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INTRODUCTION 
Non-pegmatitic occurrences of Be minerals constitute a diverse set of geologic 

environments of considerable mineralogical and petrological interest; they currently 
provide the majority of the world’s Be ore and emeralds and they contain the greatest 
resource of these commodities. Of the approximately 100 Be minerals known (see 
Chapter 1 by Grew; Appendix A), most occur in hydrothermal deposits or non-pegmatitic 
igneous rocks, where their distribution varies systematically with the setting and origin 
(Table 1, Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Chemography of the principal solid phases in the BeO-Al2O3-SiO2-H2O(-F2O-1) 
“BASH” system with the projected positions of helvite group and alkali Be silicates. Also 
shown are generalized fields for some of the major types natural of occurrences (cf. Table 
1, Fig. 4; see text for discussion). 

Beryllium minerals are best known from geologic systems associated with felsic 
magmatism. They also occur in a variety of settings that lack evident igneous 
associations. Environments range from the surface to the deep crust and host rocks range 
from feldspathic to carbonate to ultramafic in composition. Genetically related igneous 
rocks are felsic and share low calcium and high F contents, but are diverse in 
composition, setting and origin. Compositions range from strongly peraluminous to  
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Table 1. Beryllium minerals in non-pegmatitic deposits: formulas, use and occurrence.1 

Mineral Formula Use Family 2 Occurrence 

Behoite (Bht) 3 Be(OH)2 ore? BASH alkalic pegmatite, skarns, rhyolites 

Bertrandite (Brt) Be4Si2O7(OH)2 ore BASH granitic and alkalic pegmatites, 
greisens, skarns, veins, rhyolites 

Beryl (Brl) Be3Al2Si6O18 ore, gem BASH granitic pegmatites, greisens, skarns, 
veins, rhyolites 

Beryl v. Emerald Be3(Al,Cr,V)2Si6O18 gem BASH granitic pegmatites & metamorphosed 
equivalents, veins, metamorphic rocks

Beryllite (Byl) Be3SiO4(OH)2·H2O  BASH alkalic pegmatite 
Bromellite (Brm) BeO  BASH skarns, desilicated pegmatites 
Chrysoberyl (Ch) BeAl2O4 ore, gem BASH granitic pegmatites, skarns 
Clinobehoite (Cbe) Be(OH)2  BASH desilicated pegmatites 

Euclase (Euc) BeAlSiO4(OH) gem BASH granitic pegmatites, greisens, skarns, 
veins 

Phenakite (Ph) Be2SiO4 ore, gem BASH alkaline & granitic pegmatites, skarns, 
greisens, veins 

Bazzite (Bz) Be3(Sc,Al)2Si6O18  BASH+ alkalic and granitic pegmatites, veins 
Magnesiotaaffeite-
2N’2S (Taf) 
(“Taaffeite”, 
“Taprobanite”) 

BeMg3Al8O16 gem BASH+ Mg-Al schists (metamorphosed 
pegmatite?), skarns 

Magnesiotaaffeite-
6N’3S (Mgr) 
(“Musgravite”) 

BeMg2Al6O12 gem BASH+ metamorphosed pegmatites 

Stoppaniite (Spp) (Na, )(Fe3+,Al,Mg)2 -
Be3Si6O18·H2O  BASH+ alkaline volcanic 

Surinamite (Sur) Mg3Al4(BeSi3O16)  BASH+ metamorphosed pegmatites 
Aminoffite (Am) Ca3Be2Si3O10(OH)2  alkaline skarns 
Barylite (Bar) BaBe2Si2O7 ore alkaline alkalic pegmatite; skarns; greisens 

Bavenite (Bav) Ca4Be2Al2Si9O26(OH)2  alkaline alkalic and granitic pegmatites, veins, 
skarns, greisens 

Chkalovite (Chk) Na2BeSi2O6  alkaline alkalic pegmatites 
Epididymite (Epd) Na2Be2Si6O15·H2O ore? alkaline alkalic pegmatites, skarns 
Eudidymite (Eud) Na2Be2Si6O15·H2O  alkaline alkalic pegmatites 
Gadolinite4-(Y), –
(Ce) (Gad) Be2Fe(Y,REE)2Si2O10 ore alkaline alkaline pegmatites and granites, veins, 

greisens 
Gugiaite (Gug) Ca2BeSi2O7  alkaline skarns 
Hingganite4-(Y) 
(Hin) 

Be2( ,Fe)(Y,REE)2Si2O8-
(OH,O)2 

 alkaline alkaline pegmatites 

Hsianghualite (Hsh) Ca3Li2Be3(SiO4)3F2  alkaline skarns 

Hyalotekite (Htk) (Ba,Pb,K)4(Ca,Y)2Si8-
(B,Be)2(Si,B)2O28F  alkaline Fe-Mn “skarns”; alkaline pegmatites 

Joesmithite (Jo) PbCa2(Mg,Fe2+,Fe3+)5 
[Si6Be2O22](OH)2 

 alkaline Fe-Mn “skarns” 
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Leifite (Lf) (Na, )(H2O, )Na6Be2[Al,
Si,Zn)3Si15O39F2] 

alkaline alkaline pegmatites 

Leucophanite (Lph) CaNaBeSi2O6F ore? alkaline alkaline pegmatites; skarns 
Lovdarite (Lv) K2Na6(Be4Si14O36)·9H2O  alkaline alkaline pegmatites 

Meliphanite (Mph) Ca4(Na,Ca)4Be4AlSi7O24-
(F,O)4 

 alkaline alkaline pegmatites; skarns 

Milarite (Mil) K( ,H2O,Na)2(Ca,Y, 
REE)2(Be,Al)3Si12O30 

 alkaline alkaline & granitic pegmatites; skarns; 
veins 

Odintsovite (Od) K2(Na,Ca,Sr)4(Na,Li)Ca2-
(Ti,Fe3+,Nb)2O2[Be4Si12O36] 

alkaline alkaline veins 

Roggianite (Rg) Ca2[Be(OH)2Al2Si4O13] 
•<2.5H2O alkaline veins, pegmatites 

Samfowlerite (Sf) Ca14Mn3Zn2(Zn,Be)2Be6-
(SiO4)6(Si2O7)4(OH,F)6 

alkaline Fe-Mn “skarns” 

Semenovite-(Ce) 
(Sem) 

(Ce,La,REE,Y)2Na0-2(Ca,Na)8-
(Fe,Mn)(Si,Be)20(O,OH,F)48 

alkaline alkaline pegmatites 

Sorensenite (Ss) Na4SnBe2Si6O18·2H2O alkaline alkaline veins 
Sverigeite (Sv) Na(Mn,Mg)2Sn[Be2Si3O12(OH)] alkaline Fe-Mn “skarns” 
Trimerite (Trm) (Mn2Ca)[BeSiO4]3 alkaline Fe-Mn “skarns” 
Tugtupite (Ttp) Na4BeAlSi4O12Cl alkaline alkalic pegmatites & veins 
Wawayandaite (Ww) Ca12Mn4B2Be18Si12O46(OH,Cl)30 alkaline Fe-Mn “skarns” 

Welshite (Wsh) Ca2Mg3.8Mn2+
0.6Fe2+

0.1Sb5+
1.5O2-

[Si2.8Be1.7Fe3+
0.65Al0.7As0.17O18] 

alkaline Fe-Mn “skarns” 

Danalite (Dn) Fe4Be3Si3O12S ore helvite skarns, granitic pegmatites 
Genthelvite (Gnt) Zn4Be3Si3O12S  helvite alkaline pegmatites, carbonatite 

Helvite (Hlv) Mn4Be3Si3O12S  helvite veins, skarns, greisens, alkaline and 
granitic pegmatites 

