
1.  Introduction

The Kamchatka Peninsula is rich in underground
resources represented by gold, silver, platinum, zinc,
lead, mercury, diamond, coal, gases and oil deposits.
Estimated reserves in eight epithermal Au-Ag deposits
of central and southern Kamchatka exceed 320 t Au and
2,000 t Ag (Liessman and Okrugin, 1994; Patoka et al.,
1998; Stepanov et al., 2001). More than 15 t Au and 25 t
PGE have been produced from placer deposits in the
South Kamchatka area and the Vatynsko-Vyvensky sec-
tor of the Koryaksko-Kamchatsky Pt-rich belt at the
northeastern part of Kamchatka (Okrugin, 1995).

The region is part of the arc-trench system of the Cir-
cum-Pacific belt. The subduction of the Pacific Plate
beneath the Kamchatka Peninsula started in the Late
Cretaceous, associated with an eastward migration of
the magmatic arc. As a result, four NNE-trending vol-
canic chains have formed: Okhotsk-Chukotka (Late
Cretaceous), Koryaksky-Western Kamchatka (Pale-
ocene to Eocene), Central Kamchatka (Oligocene to

Miocene) and Eastern Kamchatka (Pliocene to Recent).
The present study area is situated in the Eastern Kam-
chatka Volcanic Belt (Fig. 1) where hydrothermal activ-
ity and related ore mineralization are abundant and well
known in the Mutnovsko-Asachinskaya geothermal area
(Vasilevsky et al., 1977a, b; Okrugin et al., 1994; Okru-
gin, 1995; Petrenko and Bolshakov, 1995; Petrenko,
1998, 1999).

The Rodnikovoe deposit located in the north of the
geothermal area consists of typical low-sulfidation
quartz-adularia-gold-silver veins. The largest vein is up
to 25 m wide. Estimated reserves are 40.4 t Au (average
grade 11.3 g/t) and 343 t Ag (average grade 95.8 g/t)
(Patoka et al., 1998). A high grade Au-Ag ore sample
(1,347 g/t Au, 10,000 g/t Ag) with visible gold was
detected in a surface trench (Lattanzi et al., 1995;
Petrenko, 1998, 1999; Stepanov et al., 2001). 

In this paper, we document further characteristics of
the Rodnikovoe deposit including mineralization stage,
ore mineralogy, hydrothermal alteration and results of
fluid inclusion thermometry. The physicochemical con-
dition of the hydrothermal fluid, the mechanism of gold
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precipitation and the depth of mineralization relative to
the paleo-water table are discussed.

2.  Outline of Geology and Ore Deposits

2.1.  Geology of the surrounding area

The Mutnovsko-Asachinskaya geothermal area is
located 50-80 km south of Petropavlovsk-Kamchatsky
(Fig. 1). The area is covered chiefly by Tertiary and
Quaternary volcanic rocks. Petrenko (1998) reported
that the volcanic rocks in South Kamchatka were
formed in three stages of volcanism: Oligocene to
Miocene (andesite), Late Miocene to Pliocene (basalt,
andesite and rhyolite) and Quaternary (basalt and
andesite). Sedimentary and volcanic rocks of Oligocene
to Miocene are exposed along the east coast, and the
ages of igneous rocks become younger towards the
southwest. Subsurface igneous rocks related to the vol-
canism are plutons and dikes of gabbro, diorite, and
andesite of Miocene to Pliocene age (Petrenko, 1998,
1999; Ministry of International Trade and Industry
(abbreviated hereafter to MITI), 2001).

According to Kirsanov and Melekestsev (1991), vol-
canic activity of Mutnovsky Volcano (2,323 m) started
in the Late Pleistocene with the latest phreatic eruption
occurring in March, 2000 (Okrugin et al., 2001).
According to a tephrochronological study (Melekestsev
et al., 1987), volcanic activity of Gorely Volcano (1,829

m) started in the Early Pleistocene, resulting in
the formation of four crater lakes. Ignimbrite
emanating from Gorely Volcano now covers an
area of approximately 600 km2. The thickness
of the deposit ranges from 5 to 30 m on the
flank and from 300 to 350 m on the periphery
(Melekestsev et al., 1987). 

2.2.  Ore deposits

In addition to the Rodnikovoe deposit, the
Vilyuchinskoe, Mutnovskoe and Asachinskoe
deposits are known in the Mutnovsko-Asachin-
skaya area (Fig. 1). 

