
the input model. For models with cell size larger than 150 km, the
inversion result is closer to the true velocity model than in the case
with 150 km cell size presented above.

The sensitivity tests tell us that structures smaller than approxi-
mately 150 km cannot really be imaged with the SVEKALAPKO
experiment, even with a perfect set of recorded events. This is related
to the inter-station distance in the SVEKALAPKO array, which is
approximately 100 km. The north-western and south-eastern cor-
ners of the box are poorly constrained due to the lack of receivers
in these regions.

5.2 Non-planar incoming wavefronts

In the following example, the incident wavefronts were randomly,
but smoothly, distorted. We are not expecting backazimuth anoma-
lies larger than 5◦ in Fennoscandia, considering that the region is rel-
atively homogeneous and taking into account the azimuth anomalies
measured by Levshin & Berteussen (1979) over the Barents Sea. We
therefore modified the backazimuth of our 36 wavefronts with a ran-
dom rotation of 5◦ maximum. Friederich et al. (1994) also observed a
local curvature of the wave-fields propagating over Germany. Onto
the constant rotation we superimposed random small scale varia-
tions of 30◦ maximum within 100 km along the wavefront. The
input velocity model was homogeneous with a value of 4.0 km s−1.
The number of data inverted is 1434 (Table 1), which should be
compared with the maximum possible of 1584 corresponding to
36 events × 44 receivers. The missing data correspond to rays that
the ray tracing procedure was not able to compute because of the
perturbation of the wavefront.

The starting velocity model for the inversion was homogeneous
with a velocity of 4.0 km s−1. The initial wavefronts are plane and
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Figure 6. Sensitivity test. (a) true velocity model used to compute the arrival times. (b) velocity model obtained after 2 iterations of the inversion. Contours
are every 0.04 km s−1, solid line for 4.1 km s−1, dotted lines for lower velocities, dashed line for larger velocities. (c) A posteriori velocity error as a percentage
of the true velocity. Station positions are given by the black dots.
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incident from the theoretical backazimuth, that is, without the con-
stant rotation. Rotation of the wavefronts as compared to the theoret-
ical backazimuth used in the starting model leads to systematic bias
of the time residuals. To obtain a minimal initial estimate of the data
misfit for Table 1 we computed the root mean square of the residuals
by adding a constant to every arrival time of each wavefront, so that
the data misfit is minimal: ‖
T‖ = 3.18 s. The parametrization used
is the same as in the previous example, so the total number of param-
eters is 1128. The assumed data error is 1 s. The constraints used in
the inversion are σF1 = 3 × 10−4 s2 km−3, σF2 = 6 × 10−6 s2 km−4,
σF3 = 1 s, and σF4 = 5 × 10−2 s−1 km.

After 3 iterations, the final model was obtained. The data misfit is
‖
T‖ = 0.29 s. The model misfit is 0.040 km s−1, 1 per cent of the
input phase velocity. The misfit is concentrated in the unresolved
areas; if we compute the model misfit on a restricted area containing

the network, it falls below 0.6 per cent. The a posteriori error has
the same shape as in the preceding example, with a mean value of
2.6 per cent.

Four examples of a wavefront are shown in Fig. 7. The disagree-
ment between input and reconstructed wavefronts can be large but
such misfit generally occurs in poorly resolved areas, such as the
north-western corner showing a 10 s difference in the first panel of
Fig. 7 for the backazimuth of 20◦. Fig. 8 gives an example of a curved
wavefront propagating across the station network, interpolated from
the inversion result.

The mean of the a posteriori error on the arrival time of the wave-
fronts T0 is 2.2 s. The maximum estimated error for one wavefront
occurs either at the corner where the station coverage is weak, or
for an edge almost parallel to the propagation direction at the end
where the wavefront leaves the study region.
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Figure 8. Propagation of the curved wavefront with theoretical backaz-
imuth 260◦ through the station network. Propagation time is interpolated
from the arrival time at the receivers (dots) and at two edges of the study
region (diamonds). Wavefronts 15 s apart are plotted as solid lines.