Babefphite (Bf) BaBe(PO4)F  non-silicate placer (alkaline igneous?) 
Bearsite (Bs) Be2(AsO4)(OH) ·4H2O  non-silicate polymetallic porphyry 
Bergslagite (Bsg) CaBeAsO4(OH)  non-silicate Fe-Mn “skarns” 
Beryllonite NaBePO4  non-silicate granite and granitic pegmatites 
“Glucine” (Gl) CaBe4(PO4)2(OH)4·0.5H2O  non-silicate weathering 
Hambergite (Hmb) Be2(OH,F)BO3  non-silicate alkaline and granitic pegmatites 
Herderite (Hrd) CaBePO4(F,OH)  non-silicate greisens, granitic pegmatites 
Hurlbutite (Hrb) CaBe2(PO4)2  non-silicate granitic pegmatites, veins 
Moraesite (Mr) Be2(PO4)(OH)·4H2O  non-silicate granitic pegmatites, weathering 
Swedenborgite (Sw) NaBe4SbO7  non-silicate Fe-Mn “skarns” 
Uralolite (Ur) Ca2Be4(PO4)3(OH)3·5H2O  non-silicate greisen, granitic pegmatites 
Berborite (Bb) Be2BO3(OH,F)·H2O  non-silicate pegmatite, alkaline igneous(?), skarn 

1 More common minerals in bold. Compiled from Mandarino (1999), Strunz and Nickel (2001) and 
Appendix 1 of Chapter 1 of this volume.  
2 Minerals are grouped into the four families by common chemical characteristics: (1) predominantly BeO-
Al2O3-SiO2-H2O the “BASH” group, including a subgroup “BASH+” for minerals also containing Mg, Fe, 
Sc and Na, (2) Na-Ca-K silicates—”alkaline” group, (3) M4Be3Si3O12S helvite group, and (4) complex non-
silicates (phosphates, borates, arsenates, etc.). 
3 Abbreviations for Be- and other minerals are taken from Kretz (1983) or constructed to be consistent with 
that paper. They are used in most figures, Table 2 and Appendix A. In alphabetical order (by abbreviation) 
these are: Act (actinolite), Ad (K-feldspar var. adularia), Aeg (aegerine), Agt (aegerine-augite), Ab (albite), 
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Table 1 footnotes, continued. 
3 Abbreviations, continued: Am (amphibole), Amz (K-feldspar var. amazonite), Anc (analcime), And 
(andalusite), Ap (apatite), Ath (anthophyllite), Bt (biotite), Cal (calcite), Carb (carbonates), Chl (chlorite), 
Chr (chromite), Col (columbite), Cpx (Ca-clinopyroxene), Crn (corundum), Cst (cassiterite), Cyl (cryolite), 
Dsp (diaspore), Drv (dravite), Ep (epidote), Eud (eudialyte), Fa (fayalite), Fl (fluorite), fo (forsterite)Fs 
(feldspar), Ghn (gahnite), Grt (garnet), Hbl (hornblende), Hdd (spodumene var. hiddenite), Hem (hematite), 
Kfs (K-feldspar), Kln (kaolinite), Ky (kyanite), Mag (magnetite), Mc (microcline), Mnz (monazite), Mo 
(molybdenite), Ms (muscovite), Ne (nepheline), Ntr (natrolite), Ofs (oligoclase), Pas (parisite), Phl 
(phlogopite), Pll (polylithionite), Pl (plagioclase), Prl (pyrophyllite), Px (pyroxene), Py (pyrite), Qtz 
(quartz), Rbk (riebeckite), Sch (scheelite), Sid (siderite), Sdl (sodalite), Sid (siderophyllite), Tlc (talc), Toz 
(topaz), Tr (tremolite), Ttn (titanite), Tur (tourmaline), Ves (vesuvianite [idocrase]), W (water), Wlf 
(wolframite), Znw (zinnwaldite), Zrn (zircon).  

4 Most investigators have not distinguished gadolinite-(Y) and gadolinite-(Ce), so gadolinite-group 
minerals are simply referred to in the text as “gadolinite”. Similarly, hingganite-group minerals are simply 
referred to in the text as “hingganite.” 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
peralkaline and can be silica undersaturated. Beryllium minerals also occur in 
metamorphic and basinal environments and are redistributed by surface processes. Table 
2 summarizes the types and significance of major groups of occurrences by their 
lithologic associations. Figure 2 shows the global distribution of some important 
examples and regional belts. For most types, at least one example has been described in 
some detail and can be used to help evaluate general patterns; however, even in these 
only rarely has Be been the principal economic interest. 

Few papers cover this spectrum of deposits. The classic synthesis studies are from 
the Soviet literature (e.g., Beus 1966; Vlasov 1968; Zabolotnaya 1977; Ginzburg et al. 
1979; Grigor'yev 1986) with few extensive summaries in the western literature (e.g., 
Warner et al. 1959; Mulligan 1968; Sinkankas 1981). The golden age of investigation 
was in the 1950s and 1960s, driven by exploration interest in the U.S. and the (then) 
Soviet Union, with most papers published between about 1960 and 1985. Much quality 
work was done by Soviet scientists, a moderate amount of which is available in English 
translation. Unfortunately many of the detailed studies are in limited-distribution 
monographs and reports that are difficult to access. Many compendia of papers dealing 
with aspects of rare metal systems have been published that contain related papers (Evans 
1982; Hutchison 1988; Taylor et al. 1988; Moeller et al. 1989; Stein et al. 1990; Seltmann 
et al. 1994; Pollard 1995b; Kremenetsky et al. 2000b and earlier volumes). Continuing 
work on Be-bearing magmatic systems, particularly pegmatites, is reviewed by Černý 
(this volume) and London and Evensen (this volume). 

This chapter reviews the principal types of non-pegmatitic Be occurrences— 
magmatic, hydrothermal, metamorphic and surface-related—covering aspects of their 
mineralogy, stability, geologic framework, genesis and global distribution. Although 
there is a continuum between pegmatitic and non-pegmatitic occurrences, granitic 
pegmatites are only briefly mentioned here. In spite of the considerable study that the 
non-pegmatitic occurrences have received as possible sources of Be as a commodity or of 
Be minerals as gems or specimens, there remains a great deal to be learned about the 
characteristics and origins of these systems. 
Economic sources of beryllium and beryllium minerals 

Beryllium ore. Prior to about 1970, the main source of Be was hand-picked 
pegmatitic beryl typically from small, labor-intensive operations. New uses for Be in 
nuclear and other high-tech applications motivated extensive exploration campaigns for 
Be and other rare metals from the 1940s through the early 1960s. These efforts resulted in 
the discovery in the Soviet Union, the United States, and Canada of many significant 
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occurrences of non-pegmatitic Be mineralization. The Spor Mountain, Utah Be deposits, 
the world's most important source of Be (Cunningham 2000), were discovered during 
intensive regional Be exploration in 1959 and began producing in 1969. This exploration 
was aided by the recognition of the association of Be with chemically evolved felsic 
igneous rocks, the occurrence with F-rich rocks, and the development of neutron-sourced 
gamma ray spectrometers (“berylometers”, Brownell 1959), which enabled rapid semi-
quantitative assay in the field of the Be content of rocks (e.g., Meeves 1966). 

Global production of Be in 2000 was 226 tonnes (t) of metal equivalent of which 
about 75% (180 t) was produced in the U.S. from the Spor Mountain operation of Brush 
Wellman Corporation (Cunningham 2000). In 1998, Brush Wellman reported reserves for 
the Spor Mountain district of 7 million tonnes (Mt) at 0.26% Be (0.72% BeO) or about 
18,300 t of contained metal. Global production was down from 289 t in 1998 and 
represents less than half of world capacity. Consumption in 1998 (390 t) was 
substantially larger and was supported by sales of ore from U.S. government stockpiles. 
A total value of $140 million was based on quoted prices for Be-Cu master alloy, the 
main product. 