The Vilyuchinskoe deposit hosted by
Pliocene volcaniclastic rocks consists of quartz
veins that formed in faults mostly trending NE-
SW and NNW-SSE (Petrenko and Bolshakov,
1995; Petrenko, 1998, 1999; MITI, 2001). The
average grade of the Vilyuchinskoe ore is 10.3
g/t Au and 66 g/t Ag (Patoka et al., 1998). This
deposit is located closely to the Rodnikovoe
deposit, but the vein orientations and mineral
assemblages differ.

The Mutnovskoe deposit is hosted by a
series of Tertiary and Quaternary formations:
Miocene to Pliocene sedimentary and igneous

rocks, Pliocene dacite, rhyolite and rhyolitic tuff, and
Pliocene to Pleistocene volcaniclastic rocks, gabbro and
diorite. The gabbro and diorite are related to the miner-
alization. The deposit is composed of two parts: south-
ern polymetallic Cu-Pb-Zn veins and northern Au-Ag
quartz veins (Loshakov et al., 1974; Liessman and
Okrugin, 1994; Lattanzi et al., 1995; Okrugin, 1995;
Petrenko and Bolshakov, 1995; Petrenko, 1998, 1999;
MITI, 2001).

The Asachinskoe deposit is hosted by Oligocene to
Miocene andesite and Late Miocene to Pliocene basalt,
andesite and rhyolite, all overlain by Pleistocene basalt
and andesite. The mineralization is of quartz-adularia
type associated with Au and Ag selenides. The estimat-
ed ore reserve is 1.30 Mt with 30.4 g/t Au and 58.5 g/t
Ag (Petrenko, 1998; Sepeda et al., 1998).

3.  Rodnikovoe Deposit

3.1.  Outline of ore deposit

The Rodnikovoe quartz-adularia vein-type Au-Ag
deposit is located in the vicinity of the Vilyuchinskie
hot springs. The deposit is hosted by diorite, which pos-
sibly represents a subvolcanic magma chamber of
Miocene to Pliocene age (Lattanzi et al., 1995). Middle
Pleistocene ignimbrite effused from Gorely Volcano to
form a 100 m thick layer overlying the diorite (Fig. 2).
A small unit of Late Pleistocene to Holocene basaltic
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andesite lava from Vilyuchinsky Volcano occupies the
south of the area, shown in Figure 2 (Liessman and
Okrugin, 1994; Okrugin et al., 1994; Okrugin, 1995).

The ore body is exposed on the northern slope of the
Vilyucha River valley at an altitude of 230 mL. There
are three adits, designated Adit 1, Adit 2 and Adit Ort.

Adit 1 is located 200 m east of Vein No.
44. Water vented from a hot spring pre-
cipitating carbonate scale is flowing out
from Adit 1. A trench numbered 7 (desig-
nated here as Trench 7) into Vein No. 43
yielded several pieces of a range of high
grade Au-Ag ores (Fig. 4-A). Strikes of
the major veins are almost N-S, changing
to NNW-SSE in the north of the area.
Drilling exploration revealed that the
major veins dip almost vertical (80-90°
W), whereas smaller veins to the west of
the major veins dip 45-80° E (Fig. 3). 

3.2.  Mineralization stages

Mineralization in Vein No. 44 is divid-
ed into six stages defined by tectonic
boundaries. Furthermore, sub-stages are
decided by growth boundaries in each
stage. The mineral assemblage of each
mineralization stage and sub-stage is
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shown in Figure 5. 
Gold mineralizations occur intermittently in stages I

and III. Formation of hydrothermal breccias occurs in
stages III, IV and VI. Stage II consisting of pyrite and
anhydrite is barren. Stages IV and V are represented by
veinlets, cutting across ores of the earlier stages. Stage
VI consists of calcite. Ores collected from an outcrop of
Vein No. 44 near Adit Ort show high Au-Ag grades;
based on field evidence and mineral assemblages, they
were probably formed in stage III (designated here as
stage III-n). Representative ore minerals in Vein No. 44
are electrum, argentite-aguilarite, polybasite-pearceite
solid solution, lenaite, pyrite, chalcopyrite and spha-
lerite. Major gangue minerals are quartz, adularia, cal-
cite and clay minerals. Adularia tends to have precipitat-
ed just before and after the deposition of Au- and Ag-
bearing minerals. Silicified tuffaceous rocks are found
as fragments in breccia of the stages III-f and III-k.

Vein No. 43 in Trench 7 is supposed to consist of
stages III and VI. Stages III-α and III-β represent high
grade Au-Ag mineralization associated with quartz and
adularia, while stage III-γ is characterized by sphalerite,
pyrite and quartz. Stages III-β and III-γ occur only as
fragments in the breccia of stage VI-ε. Some ore frag-
ments included in stage VI-ε at Trench 7 might have
been derived from a deeper portion of the ore body.