The wavefront smoothness imposed in the inversion was stronger
than the actual smoothness of the input wavefronts. We therefore
compared the results using different values for σF4 . As a general
trend, with weakening constraint on the wavefront smoothness, the
data misfit increases but the model misfit decreases. For example
with σF4 = 0.13 s km−1 (30◦ variation in the backazimuth angle), the
data misfit is ‖
T‖ = 0.46 s, and the model misfit is 0.020 km s−1

for the whole study region and 0.016 km s−1 in the well resolved area
(0.4 per cent). On the other hand, increasing roughness of the input
wavefront (small scale variations up to 40◦ over 100 km) deteriorates
the inversion result. With σF4 = 5×10−2, the data misfit is 0.75 s, the
model misfit is 0.053 km s−1, and 0.042 km s−1 below the stations.
Increasing σF4 does not improve the result. The curvature of 40◦

over 100 km is the maximum that our inversion technique is able to
manage.

In real cases, the measurement of the real propagation direction
in small arrays at two different locations in the network may allow
us to evaluate the global rotation of the wavefront and to eliminate
events with excessively perturbed wavefronts.

5.3 Variable Moho depths model

In this example, we use a more realistic velocity model derived
from the Moho depth map of Luosto (1990). The physical model is
composed of a single layer (the crust) over a half space (the man-
tle). The crust is defined by P- and S-velocities α1 = 6.5 km s−1,
β1 = 4.2 km s−1 and density ρ1 = 2700 kg m−3, and the mantle
by α2 = 8.1 km s−1, β2 = 5.35 km s−1 and ρ2 = 3100 kg m−3.
The thickness of the crust varies from 41.7 km to 60.6 km, as de-
rived from the interpolated Moho-depth map of Luosto (1990). At
each gridpoint of the surface, the phase velocity dispersion curve is
computed using the software edited by Herrmann (1985) with the
1-D model corresponding to the structure immediately below the
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Figure 9. Inversion based on the phase velocity model derived from Luosto
(1990) Moho depth map, for the Rayleigh fundamental-mode at 35 s period.
(a) true velocity field. (b) inversion result after 2 iterations. Contours are
every 0.03 km s−1, solid line for 4.26 km s−1, dotted lines for lower velocities,
dashed line for larger velocities. Station positions are given by the black
dots.

location under consideration. We can therefore calculate a phase ve-
locity map for each frequency. These maps can be used as the input
velocity field to compute traveltimes with our ray tracing method.
As an example we used the phase velocity map corresponding to
the fundamental-mode Rayleigh wave of 35 s period (Fig. 9a). At
this period the phase velocity varies between 4.15 and 4.38 km s−1.
In reality the expected variations are lower, as the very thick crust
is associated with high shear-velocities and densities in the lower
crust. The sources considered were again 36 plane waves evenly
distributed in azimuth.

The starting velocity model for the inversion process is homoge-
neous with a velocity of 4.26 km s−1. The initial incoming wave-
fronts are plane waves. The root mean square of the traveltime resid-
uals is ‖
T‖ = 0.75 s and the assumed error in the data is 1 s.

The parameters of the inverse problem are the 192 squares of
the slowness parameters and the 936 arrival time parameters. The
constraints are σF1 = 3 × 10−4 s2 km−3, σF2 = 6 × 10−6 s2 km−4,
σF3 = 1 s, and σF4 = 5 × 10−2 s km−1. Fig. 9(b) shows the velocity
model generated after 2 iterations of the inversion process. The
characteristics of the inversion can be found in Table 1. The final
rms of the time residuals is ‖
T‖ = 0.02 s. The model misfit is
0.004 km s−1 (0.08 per cent of the input velocity). The a posteriori
error on the velocity field has an average of 2.8 per cent.

The results obtained with this velocity model are particularly good
and encouraging for the future interpretation of the SVEKALAPKO
data.