Presently there is little economic incentive for Be exploration, because the Spor 
Mountain district alone contains roughly 50 years of resource at current consumption 
rates and large, sub-economic resources have been identified in a number of other areas 
(Fig. 3, see Appendix A). Solodov (1977) gave general estimates for types of Be deposit 
as a function of age, setting, and type. His estimates totaled >100,000 t of contained Be 
metal of which half is in non-pegmatitic deposits with grades ≥0.05% Be. Many times 
this amount likely exist in the numerous unevaluated occurrences that resemble the  
better known deposits (data compiled in Appendix A indicate >200,000 t of contained 
Be).  

Gems. Non-pegmatitic deposits are also major sources of gems, notably emerald, 
aquamarine, red beryl and alexandrite (chrysoberyl). Desilicated granitic pegmatites and 
veins in ultramafic and mafic rocks provide emerald, chrysoberyl, and some phenakite 
(Beus 1966; Sinkankas 1981). Shear-zone and vein-type emerald deposits are also 
important, especially the black shale-hosted deposits of Colombia (Snee and Kazmi 1989; 
Cheilletz 1998). Most aquamarine occurrences are pegmatitic, however some gem 
material comes from miarolitic cavities, greisens and veins, and a considerable fraction is 
reworked by surficial processes into placer deposits. Many of the hard rock occurrences 
also produce sought-after specimens of other Be minerals such as phenakite and 
bertrandite (Sinkankas 1981; Jacobson 1993a). In 1999 U.S. production of beryl 
gemstones totaled approximately $3 million and U.S. consumption of cut emeralds (~1/3 
world total) amounted to about 5 million carats (1,000 kg) worth approximately $180 
million (Olson 2000). Global resource estimates for Be gemstones do not exist. 

Although economic deposits of Be and Be gems are limited to Spor Mountain, 
granitic pegmatites, and a large handful of gem producing districts, the varied occurrence 
of and popular and scientific interest in Be minerals merit a more general treatment.  

TYPES OF DEPOSITS 
We group Be deposits by geologic setting (Table 2) specifically emphasizing 

differences in (1) associated sources (magmas or other materials) and (2) depositional 
environment (magmatic or metasomatic, and the host). Figure 4 illustrates the general 
geologic environments for the major groups of occurrences. Beryllium deposits naturally 
divide into igneous-related and non-magmatic types. They divide further by the nature of 
the associated magma and the host rock. As explained below, host rock and magma 
compositions exert strong controls on Be mineralogy as a function of their acidity- 
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Figure 3. BeO concentrations and tonnage for some better documented Be-bearing mineral 
deposits. These are a mixture of published resource estimates and geologic inventories reflecting the 
sparse data available for Be occurrences. A considerable fraction in some systems likely resides as 
isomorphic substitutions in micas or other silicates (e.g., Beauvoir, McCullough Butte). Data and 
sources are summarized in Appendix A except for the pegmatite deposits (in black; Tanco: Sinclair 
1996, Zavintoskoe: Kremenetsky et al. 2000a) or districts (in gray; Minas Gerais: Sinclair 1996; 
North Carolina tin belt: Griffitts 1954). Most Russian deposits lack tonnages, but grade and 
minimum sizes are given by Kremenetsky et al. (2000a). The two highest grade systems with the 
highest rank (size) are plotted at their minimum reported sizes (Zavitinskoe and Ermakovskoe, 
which are italicized). The point labeled “hypothetical Be-bearing magma” illustrates the small 
amount of magma required to make a world-class Be deposit compared to 100 km3 or more for most 
other metals. 

basicity and their degree of silica saturation. Emerald deposits are commonly treated as a 
group unto themselves (Sinkankas 1981; Snee and Kazmi 1989; Cheilletz 1998); here, we 
also treat them separately, but group them by origin. The text and Figure 4 are organized 
around this geological classification in order to emphasize mineralogical and petrological 
similarities, whereas Appendix A and Figure 2 are organized geographically and can 
serve as an index to the text via the “types” columns. 

Within the igneous-related group, there is a continuum from Be-enriched magmas to 
complex behavior in pegmatites (London and Evensen, this volume) to the wide variety 
of hydrothermal deposits considered in this paper. The latter include skarns, replacement 
bodies, greisens and veins which form in aluminosilicate, carbonate, and ultramafic host 
rocks (cf. Shcherba 1970). Most non-pegmatitic accumulations form in the upper crust, 
typically in the upper 5 km. Mineral assemblages and compositions vary systematically 
with compositional variations of host rocks and related igneous rocks. Magmatic 
compositions are uniformly felsic but range from strongly peraluminous through 
metaluminous to peralkaline. Most source rocks are quartz-rich with the important 
exception of silica-undersaturated syenitic suites (Fig. 5A). Apart from sharing highly 
felsic compositions, igneous-related systems are chemically diverse (Fig. 5B). Likewise, 
tectonic settings are quite varied although moderately thick continental crust and late- or 
post-orogenic timing are common themes. It is the shared low CaO and elevated F  
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Figure 4. Sketches illustrating the main types of Be deposits. (A) Deposits associated 
with strongly peraluminous magmatism. The distinction between the Li-Cs-Ta 
enriched group and the others is gradational, see text for details. (B) Deposits 
associated with metaluminous to weakly peraluminous magmas. These rarely have 
strongly peraluminous and peralkaline phases.  
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Figure 4, continued. Sketches illustrating the main types of Be deposits. (C) Deposits 
associated with peralkaline magma types. These are further divided by silica saturation 
into undersaturated (nepheline syenites) and oversaturated (granites and quartz 
syenites). (D) Non-magmatic systems of diverse origins. Examples are listed in Tables 
2 and Appendix A; locations are shown in Figure 2. See text for further description and 
discussion. 
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contents, and not magma sources or other intensive variables such as oxidation state or 
water content, that probably favor magmatic and post-magmatic Be enrichment (Fig. 
5B,C). 

Traditionally, the magmas associated with rare metals (e.g., Li, Be, Nb, Ta, REE, W) 
have been divided into three broad groups by their associated enriched elements (e.g., 
Tischendorf 1977; Kovalenko 1978; Pollard 1989): 
• normal (biotite ± muscovite) granites with or without W(-Mo-F-Bi-Sn) 

mineralization 
• Li-F rare-metal enriched granites typically with Sn-Ta(-Nb-Cs) enrichments 
• peralkaline granites with associated Nb-Ta-Zr-F concentrations. 

This classification does not explicitly distinguish differences in alumina saturation 
(aAl2O3)or silica saturation (aSiO2). Given that these variables strongly influence Be and 
alteration mineral stability, the three traditional groups reflect neither distinct Be mineral 
assemblages nor distinct types of hydrothermal alteration. In light of this, we divide 
igneous rocks (volcanic and intrusive, including pegmatitic) and associated Be 
occurrences into four groups that emphasize differences in magmatic aAl2O3 and aSiO2 
(e.g., Shand 1927; Carmichael et al. 1974; cf. Fig. 12, below): 
• strongly to weakly peraluminous suites that range from chemically non-

specialized with W-Mo mineralization to Li-F-Sn so-called “specialized” 
granites—these have BeO-Al2O3-SiO2-H2O (“BASH”) family minerals; 
muscovitic hydrothermal alteration is characteristic, 

• metaluminous to weakly peraluminous suites with variable Nb, Ta, F, Sn, Mo 
and Li enrichments—these have phenakite, bertrandite, and helvite group 
minerals; Li-Fe micaceous hydrothermal alteration is characteristic, 

• peralkaline to metaluminous quartz-saturated suites typically with Nb-Y-F 
enrichments—these have phenakite, bertrandite, and Ca-Na-Be silicates; 
feldspathic hydrothermal alteration is characteristic, and 

• silica-undersaturated, generally peralkaline suites with high Nb-REE-Y—these 
have Ca-Na-Be silicates and helvite group minerals; feldspathic hydrothermal 
alteration is characteristic. 