K-Ar ages of adularia for stages I-a and III-k from
Vein No. 44 are determined as 1.1±0.1 and 1.0±0.1 Ma,
respectively (Table 1). The K-Ar age obtained for stage
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III-α (0.9±0.1 Ma) is not consis-
tent with the age of 2.7±1.0 Ma
reported by Petrenko (1999).
Field evidence and mineral
assemblages indicate that stage
III-α of Vein No. 43 corresponds
to the later part of stage III as
defined in Vein No. 44.

3.3.  Mineralogy

3.3.1. Electrum: Grain sizes of
electrum from Vein No. 43 differ
from those of Vein No. 44, with
ranges of 7-552 µm (av. 60 µm)
and 5-39 µm (av. 14 µm), respec-
tively. The chemical composition
of electrum varies with respect to
the mineralization stage. The
Ag/(Au+Ag) atomic ratio of elec-
trum decreases as mineralization
proceeds during stage I (Fig. 6);
by the beginning of stage III, it
has a wide range of composition
(45-59 atom% Ag). Thereafter, the electrum keeps a
narrow range of composition (48-55 atom% Ag). On the
other hand, electrum from stage III-n of Vein No. 43
and from stages III-α and III-β of Vein No. 43 show
wide ranges of composition (Fig. 6). 

A sample of massive Ag-sulfide ore (2 × 2 × 2 cm)
occurring as a fragment in the hydrothermal breccia in
Vein No. 43 contains electrum expressed as coarse
grains having a heterogeneous composition. Here, elec-
trum fills the interstices between euhedral quartz crys-
tals (Fig. 7).

3.3.2. Ag minerals: Grain sizes and the Se/(S+Se) atom-
ic ratios of argentite-aguilarite also differ between Veins
No. 43 and No. 44. The ranges of grain size here are 16-
110 µm (av. 53 µm) and 12-35 µm (av. 24 µm), respec-
tively, with Se/(S+Se) atomic ratios of 0.06-0.1 (av.
0.08) and 0.14-0.39 (av. 0.23). 

The Se/(S+Se) atomic ratios of polybasite-pearceite
solid solution are 0.02-0.05 (av. 0.02) in Vein No. 43
and 0.05-0.07 (av. 0.06) in Vein No. 44.
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Table 1  Results of K-Ar dating for adularia from the Rodnikovoe deposit.

No. sample Age 40*Ar/40K 40*Ar 40*Ar/Total40Ar Ave.40*Ar 40K Ave.40 K 40K Mineral
name Ma ppm ppm % % ppm

1      KR-1A 0.9±0.1 0.000053 0.000273 0.029 0.000292 4.607 4.605 5.494 adularia
0.000311 0.026 4.603

2 R1007-9 1.0±0.1 0.000061 0.000341 0.024 0.000358 4.892 4.919 5.868 adularia
0.000374 0.011 4.946

3 R1008-1 1.1±0.1 0.000065 0.000317 0.018 0.000278 3.546 3.608 4.305 adularia
0.000271 0.018 3.671
0.000247 0.018
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Lenaite (AgFeS2) occurs in stage III-n in Vein No. 44
and in stage III-α in Vein No. 43. Its grain size is 20 µm
on average, with a maximum of 35 µm. Selenium was
not detected in the lenaite. Under the microscope, lenaite
exhibits a gray to white color with strong anisotropism;
there is vivid internal reflection on a rough crystal sur-
face (Amuzinsky et al., 1995).

3.3.3. Anhydrite: Anhydrite was detected by Laser
Raman microspectrometry in stage II-d in Vein No. 44.
It occurs as inclusions in comb quartz, and exhibits aci-
cular or prismatic crystal form with on average 10-20
µm long crystals. The crystals seem to be primary inclu-
sions distributed along growth planes of quartz crystals.

4.  Hydrothermal Alteration

4.1.  Analytical methods

In order to investigate hydrothermal alteration, sam-
ples were collected from argillic parts of wall rocks in
contact with veins. The samples were separated into frac-
tions of 1-5 µm in diameter. Representative specimens
were treated with ethylene glycol for swelling, and with
HCl for unconfirmed minerals having d-spacing at 7 Å.

The specimens were measured with an X-ray diffrac-
tometer. The relative quantity of clay minerals (montmo-
rillonite, illite, chlorite and kaolinite) was estimated
based on the fundamental parameter method (Scafe and
Kunze, 1971; Oinuma et al., 1972). Regular-type mixed-
layer illite/ montmorillonite is rare, and the estimated
content of montmorillonite is less than 5 %. Yet using
visual inspection method (Higashi, 1980; Shirozu, 1988),
the estimated content of chlorite in chlorite/montmoril-
lonite mixed-layer mineral exceeded by 5 %.