5.4 Data computed with Indirect Boundary
Element Method

Up to now all the examples were carried out using arrival times
computed with the ray tracing method that is also used in the inver-
sion. To study the performance of the inversion using more realistic
input data, we computed synthetic seismograms using the Indirect
Boundary Element Method (Pedersen et al. 1996). This method
computes the complete wave-field caused by a plane surface wave
obliquely incident upon a 2-D structure. The incident wave can have
any backazimuth, but the computation becomes unstable when the
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propagation direction is close to the axis of the structure (Pedersen
et al. 1994). We therefore kept only 30 events, eliminating three
azimuths around 90◦ and three around 270◦. The modelled source is
a fundamental-mode Rayleigh wave, with a Ricker wavelet source
function centered on 0.04 Hz frequency. The structure is the sim-
plified cross-section of the Moho-depth map from Luosto (1990)
described in the beginning of Section 2 and shown in Fig. 1. As the
model does not take into account the high velocity at the base of the
thickened crust, the sharp velocity contrast will produce stronger
diffractions than we expect in a more realistic model of the area.

For each event, we measured on the synthetic seismograms the
time delays between a reference station, chosen as the first station
reached by the wave, and all the other receivers. Time delays were
found through the two-step algorithm described in Section 2.1. The
assumed data uncertainty is 1 s.

Figs 10(a), (d) and (g) display the theoretical phase velocity mod-
els obtained for three selected periods (25, 33 and 50 s). This theo-
retical velocity is the phase velocity of the fundamental local mode,
computed using the same procedure as in Section 2.1. However, be-
cause IBEM uses the physical 2-D model of Fig. 1 as input, and the
theoretical phase velocity maps shown in Figs 10(a), (d) and (g) are
not used in the calculation of the synthetic data set, it should not
be considered as the ‘true’ velocity. The average theoretical phase
velocity is 4.05, 4.25 and 4.46 km s−1 for 25, 33 and 50 s periods re-
spectively, resulting in wavelengths of approximately 100, 140 and
225 km.

The starting velocity models are homogeneous with velocity 4.02,
4.23 and 4.44 km s−1 respectively. The initial root mean square of
the arrival time residuals is between 0.88 and 1.51 s. The inverse
problem consists of evaluating the 192 spline coefficients for the
velocity model, and the 780 T0 parameters describing the 30 wave-
fronts, that is a total of 972 parameters. The data and model misfits
are given in Table 1. The final values of the constraints are σF1 = 3×
10−4 s2 km−3, σF2 = 6 × 10−6 s2 km−4, σF3 = 1 s, and σF4 = 5 ×
10−2 s km−1. However, with the data set obtained for 33 and 50 s
period, the inversion did not converge toward a model giving a lower
data misfit. We therefore used regularization constraints for the first
two iterations of the inversion process, that is, the smoothness cri-
teria on the velocity field (for both periods) and on the wavefront
(for the 50 s period data set only) were very strong in the first two
iterations and relaxed for the third.

The results of the inversions are shown in Figs 10(b), (e) and (h).
For the three frequencies, the low velocity area is reconstructed by
the inversion. However, the minimum value obtained is larger than
the theoretical value for the three periods selected. This is the result
of the smoothing of the structure which can be expected due to the
wavelength (see Section 2). The final model misfits lie between 0.008
and 0.024 km s−1, the largest difference in velocity occurs either in
the low velocity area where the smoothing has the strongest effect,
or in the area with no stations. The average a posteriori error on the
velocity field is 2.7, 3.0, and 3.2 per cent of the theoretical velocity
respectively for 25, 33 and 50 s period.

Another problem associated with a real data set would be the
azimuthal coverage. We used a data set composed of arrival times
for 22 wavefronts out of the 30 wavefronts computed, for the 33 s
period model. The 22 wavefronts chosen are based on the azimuthal
coverage obtained by Friederich (1998) in Germany.

The starting model has a homogeneous phase velocity of
4.23 km s−1. The initial data misfit is ‖
T‖ = 1.6 s. The final
model is obtained after two iterations. The final data misfit is 0.16 s,
the final model misfit is 0.025 km s−1 (0.6 per cent of the input
velocity). The average a posteriori velocity error is 3.1 per cent.

The inversion result is not really disturbed by the lack of data
from the south. This is a consequence of the good station coverage
of the SVEKALAPKO network.