There can be a wide-range of element enrichments (geochemical specialization) within 
each group. Not surprisingly, this division has parallels with Černý's classification of 
common and rare-metal pegmatites (Černý 1991a and Chapter 10, this volume). An 
advantage of using this four-part classification is that it systematizes and makes 
predictable the principal differences in Be mineral parageneses and alteration mineralogy. 
Thus it is possible, in principle, to place a deposit into one of these groups based on the 
mineral parageneses present. These compositional variations also broadly correlate with 
tectonic setting and with time as is discussed in the concluding section of this paper. In 
contrast, more traditional approaches that focus on depositional environment (e.g., skarn, 
vein, replacement, greisen etc.) do not by themselves distinguish fluid sources or broader 
environments.  

Beryllium minerals also occur in a handful of metamorphic, sedimentary and 
surficial environments (Table 2). At best, these have tenuous connections to felsic 
magmatism. Some types, such as the Colombian emerald deposits, have distinctive basin-
related hydrothermal origins, whereas others, such as some of the “shear-zone” emerald 
deposits likely form by local redistribution of materials during metamorphism 
(Grundmann and Morteani 1989). Placer accumulations are best known where coarse, Be 
minerals are sourced from high-grade metamorphic terrains (Rupasinghe et al. 1984;  



604 Chapter 14:  Barton & Young 

 
Figure 5 (opposite page). Plots summarizing whole rock chemical data for selected igneous suites 
associated with non-pegmatitic Be deposits. Major element data are from sources cited in Appendix 
A and the text. (A) Total alkalis vs. silica showing fields for rock suites grouped by alumina 
saturation (same as in B). Compositional ranges for alkaline and subalkaline global volcanic rocks 
shown for comparison (Wilson 1989). (B) Al2O3 and CaO contents normalized to 
(Na2O+K2O+CaO) for Be-associated igneous suites highlighting the wide range of alkalinities and 
aluminum saturation index (ASI = molar Al2O3/(Na2O+K2O+CaO) but low overall CaO. This 
projection shows the location of the boundaries for strongly peraluminous, weakly peraluminous, 
metaluminous, and peralkaline compositions while highlighting the relative CaO contents. (C) and 
(D) Beryllium, F and Li concentrations in glasses (Macusani, Spor Mtn., Topaz Mtn., Khaldzan-
Buregtey), other volcanic rocks and intrusive rocks (data from Coats et al. 1962; Tauson et al. 1978; 
Christiansen et al. 1984, 1988; Černý and Meintzer 1988; Pichavant et al. 1988a; Trueman et al. 
1988; Kovalenko et al. 1995b; Raimbault et al. 1995). Also shown on the right-hand side of (C) is 
beryl solubility at 650°C in granitic melt for ASI values of 1.0 and 1.3 (Evensen et al. 1999). Note 
the contrasting trends for magmatic evolution—strongly peraluminous systems evolve to Li-Cs-Ta-
enriched compositions (“LCT”), whereas most other systems show more subdued rare alkali 
enrichment (cf. the Nb-Y-F = “NYF” mixed types of Ç ern ¥  1991a). 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Dissanayake and Rupasinghe 1995). These commonly provide outstanding gem material 
(Sinkankas 1981). 

Emerald deposits deserve special comment because of their economic importance 
and popular appeal. They form with granitic pegmatites and magmatic-hydrothermal 
veins of many types, by local metamorphic redistribution of materials, and in basin-
related and metamorphic-derived hydrothermal systems. Like other Be deposits, no single 
factor controls emerald formation save for the requirement of Cr (± V) from local host 
rocks to generate their deep green color. 

BERYLLIUM MINERAL COMPOSTIONS 
Most of the Be minerals listed in Table 1 exhibit little natural compositional 

variability (e.g., Chapter 1 by Grew, this volume; Chapter 10 by Černý, this volume). In 
non-pegmatitic occurrences, the main exceptions are the beryl group (beryl, stoppaniite 
and bazzite, plus structurally related milarite) and the helvite group (helvite, danalite, and 
genthelvite), plus minerals including the taaffeite group, the gadolinite group and 
meliphanite-leucophanite. Given the variably F-rich nature of Be occurrences, 
substitution of F for OH may be more common than appreciated even though evidence 
for this substitution mainly restricted to herderite, euclase and bertrandite (Beus 1966; 
Hsu 1983; Lebedev and Ragozina 1984; see Chapters 10 and 13, this volume by Černý 
and Franz and Morteani, respectively). A few other minerals such as chrysoberyl have 
minor, though petrologically and gemologically interesting variations in cation contents. 
Examination of compositional patterns in the beryl and helvite groups both documents 
systematic differences with environment and yields insight into differences in the 
conditions of formation. 
Beryl group—( ,Na,Cs,H2O)(Be,Li)3(Al,Sc,Fe+3,Cr,Fe+2,Mg)2[Si6O18] 

Composition. The compositions of beryl and related minerals have long been known 
to vary with geologic environment (Fig. 6A; Staatz et al. 1965; Beus 1966). The principal 
chemical substitutions in the beryl structure, C T(2)Be3

OAl2[
T(1)Si6O18], can be 

represented as: 
C OAl+3 = C(Na,K)O(Mg,Fe+2,Mn+2) (1) 
C T(2)Be+2 = C(Na,Cs,Rb)T(2)Li (2) 
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Figure 6. Beryl compositions plotted in terms of transition metal and alkali contents (except Li) per 
formula unit (6 Si). Broadly, this corresponds to octahedral and channel substitutions as noted on the 
diagram (following Aurisicchio et al. 1988; see Hawthorne and Huminicki, this volume). (A) Data 
classified by general geologic environment. Compare Figure 7. See text for discussion. (B) Data 
classified by color (as reported by the authors). The arrow indicates the trend from pale blue to dark 
green color in the Somondoco, Colombia (Kozlowski et al. 1988) and Khaltaro, Pakistan (Laurs et 
al. 1996) emerald localities. Many analyses including most alkali beryls have no reported color and 
are not plotted—most may be colorless or weakly colored. (Data compiled from Deer et al. 1978; 
Aurisicchio et al. 1988; Kozlowski et al. 1988; Laurs et al. 1996; Calligaro et al. 2000; S. Young 
and M.D. Barton, unpubl. analyses). 
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OAl+3 = O(Fe+3,Sc+3,Cr+3,V+3) (3) 
C  = C(H2O, CO2, Ar) (4) 

(Aurisicchio et al. 1988, Černý, this volume, Hawthorne and Huminicki, this volume). 
The first two coupled substitutions lead, respectively, to “octahedral” (Exchange 1) and 
“tetrahedral” (Exchange 2) beryls. Both are probably limited to no more than about 0.5 
per formula unit (pfu) because they lead to underbonding on one of the oxygens in the 
beryl structure (Aurisicchio et al. 1988; cf. Fig. 6A). In contrast, exchange between Al+3 
and other trivalent cations in the octahedral site (Exchange 3) can go to completion, as 
evidenced by the end-member minerals bazzite (Sc+3) and stoppaniite (Fe+3). Other 
substitutions are permissible. Li can exchange with Na and Cs in the alkali site as 
demonstrated by experiment (Manier-Glavinaz et al. 1989b); however, its importance in 
nature is unclear given that atomic Li rarely exceeds the other alkalis less divalent cations 
(i.e., the amount required for type 2 exchange).  