4.2.  Mineral association

The argillic parts consist of montmorillonite, chlorite,
chlorite/montmorillonite mixed-layer mineral, illite,
adularia, α-cristobalite, kaolinite, calcite, pyrite and
marcasite (Fig. 8). Adularia is dominant in Vein No. 44,
and α-cristobalite has not been detected in Vein No. 43.
The alteration halo is wider around Vein No. 44 than
that around Vein No. 43. Petrenko and Ozornin (1998)
reported that the hydrothermal alteration zoning pro-
gressed horizontally from the periphery towards the
vein zone as follows: 1) epidote-chlorite-actinolite, 2)
fluorite-carbonate-epidote-illite, 3) illite-kaolinite and
quartz-illite-adularia and 4) adularia-quartz.
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5.  Fluid Inclusions

5.1.  Analytical methods

Microthermometry was carried out for primary fluid
inclusions in quartz from the Au- and Ag-bearing veins
and a veinlet recognized in Adit 1, located 200 m east
of Vein No. 44 at 240 mL. The rising temperature rates
were 0.1-0.3°C/min for ice melting and 1-3°C/min for
homogenization. 

Laser Raman analysis carried out at Fukuoka Univer-
sity was unable to detect gas components in fluid inclu-
sions in the quartz, except for H2O.

5.2.  Microthermometry

As shown in Figure 9, fluid inclusions in the higher
grade ores tend to show higher maximum homogeniza-
tion temperatures. Vapor-rich inclusions observed in
quartz of stages I-b, III-k, III-n and III-α suggest boil-
ing phenomena. The boiling temperatures were estimat-
ed to be approximately 150°C for stages I-b, III-k and
III-α and 200°C for stage III-n. The ranges of mineral-
ization temperatures were estimated to be 180-230°C

for stage II-d and 220-260°C for stage III-m.
Salinities of the fluid inclusions from the Au- and

Ag-carrying veins were 1-3 wt% NaCl equivalent,
whereas those from the veinlet were divided into two
populations. The homogenization temperature and
salinity data for stage I-b showed a slightly negative
trend (Fig. 10).

6.  Discussion

6.1.  Physicochemical conditions

Figure 11 demonstrates the log fS2 and temperature
conditions estimated by the fluid inclusion data, the
electrum-tarnish method (Barton and Toulmin, 1964),
sphalerite geothermometer (Barton and Toulmin, 1966)
and univariant mineral boundaries. As shown in this
diagram, log fS2 during gold mineralization stages was
estimated to be -17 to -11 (atm).

Mineral boundaries and total concentrations of sulfur
(logΣS) are shown on the log fS2- log fO2 diagram at 200°
C (Fig. 12-A). The estimated pH conditions are shown
in the log fO2-pH diagram (Fig. 12-B). The logΣS at
stage III-n was assumed to be approximately -2.5 to -1.5
(mol/kgH2O) with log fS2 equal to -13.5 to -11.5, result-
ing in log fO2 equal to -44.5 to -42.5. The logΣS at stage
II-d was assumed to be the same as at stage III-n.
Boundaries of calcite-anhydrite were estimated by a
reaction of CaSO4+CO2↔CaCO3+1/2S2+3/2O2 with
fugacity variations of log fCO2 ranging from -1.7 to 5.0
(Holland, 1965). The area of stage II-d shown on the
diagram was estimated based on the logΣS range and
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calcite-anhydrite boundary.
The pH was lower and the
sulfur and oxygen fugacities
were higher in stage II-d
(barren stage) than in stage
III-n (gold precipitation
stage) (Fig. 12). The higher
oxygen fugacity might be
caused by incorporation of
oxidizing solution, suggested
by the bimodal distribution of
salinity data of fluid inclu-
sions (Fig. 10).

Mineral boundaries, stabili-
ty fields of the dominant sulfur
species and solubility contours
for gold complexes in ppb as
Au(HS)2

- and AuCl2
- are

shown in the log  fO2- pH dia-
gram at 200°C (Fig. 12-B). An
ionic strength of 0.42 for stage
III-n was applied in this
assessment. The log fO2 values
were based on the log fS2-log
fO2 diagram (Fig. 12-A). The
pH conditions for the assem-
blages of illite-adularia at
stage III-n and of kaolinite-
illite at stage II-d were esti-
mated to be pH 6.16 and 4.52,
respectively. The data shown
in Figure 12-A indicate that
the solubility of Au(HS)2

- was
100 to 1000 ppb in stage III-n.
The solubility of Au(HS)2

- in
stage II-d was approximately
10 to 100 ppb in the H2S
dominant condition, whereas it was quite low in the
SO4

2- - HSO4
- dominant condition.