We then added random noise to the synthetic seismograms. The
measured signal-to-noise ratios are approximately 3.5, 3.7, and 2.8
for 25, 33 and 50 s period. Figs 10(c), (f) and (i) display the inversion
results obtained with the data set measured on the noisy signals.
Values of the misfits are given in Table 1. Regularization constraints
on the velocity smoothness and on the wavefront smoothness were
used for inversion of the data set obtained with 33 and 50 s period.

With a signal-to-noise ratio larger than 3.5, the inversion con-
verges toward a solution equivalent to that obtained without noise.
With a signal to noise ratio smaller than 3, the true velocity field is
not recovered.

The tests using IBEM-computed synthetic seismograms ratify
both the technique of time delay measurement on the seismograms
and the inversion method. In the case of simple and relatively smooth
structures, ray theory can succeed in imaging heterogeneities of
scale close to the wavelength even though velocity variations may
be underestimated. Due to the good station coverage, the lack of
data incident from some backazimuths is not a problem for the
inversion. The minimum signal to noise ratio allowed in data is
approximately 3.5.

6 P R E L I M I N A R Y I N V E R S I O N
O F T H E S V E K A L A P KO D A T A

Finally we tested our method on real data. This section does not
aim to solve the lithospheric structure of eastern Fennoscandia, but
rather to demonstrate that the method can be applied successfully
to real seismograms. For this preliminary inversion we use a subset
of 48 high quality events (see Fig. 11), carrying out the analysis on
the fundamental-mode Rayleigh wave at 60 s period. The azimuthal
distribution is not as regular as in the synthetic tests but the corre-
sponding a posteriori error is not very different from that obtained
in the synthetic tests.

The vertical component seismograms were first filtered in the
time-frequency domain using the apparent group velocity curves
(Lander & Levshin 1989). For each station couple we measured the
time delay using Wiener filtering on the filtered signals. Then we
chose a reference station for each event, the first station encountered
by the wave, unless its record was too noisy. For each station i we
measured the time delay to the reference station as the median of
N − 1 time delays, N being the number of coherent records. One
delay was measured directly between the reference station and sta-
tion i. The N − 2 others were obtained by the sum (or subtraction)
of the time delay between the reference station and station j, and
the time delay between station j and station i. The average standard
deviation of approximately 2 s was used as data uncertainty. The
number of time measurements kept for the inversion was 1390, that
is 29 data per event on average.

As the number of data per event was somewhat lower than in
the numerical tests, we decreased the number of spline coefficients
representing the wave fronts to 8 and 11 for the West-East and
North-South edges respectively (points distributed every 70 km).
The number of coefficients representing the velocity model was
kept to 192. The model is fully described by 1104 parameters.

The initial model for the inversion has a homogeneous velocity of
4.13 km s−1. This value was obtained by fitting one dispersion curve
to all the observed time delays. The sources considered were 48
plane waves coming from the backazimuths computed for a radially
symmetric Earth. In the initial model the origin time for each event
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Figure 10. Inversion of time delays measured on IBEM synthetic seismograms. On each plot the contours are every 0.03 km s−1, dotted lines are for lower
velocities, dashed line for larger velocities. (a) (b) (c) model for 25 s period, solid line for 4.02 km s−1. (d) (e) (f) 33 s period, solid line for 4.23 km s−1.
(g) (h) (i) 50 s period, solid line for 4.44 km s−1. (a) (d) (g) theoretical local phase velocities. (b) (e) (h) models obtained from inversion of signals without
noise. (c) (f) (i) models obtained from inversion of the noisy signals; snr: signal to noise ratio. Black dots give the station locations.

is situated at the corner of the study area, whereas in the real data it
is located at the reference stations. This constant time shift, which
can be as high as 30 s, makes the inversion unstable. We therefore
used strong regularization constraints on the first iteration of the
inversion process, so that the velocity model stays constant and the

wave fronts remains plane but are shifted in time. In the second
iteration the constraints were lowered to σF1 = 3 × 10−4 s2 km−3,
σF2 = 6 × 10−6 s2 km−4, σF3 = 2 s, and σF4 = 5 × 10−2 s km−1.