Non-pegmatitic beryls range from end-member beryl to large octahedral 
substitutions by both Exchanges 1 and 3. In these beryls, tetrahedral substitution is minor 
(Fig. 6A). In contrast, pegmatitic beryls—except for pegmatite-related emeralds—range 
from nearly pure compositions with at most limited type 1 exchange (<0.2 pfu) to quite 
high values of type 2 exchange (~0.5 pfu; Fig. 6). The most extensive type (1) 
substitution occurs in metamorphic-hosted beryls—both emeralds and non-emeralds 
(e.g., Franz et al. 1986). The more extensive type (3) substitutions, up to bazzite and 
stoppaniite, occur in metaluminous granites and syenites as well as in some metamorphic 
rocks. Channel volatile contents (dominantly H2O) can be virtually nil, as in volcanic red 
beryl (Shigley and Foord 1984), but fall mostly between ~0.6 and 2.8% in both 
pegmatitic and non-pegmatitic types. Other components typically reflect host rock 
compositions: V in sedimentary rocks, Mn in chemically evolved pegmatites and 
volcanic rocks, Cr and Mg in ultramafic, mafic and some sedimentary rocks, and Sc and 
in Fe+3 in A-type (mildly alkaline, oxidized) granites. Where chrysoberyl forms in the 
same settings, for example in desilicated pegmatites as the gem variety alexandrite, it 
accommodates Fe+3 and Cr to about the same degree as beryl. 

Milarite, (K, ,H2O,Na)2(Ca,Y,REE)2[(Be,Al)3Si12O30], resembles beryl in having a 
structure of double six-membered rings interconnected by Be tetrahedra and Ca octahedra 
(Hawthorne and Huminicki, this volume). As in beryl, alkalis and water can substitute in 
channels which in milarite are defined by stacking of the double rings. Milarite occurs in 
skarns, alpine veins and various alkaline-related metasomatic rocks (Appendix A) as well 
as in various types of pegmatites (Černý, Chapter 10, this volume). Compositional 
variations of milarite are sparsely documented, but the (Y, REE)-rich varieties appear to 
be more common in alkaline settings (cf. Černý). 

Color and composition. Not surprisingly, transition-metal-rich, octahedrally sub-
stituted beryls typically have more intense colors, mostly blues or greens, although red is 
characteristic of volcanic-hosted beryl (Fig. 6B). Pegmatitic beryls can be intensely 
colored (e.g., aquamarine and emerald), however, most tetrahedrally substituted beryls, if 
not colorless, tend to be pale in color, typically pink, less commonly yellow, green  
or blue. 

In emerald, the intense green color reflects substitution of Cr+3 for Al+3 and a paucity 
of Fe (Fig. 7A) regardless of setting, whereas the rare alkali content does reflect their 
environment of origin (Fig. 7B). The latter is true in spite of the fact that all emeralds are 
dominated by the octahedral substitution (Fig. 6A). Given these patterns and the great 
interest in emeralds in the gem trade, it is obvious why chemical fingerprinting of 
emerald provenance has been pursed with some vigor and success (e.g., Dereppe et al. 
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2000). Emerald is properly restricted to beryl where Cr exceeds other coloring agents by 
weight (Kazmi and Snee 1989a). The analogous substitution of V+3 in beryl also creates 
an intense green coloration that is often termed emerald. Even the deep red Mn-rich 
volcanic-hosted beryl from Utah has been marketed, controversially, as “red emerald” 
(Spendlove 1992). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Emerald and other beryl compositions from the literature (see Figure 6 for sources). (A) 
Plot illustrating the elevated Cr contents and low Fe to Mg (etc.) ratios of emeralds compared to 
other types of beryls. This illustrates the main difference with other environments. Cr is not reported 
in many of the other analyses; it may have either been below detection or not sought. As in Figure 6, 
the arrow shows the trend from pale blue to dark green colored beryls at Somondoco, Colombia 
(basin-related) and Khaltaro, Pakistan (pegmatite). (B) Plot of rare alkalis in emeralds from various 
settings illustrating variations analogous to those seen in other beryls. See text for discussion. 
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Petrologic controls on beryl composition.  A simple analysis of the common 
substitutions in terms of alumina activity (aAl2O3) and the availability of other cations 
helps rationalize their correlation with geologic environment. In the simplest case, 
illustrated by equation 5, the type 3 substitution of trivalent Cr, Fe, V and Sc for Al will 
be promoted by the relative abundance of these elements in certain rocks or by decreasing 
aAl2O3. Alumina 

OAl+3 + 0.5 M2O3 = O(M+3) + 0.5 Al2O3 (5) 
activity will be low in aluminum-deficient assemblages (e.g., many ultramafic and 
carbonate rocks) and in alkaline igneous rocks. Reaction (6) shows that alkalinity and 
alumina activity inversely correlate in feldspar-bearing rocks: 

NaAlSi3O8,plagioclase = 0.5Na2O + 0.5Al2O3 + 3 SiO2 (6) 
Similarly, any combination of decreasing aAl2O3, increasing alkalinity, or increasing 

availability of (Mg, Fe, Mn)O will promote type 1 (octahedral) substitution: 
C OAl+3 + 0.5 A2O + MO = CA+1OM+2 + 0.5 Al2O3 (7a) 
C OAl+3 + NaAlSi3O8 + MO = CNa+1OM+2 + Al2O3 + 3 SiO2 (7b) 

Thus, as observed, beryl group minerals forming in metaluminous igneous rocks and in 
ultramafic or carbonate host rocks should generally have higher octahedral substitutions 
than beryls from peraluminous varieties. For example, emerald and green vanadian beryls 
are most common in rocks lacking muscovite (e.g., Kazmi and Snee 1989b). Ferric-iron-
rich aquamarines, the Fe+3 end member stoppaniite, and the Sc+3 end member bazzite are 
most typical of metaluminous rocks—biotite granites or, in the case of stoppaniite, 
syenite (Ferraris et al. 1998; Della Ventura et al. 2000). Conversely, in some circum-
stances Fe contents may be suppressed either by intrinsically low Fe relative to other 
octahedral cations (as in ultramafic rocks) or by sequestration in other phases (e.g., pyrite 
in the Colombian emerald deposits, Ottaway et al. 1994). 

The tetrahedral (type 2) substitution is common in Li-Cs-Ta pegmatites, but 
apparently is rare elsewhere. It logically follows Reaction (8) where availability of Li or 
Cs is the key. 

C T(2)Be+2 + 0.5 Li2O + 0.5 A2O = CAT(2)Li + BeO (8) 
Increasing overall alkalinity (reaction 6) is not likely to be a factor given that Li-Cs-Ta 
pegmatites are strongly peraluminous (Černý 1991a), but it could contribute to tetrahedral 
substitution in some mildly alkaline greisen-type systems. Unfortunately very few 
complete beryl analyses are available for the latter. One might expect octahedral 
substitutions to accompany the tetrahedral except for the fact that highly evolved 
pegmatites with high Li and Cs have very low contents of Mg and Fe and only modest 
Mn. This may contribute to the separation of the field for tetrahedrally substituted beryls 
from the other occurrences in Figure 6A. 
Helvite group—(Mn,Fe,Zn)4[BeSiO4]3S) 

Composition. Helvite-group minerals are present in minor quantities in Be-bearing 
skarns, alkaline igneous settings, and some hydrothermal veins. Changes in Mn-Fe-Zn 
ratios spanning all three end-members account for most of compositional variation in the 
helvite group (Fig. 8). Rarely, Al substitutes for Zn; Finch (1990) proposed that the 
mechanism is 2 Al+3 +  = 3 Zn+2 based on compositional variations in hydrothermal 
genthelvite from the syenitic Motzfeldt intrusion, Greenland which contains to ~10 wt % 
Al2O3. Other elements might be present, for example Na given the structural similarity 
with tugtupite (Na4[BeSiO4]3Cl), or Cd where genthelvite coexists with greenockite 
(Nechaev and Buchinskaya 1993). 
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Figure 8. Analyzed helvite group minerals plotted in terms of the end member compositions and 
distinguished by geologic environment (sources of data include: Vlasov 1966b; Dunn 1976; Kwak 
and Jackson 1986; Larsen 1988; Perez et al. 1990; Ragu 1994a). The inset shows the chemographic 
relationship of helvite group minerals to silica, phenakite, and Mn-Fe-Zn oxides, sulfides and 
silicates. 