6.2.  Gold precipitation

Based on the fluid inclusion data and electrum-spha-
lerite geothermometry, the ore formation temperature was
estimated to be from 150 to 250°C (Fig. 11). When the
temperature is around 200°C and there are near neutral pH
conditions, a supersaturation with respect to silica in the
hydrothermal fluid is hypothesized (Izawa, 1985), which
might be caused by boiling hydrothermal fluid. The min-
eral assemblage of stage III-n indicates that the fluid was
weakly alkaline (Fig. 12-B). Under these conditions, gold
is dissolved in the hydrothermal fluid to form the predom-
inantly bisulfide thiocomplex Au(HS)2

- (e.g., Seward,
1973). Gold can be deposited from ascending hydrother-
mal fluid when boiling removes the CO2 and H2S from

the water. The removal of CO2 increases the pH of the
hydrothermal solution and thus increases the solubility of
Au(HS)2

-. The removal of H2S probably decreases the
solubility of Au(HS)2

-, leading to the precipitation of gold
(e.g., Seward, 1989). The occurrence of gold (as electrum)
has been identified from stages I-a, I-b, III-h, III-k, III-m,
III-n, III-α and III-β (Fig. 5). Among these, evidence of
boiling in fluid inclusions was observed in stages I-b, III-
k, III-n and III-α. Thus, the deposition of gold was related
to boiling of hydrothermal fluid.

Hydrothermal brecciation occurred during the
hydrothermal activities deposited gold associated with
boiling. Hydrothermal breccia is observed in stages III-
f, III-k, IV-p and VI-t (Fig. 5). An event of hydrother-
mal brecciation is marked at the beginning of stage III
(Fig. 5), subsequent to a tectonic boundary. This obser-
vation suggests that the hydrothermal brecciation event
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is also related to a choke of fractures. The choke
of the hydrothermal fluid paths in the upper part
of the ore body might have increased the pres-
sure (Roedder and Bodnar, 1980), which, associ-
ated with an upward migration of the saturation
boiling level, might have led to an event of
hydrothermal brecciation.

6.3.  Depth of mineralization

Veins are exposed inside Vilyucha River val-
ley (Fig. 2); based on topography, denudation
rates are assumed to be 0.1 mm/year at the ridges
and 0.2 mm/year along rivers (Kaizuka, 1969). A
schematic model of the hydrothermal system is
constructed in Figure 13. High grade Au-Ag ore
at stage III-n on 280 mL might have been formed
at saturation boiling level. The formation temper-
ature of 200°C at stage III-n at this altitude thus
indicated a pressure of 15.6 bar. This gives a
depth of 170 m below the water table under
hydrostatic conditions (Haas, 1971). The depths
during stages I-b and III-k on 280 mL indicating
150°C (Fig. 11) might therefore be above the
saturation boiling level.
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There are several differences between Veins No. 44
and No. 43: mineralization ages (1.1 to 1.0±0.1 and
0.9±0.1 Ma, respectively); the boiling temperatures
(200 and 150°C, respectively); the higher Se/(S+Se)
ratio in argentite-aguilarite and polybasite-pearceite
solid solution in Vein No. 44; and the larger sizes of
electrum and Ag-sulfides in Vein No. 43. Based on the
boiling temperature at Vein No. 43 on 240 mL, the boil-
ing pressure and corresponding hydrostatic depth were
calculated to be approximately 4.8 bar and 40 m below
the paleo-water table. Assuming that Vein No. 43 was
formed after Vein No. 44, the level of the paleo-water
table at stage III-α in Vein No. 43 on 240 mL might be
approximately 160 m lower than that of stage III-n in
Vein No. 44 on 280 mL.

7.  Summary and Conclusions

K-Ar ages of adularia indicate 1.1 to 0.9±0.1 Ma for
the gold mineralization stages at the Rodnikovoe deposit.
The temperature range and pH of gold mineralization
were estimated to be 150 to 250°C and neutral, respec-
tively, indicating that Au(HS)2

- is the dominant dissolved
form of Au. The gold ore body formed approximately
170 m below the paleo-water table. Intermittent precipi-
tation of gold might be attributed to boiling of the ore
fluid. Hydrothermal brecciation that occurred during the
hydrothermal activity deposited gold associated with
boiling. The occurrence of fragments of high grade Au-
Ag and polymetallic ores in the hydrothermal breccia
suggests that higher grade Au-Ag and/or polymetallic
mineralization has formed at a deeper portion of this
deposit.
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