The time shift also influences the estimation of the initial data
misfit, which we addressed by adding a constant time to each event so
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Figure 11. Distribution of the 48 events used in the inversion. Black dots:
epicenters; black star: center of the network of stations.

Figure 12. Phase velocity of the fundamental-mode Rayleigh wave at 60 s
period, as retrieved from inversion of the time residuals measured on real
seismograms from the SVEKALAPKO seismic tomography experiment.
Gray levels are inside the limit of a posteriori error on the velocity σc =
4 per cent; the thick white contours corresponds to σc = 3.5 per cent and
σc = 3 per cent.

that the root mean square of the time residual is minimum: ‖
T‖ =
3.04 s.

The final model was obtained after 4 iterations, with a final data
misfit of 1.21 s (data uncertainty 2 s). Fig. 12 shows the phase ve-
locity model obtained. The average a posteriori error in the velocity
model is 3.4 per cent, and if we consider only the part of the model
inside the 3.5 per cent contour then the mean a posteriori error de-
creases to 2.9 per cent. This is most likely an overestimate of the
real error. We will use a boot-strap approach to estimate the er-

ror on the velocity field obtained from the real data set for further
interpretation.

The sampling depth of the 60 s fundamental-mode Rayleigh wave
is around 80 km. As the crustal thickness reaches 60 km in some
areas, this phase velocity map is therefore influenced by the crustal
structure. Comparing our map to the compilation of known Moho
depths presented by Luosto (1997), shows that the deep crust to
the west is associated with relatively low velocities, while the deep
crust to the east is associated with velocities larger than the mean.
However, this is also the place where the high velocity layer in the
lower crust defined in Luosto (1997) is the thickest. A full interpre-
tation of the data recorded during the deep seismic SVEKALAPKO
experiment is our next planned investigation.

Even though we need to refine our inversion of real data, in par-
ticular for a better estimate of the actual error in the velocity model,
our method is reliable when applied to real seismograms.

7 C O N C L U S I O N

We present a method for tomographic inversion of teleseismic sur-
face wave phase information based on 2-D ray theory. The inversion
of the time delays is only the first step of a longer process as the
dispersion curves obtained at each grid point must subsequently be
inverted to obtain a 3-D shear-velocity model. Ray-based tomog-
raphy was used to take into account the non-planarity of incoming
wavefronts, and to stabilize the inversion we used a priori constraints
on the smoothness of the velocity field and of the wavefronts.

The method is very robust in determining phase velocity maps
in all synthetic examples. This robustness may be a consequence of
using only the phase information of the signals, information which
is more stable than the amplitudes of the seismograms. The numer-
ical examples presented show that structures larger than 150 km
can be obtained from phase information in the region containing
the SVEKALAPKO receivers. Perturbations of the velocity model
introduced by distorted wavefronts is weak. A 5◦ rotation of prop-
agation direction superimposed on variations less than 30◦ over
100 km along the wavefront produces almost no artefact on the
inverted velocity field inside the station network. The examples car-
ried out using IBEM-computed seismograms allowed us to test both
the process of time delay measurement and the inversion method.
The quality of the result—even with a structure of a similar size
to the wavelength—is very encouraging for their application on the
SVEKALAPKO data set. The solution remains coherent with a sig-
nal to noise ratio down to 3.5, imposing objective preselection crite-
ria for the inversion of the SVEKALAPKO data set. The inversion
procedure remains stable when applied to real data, as demonstrated
for the 60 s period fundamental-mode Rayleigh wave, using a subset
of 48 events.

The ray tracing formulation has some major advantages. First,
we can model both Rayleigh and Love waves. Second, we can easily
implement discontinuities in the phase velocity model, which could
be useful for imaging regional sharp structures such as the Tornquist
Zone. Third, the mini-arrays of five and four stations in the middle of
the SVEKALAPKO deep seismic experiment network can be used
to measure locally the true propagation direction of the wavefronts,
which subsequently can be used to constrain the inversion. The phase
velocity beneath the mini-arrays can also be measured precisely and
used as a further constraint. The lower limit of resolution depends on
the inter station distance and on the wavelength. However, it results
in a smoothing which is at least qualitatively predictable and can
therefore be taken somewhat into account in the interpretation.
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