As illustrated in Figure 8, helvite-group compositions differ systemati-cally between 
genetic environments. Zinc-rich compositions (genthelvite) with or without Al typically 
occur in pegmatites, miarolitic cavities or veins associated with metaluminous to peralka-
line granites and syenites (Burt 1988; Larsen 1988; Perez et al. 1990). Peraluminous 
granitic pegmatites and occurrences in base-metal-sulfide veins and replacements are 
typically Mn-dominated, whereas variable Fe:Mn varies from near end-member danalite 
to helvite in skarns and Sn lodes (greisens), with danalite being dominant common in the 
more reduced systems (Burt 1980; Kwak and Jackson 1986). 

Petrologic controls on helvite-group compositions. The unusual composition of the 
helvite group—combining Be2SiO4, a metal sulfide, and a metal orthosilicate (Fig. 8 
inset)—means that these minerals are sensitive to redox and sulfidation states as well as 
to the activity of phenakite (Burt 1980, 1988). Conditions favorable for formation of the 
various end-members differ based on the relative stability of the related sulfides and 
silicates as illustrated in Figure 9. For each of the three, maximum stability occurs along 
the boundaries where their respective orthosilicates and monosulfides coexist along with 
phenakite. Departure from the ideal conditions by oxidation, reduction, gain or loss of 
sulfur, or reducing the activity of phenakite will all be unfavorable. Hence, low aAl2O3 
(“alkaline” conditions) favor helvite group minerals because beryl replaces phenakite and 
lowers aBe2SiO4 with increasing aAl2O3 (see next section). Danalite preferentially occurs in 
reduced and low sulfidation state environments; helvite dominates in more sulfidized, 



 Non-pegmatitic Deposits of Beryllium 611 

Mn-rich settings where pyrite and sphalerite sequester Fe and Zn; and genthelvite is 
restricted to relatively oxidized but low sulfur settings characteristic of many 
(per)alkaline rocks where Fe and Mn mainly enter oxides and other silicates (cf. Burt 
1980, 1988). 

 

 

 

 

 

 

 

 

 

 

Figure 9. Helvite group mineral stability a function of oxidation and 
sulfidation state relative to some other zinc, iron and manganese minerals. End 
members should have maximum stabilities on the orthosilicate- monosulfide 
boundaries (inset; also see Fig. 8 inset). Note the that maximum stability for 
danalite would project along the dashed line were it not for magnetite 
formation. Calculated using thermodynamic data from Barton and Skinner 
(1979) and Robie et al. (1978). 

Other minerals 
Gadolinite group minerals, (Y,REE)2(Fe, )[Be2Si2O8](O,OH)2, leucophanite, 

CaNaBeSi2O6F, and meliphanite, Ca4(Na,Ca)4Be4AlSi7O24(F,O)4, occur mainly in 
alkaline or metaluminous pegmatites or miarolitic cavities but are also found in a handful 
of alkaline-rock related hydrothermal deposits (Table 1, Appendix A). Little is published 
about gadolinite-group compositions in non-pegmatitic occurrences. Based on the study 
of Pezzotta et al. (1999) who studied a range of granite-related occurrences in the 
southern Alps, considerable variation in Y / LREE / HREE would be expected as well as 
variable B contents. Leucophanite and meliphanite solid solutions are reported from 
alkaline metasomatites (Ganzeeva et al. 1973; Novikova 1984) presumably reflecting 
differences in Ca/Na. 

BERYLLIUM MINERAL STABILITIES 
Available data on beryllium mineral stabilities, derived from experiment, theory and 

natural assemblages, provides a valuable framework for classification and understanding 
of natural occurrences. Published studies on Be mineral stabilities are summarized in 
Appendix B and have been reviewed extensively elsewhere (Barton 1986; Burt 1988; 
Wood 1992; Franz and Morteani, London and Evensen, Chapters 13 and 11, respectively, 
this volume). Most of this work has focused on the BeO-Al2O3-SiO2-H2O (BASH) 
system and coexisting melts and aqueous fluids. Here we briefly review mineral 
equilibria and solubilities of particular relevance to non-pegmatitic deposits and focused 
on BASH minerals. 
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The figures presented here were calculated using the internally consistent 
thermodynamic model for BASH phases and topaz from Barton (1982b, 1986), which 
were adapted to the SUPCRT database (Johnson et al., 1992) by adjusting for differences 
in the enthalpy of formation of Al2O3 between the databases, and refitting the heat 
capacities to the Meier-Kelly function. Presently, there is a need to reevaluate the 
thermodynamic data for BASH minerals by including results published since 1985 
(Appendix B) in a rigorous fit. In addition, one could also build a thermodynamic model 
for other phases, such as the helvite group and the Na-Be silicates, by combining 
available experimental data with constraints from natural assemblages. 
Pressure-temperature-activity relationships 

P-T. Other than for the BASH system there are essentially no reversed equilibrium 
data for the pressure-temperature stability fields of Be minerals (Appendix B). In the 
BASH system, the salient characteristics of pressure-temperature phase relationships 
(Fig. 10) are (1) that the hydrous minerals (excepting beryl) are stable only at 
temperatures below 500°C and (2) that the assemblages are not distinctly pressure 
sensitive. Bertrandite persists only up to about 300°C. The lower limit of beryl stability is 
between 200 and 350°C depending on coexisting minerals (Fig. 10 inset). In quartz-
bearing assemblages, chrysoberyl is restricted to near-magmatic and higher temperatures, 
although the position of the reaction chrysoberyl+quartz = beryl+aluminum silicate is 
sensitive to beryl composition and its position remains controversial. See Barton (1986) 
and Franz and Morteani (this volume) for further discussion of these relationships. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Pressure-temperature projection of phase relationships in the BeO-Al2O3-SiO2-H2O 
(BASH) system. Redrawn from Barton (1986). Limiting reactions for bertrandite and beryl both can 
depend on solid solution effects, F for OH in bertrandite, and multiple components in beryl (inset). 

T-activity.  In contrast to the limited insight available from the P-T relationships, 
activity diagrams are of considerably greater utility in understanding the occurrence of Be 
minerals because of the metasomatic origin of most non-pegmatitic Be deposits (Figs. 9, 
11-14). The most useful independent variables are: (1) temperature, which varies 
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markedly in time and space in most Be-bearing geologic systems, and (2) the activities of 
the major components, notably alumina and silica. Silica and alumina are key because 
they frame the thermodynamic conditions defined by many rock-forming minerals and, in 
addition, can be related to alkalinity of melts and fluids through reactions (6) and (9). 
Reaction (9) relates fluid acidity to alkalinity in the presence of plagioclase when aAl2O3 
and aSiO2 are defined. 

H+ + NaAlSi3O8,plagioclase = Na+ + 0.5 H2O + 0.5 Al2O3 + 3 SiO2 (9) 
Figure 11 plots BASH mineral assemblages in terms of each aSiO2 and aAl2O3 as 

functions of temperature. At high T, beryl, phenakite, and chrysoberyl (T > 600°C) are 
stable at high silica activities (Fig. 11A,C. With decreasing silica activity beryl is 
replaced by chrysoberyl+phenakite and phenakite is ultimately replaced by bromellite. 
This is the characteristic sequence found in desilicated pegmatites. A similar progression 
occurs at lower temperatures except that chrysoberyl is strongly quartz undersaturated 
and first euclase and then bertrandite become key phases. Skarns and carbonate hosted 
replacement bodies typically exhibit zoning that reflects these varying degrees of silica 
saturation and paths from high- to low-temperature across Figure 11A. At ≤1 kbar 
solutions can become strongly undersaturated with respect to quartz, whereas at higher 
pressures they may stay closer to quartz saturation (Fig. 11A inset). These contrasting 
paths rationalize differences observed in carbonate-hosted hydrothermal systems. 

Another useful contrast comes from consideration of aAl2O3, a variable which 
highlights differences between Al-rich and Al-poor assemblages (Fig. 11B).  
The saturation surface for the Al-only phases, corundum (T > 360°C) and diaspore  
(T < 60°C), neither of which is stable with quartz, bounds the top of the diagram. Quartz 
coexists with andalusite at high temperature, but then pyrophyllite followed by kaolinite 
formed with decreasing temperature. Chrysoberyl and euclase are the characteristic 
minerals at high aAl2O3, whereas beryl occupies an intermediate field (Fig. 11B). In 
contrast, phenakite and bertrandite are stable only at distinctly lower aAl2O3 conditions 
until bertrandite and kaolinite become stable together at about 225°C. A key boundary is 
that between K-feldspar and muscovite which separates strongly peraluminous 
assemblages from others. Considering this reaction, it becomes clear why in most quartz-
bearing rocks, beryl is the dominant silicate down to relatively low temperatures barring 
conditions of unusual acidity (as in some greisens) or basicity (as in peralkaline rocks). 
On cooling in the presence of muscovite and K-feldspar, only below T ≈ 300°C does 
beryl give way to phenakite+quartz (arrow in Fig. 11B). Solid solution will expand the 
beryl field to still lower temperatures (Fig. 10 inset). 

Odintsova (1993)derived an analogous topology as a function of aBeO and 
temperature. She subsequently use it to interpret the paragenesis of ultramafic-hosted 
emerald deposits in the Ural Mountains (Odintsova 1996). Because BeO is rarely more 
than a minor component, most assemblages will only have a single saturating Be phase, 
thus relationships among Be-bearing mineral assemblages are more readily applied when 
cast in terms of other components. 

Activity-activity.  Projecting the variables from Figure 11 into aAl2O3 - aSiO2 space (Fig. 
12) provides a particularly revealing look at Be mineral assemblages because reactions 
among rock-forming minerals separate major rock types on the same diagrams. In Figure 
12, quartz-saturated rocks (granitoids, rhyolites, etc.) lie along the top of the diagrams 
passing downward into undersaturated rocks. The latter are split by key reactions such as 
Mg2SiO4 + SiO2 = Mg2Si2O6. Saturation with muscovite and andalusite occurs along the 
right boundary, defining strongly peraluminous rocks, whereas peralkaline assemblages 
(and rocks) are located near the acmite-bearing reaction that passes diagonally across the 
left half of the diagram. 
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Figure 11 (opposite page). (A) Beryllium mineral stability as a function of temperature and 
concentration of aqueous silica at 1000 bars. Shading outlines the upper aSiO2 limit of chrysoberyl, 
the lower aSiO2 limit of beryl, and the upper thermal stability of euclase. The inset shows aqueous 
silica concentrations at two pressures and 3 alternative fluid paths. Path (a) represents cooling with 
little decompression and would remain quartz saturated; path (b) represents decompression, whereas 
path (c) represent isobaric cooling but quartz undersaturation because of the low-P retrograde 
solubility of quartz. See text for additional discussion. (B) Beryllium mineral stability as a function 
of temperature and the activity of alumina (corundum) at 1000 bars. Shading outlines stability limits 
for beryl, the upper aAl2O3 limit for phenakite/bertrandite, and the upper thermal stability of euclase. 
Note the arrow and label for the lower limit of stability for beryl in the presence of K-feldspar (cf. 
inset in Fig. 10). (C) BASH mineral compatibilities at 225, 350 and 500°C projected from H2O onto 
the BeO-Al2O3-SiO2 plane (cf. Fig. 1). Mineral abbreviations from Table 1. (A) and (B) are 
modified from Barton (1986). 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

By examination of the superimposed Be mineral stability boundaries at 600°C (Fig 
12A), it is clear why beryl is typical of strongly peraluminous granitoids and rocks, why 
phenakite (± helvite group) is common in metaluminous and peralkaline rocks, and why 
alkali Be silicates occur in peralkaline silica-undersaturated rocks. Chrysoberyl has a 
large stability field but only for unusual rocks that must be Al-rich and Si-poor (e.g., 
desilicated pegmatites). With decreasing temperature, the fields for euclase and, 
especially, the Al-free Be silicates expand at the expense of the beryl and chrysoberyl 
fields. Topologically-correct phase boundaries for beryllite, epididymite and chkalovite 
are shown in the upper left based on occurrences in peralkaline syenites. The breadth of 
the phenakite/bertrandite fields is consistent with widespread occurrence of these 
minerals in low-temperature deposits, particularly carbonate replacements. The right 
hand side matches assemblages found in strongly peraluminous igneous-hosted greisens 
(top) and in silica-undersaturated greisens developed in carbonate rocks (right; the 
meaning of greisen is discussed below). 

Activity relationships in terms of other components are germane to a number of 
occurrences, particularly HF, CaO, MgO and P2O5. Increasing the activity of acid 
fluoride species leads to topaz replacing other Al-bearing silicates and fluorite replacing 
other Ca-bearing minerals—these are typical minerals of greisens (Burt 1975, 1981). 
Phenakite and bertrandite replace beryl and euclase with increasing HF as well as with 
increasing alkalinity (e.g., K+/H+, see Fig. 13, cf. Fig. 11B) consistent with their 
widespread occurrence in greisens of various flavors. Fluorine has a similar role in Ca-
bearing rocks, where fluorite formation sequesters Ca and leads to more acid (Al-
dominated) mineral assemblages. This was considered by Burt (1975) who used natural 
assemblages to derive topologies for activity diagrams involving P2O5, CaO and F2O-1 
and analyze the relationships between beryl, phenakite and various Be phosphates. 

Beryllium mineral parageneses in the Ca-Mg silicate assemblages of ultramafic and 
carbonate hosted deposits can also be usefully visualized by recasting phase relationships 
in terms of the activities of CaO, MgO and SiO2. For example, Figure 14 illustrates 
possible phase relationships and zoning paths in desilicated pegmatites or quartz-feldspar 
veins at 500°C and 3 kbar. Starting with a granitic/vein assemblage on the high-silica 
side, paths can go upward (as in a dolomitic limestone) into the actinolite (or 
clinopyroxene) field and yield zoning from beryl to chrysoberyl to phenakite or 
downward into phenakite and ultimately bromellite. Under these particular conditions, 
beryl is near its stability limit (Fig. 14 inset) and small differences in solid solution can 
have significant differences in the position of phase boundaries and thus paths. 

The meaning of greisen. Many Be-bearing rocks are referred to as greisen, which 
refers to a broad spectrum of Al-bearing metasomatic rocks that are typically F-rich and  
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Figure 12. Beryllium mineral stabilities as a function of silica and alumina activities. The diagrams 
illustrate the preeminent control that these rock-defined variables have on mineral assemblages in 
Be-bearing hydrothermal systems. (A) Phase relationships of Be minerals as a function aAl2O3 and 
aSiO2 at 600°C and 1 kbar related to mineralogy in felsic igneous rocks. The field for chkalovite 
stability is speculative although topologically plausible and is consistent with the recent work by 
Markl (2001). (B) Phase relationships of Be minerals as a function aAl2O3 and aSiO2 at 250°C and 1 
kbar related to mineralogy in felsic igneous rocks and some major groups of Be deposits. The 
activity of beryl = 0.5. The speculative fields for beryllite, chkalovite, epididymite / eudidymite are 
consistent with their chemography and mineral associations reported from alkaline syenitic 
pegmatites (stable with albite and analcime). 
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Figure 13. Calculated Be mineral stability 
as a function of H·F and K/H at 1000 bars 
and temperature of 400°C (A) and 200°C 
(B). The P-T dependence of limiting reac-
tions is shown in the inset in Figure 10. 
Similar topologies are discussed by 
Kupriyanova et al. (1982) and Burt (1981). 

 

 

 

 

 

 

 

 

Figure 14. One topology for 
phase relationships of Be 
minerals in ultramafic-hos-
ted deposits at 500°C and 3 
kbar. The arrows represent 
two alternative evolutionary 
that are paths discussed in 
the text. Chlorite is present 
throughout and activities of 
beryl and clinochlore are 
reduced. The inset shows a 
schematic water-saturated 
granite solidus and the 
calculated position of the 
dehydration reaction for 
beryl+chlorite = phena-
kite+chrysoberyl+talc, dem-
onstrating that on the 
activity diagram the field of 
beryl will expand sig-
nificantly at lower temper-
atures, helping to account for 
the scarcity of phenakite and 
chrysoberyl in ultramafic-
hosted occurrences. 



618 Chapter 14:  Barton & Young 

commonly contain one or more newly formed mica group minerals (Shcherba 1970; Burt 
1981; Kotlyar et al. 1995). Greisen is most common in feldspathic host rocks, but it is 
described in many protoliths including carbonate and ultramafic rocks (“apocarbonate” 
and “apoultramafic” greisens, respectively, see Shcherba 1970). This traditional, broad 
definition lacks the mineralogical specificity to be petrologically useful. In this paper, 
rather than restrict the long-ingrained usage, we simply focus on the mineral assemblages 
and note their implications for intensive variable such as aAl2O3 or acidity. For example, 
whereas a beryl-bearing topaz-quartz-muscovite greisen is intrinsically acid (Fig. 13; e.g., 
from Aqshatau, Kazakhstan), a phenakite-bearing polylithionite greisen (e.g., from Thor 
Lake, Canada) is intrinsically alkaline compared to assemblages containing spodumene, 
as demonstrated by Reaction (10): 

2 LiAlSi2O6 + 3 SiO2 + K+ + Na+ + 2 H2O = 
                          KLi2Al[Si4O10](OH)2 + 2 H+ + NaAlSi3O8 (10) 

Solubility relationships 
Another requirement in understanding Be occurrences is the behavior of Be in 

fluids—aqueous solutions and silicate melts. Although few experimental data exist 
(Appendix B; London and Evensen, this volume), the principal results merit comment 
here because they yield useful insight into the processes and patterns in non-pegmatitic 
deposits. 

Aqueous fluids.  BeO is only sparingly soluble in pure water, however Be 
compounds with F-, CO3

-2, Cl- and SO4
-2 are all significantly soluble (or decompose) in 

water at room temperature. These potential ligands plus OH- have received some 
attention from experimentalists, although not necessarily in experiments designed to yield 
thermodynamic data (Appendix B). The nearly ubiquitous association of F-bearing 
minerals with Be deposits has led many investigators to postulate that complexing by F– 
is important (Beus 1966). A few others have advocated other complexes, particularly for 
those deposits where F is apparently absent and other potential ligands such as CO3

-2 or 
SO4

-2 are abundant (e.g., Griffitts 1965; Reyf and Ishkov 1999). 
In his review and synthesis of the existing experimental data, Wood (1992) 

concluded that only F-, F--CO3
= and F--OH- complexes can generate aqueous Be 

concentrations >1 ppm in equilibrium with phenakite or bertrandite at temperatures up to 
300°C and at plausible pH conditions. According to Wood’s analysis, fluoride complexes 
(BeF+, BeF2°, BeF3

-, BeF4
-2) predominate at lower pH (2-5) whereas a mixed F--CO3

= 
complexes (e.g., BeCO3F-) may dominate at higher pH (5-7), particularly where [F-] and 
[CO3

=] both exceed about 0.01 molal. Beryllium concentrations exceeding 1 ppm seem 
necessary to make many Be deposits, which commonly have >1000 ppm Be. In some 
settings, lower concentrations may suffice, as for instance in the case of the Colombian 
emerald deposits where Renders and Anderson (1987) believe that OH- complexes were 
sufficient to move all the Be necessary to make the emeralds (but cf. Banks et al. 2000). 

In spite of their obvious importance to understanding many hydrothermal deposits, 
aqueous Be concentrations at T > 300°C are virtually unexplored except for a very few 
studies. As is the case at lower temperatures, F- is implicated as though not proven to be 
the key complexing agent. Beus et al. (1963) found significant Be concentrations in F-
bearing solutions that had reacted with beryl, alkali feldspar and quartz at 490-540°C. 
This is consistent with evidence from experiments on fluids equilibrated with Macusani 
rhyolite at 650°C and 2 kbar (London et al. 1988). Macusani rhyolite melt (39 ppm Be, 
1.3% F) furnishes only 6 ppm Be and 0.35% F to coexisting aqueous fluid (London et al. 
1988). Given these results and the fact that beryl solubility in Macusani melts is near 500 
ppm Be (Evensen et al. 1999), one can speculate that a plausible maximum Be 
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concentration in a magmatically-derived aqueous fluid would be on the order of 100 ppm. 
Such concentrations resemble those calculated by Wood (1992) at lower temperatures for 
phenakite- and bertrandite-bearing assemblages. They are more than adequate to make a 
major Be deposit. 

Silicate melts. Beryllium solubility in felsic melts and its partitioning with coexisting 
minerals and aqueous fluids has been extensively studied by David London and 
coworkers (London et al. 1988; Evensen et al. 1999; Evensen and London 2002, London 
and Evensen, this volume). Others have focused on distribution of Be among silicate 
minerals in igneous rocks (e.g., Kovalenko et al. 1977; Bea et al. 1994).  

Melting of beryllium phases in the end-member systems (Appendix B) has limited 
geologic relevance, whereas the principal controls on Be solubility in felsic magmas are 
aSiO2, aAl2O3, and, more rarely other components (Evensen et al. 1999): 

Be3Al2Si6O18 = 3 BeOmelt + Al2O3,melt + 6 SiO2,melt (11a) 

Be2SiO4,phenaite = 2 BeOmelt + SiO2,melt  (11b) 

2 NaBePO4,beryllonite + Al2O3,melt + 6 SiO2,melt = 2 NaAlSi3O8,plag + P2O5,melt (11c) 
The first two reactions were investigated by Evensen and London (1999). They showed 
that Be mineral solubility is a strong function of temperature, increasing by factors of 2-
10 from 650°C to 850°C, and that beryl is the saturating phase (±chrysoberyl) in 
metaluminous and peraluminous melts (cf. Fig. 12). Their results in compositionally 
simple haplogranite melts demonstrated that Be solubility decreases with the increasing 
aAl2O3 consistent with Reaction (11a). Complexing of Be by other elements is implied by 
increased beryl solubility in the Li-B-P-F-rich, but nonetheless strongly peraluminous 
(andalusite- and sillimanite-bearing, Pichavant et al. 1988b) Macusani rhyolite. 

Evensen and London’s experimental results are roughly consistent with what one 
would expect from Reaction (11a) and the 1 to 1.5 log unit difference in aAl2O3 between 
strongly peraluminous granites (e.g., Al2SiO5-saturated) and metaluminous granites (at 
the phenakite-beryl boundary) shown in Figure 12. Using Reaction (11a), predicted Be 
contents of beryl-saturated melt should increase by approximately 0.5 log units (a factor 
of 3) from the Al2SiO5 limit to phenakite-saturated conditions. This is compatible with 
the experimentally observed 3-8 times increase in Be solubility over a simila range of 
ASI. The differences likely reflect more complex speciation (and thus activity-
composition relationships) than this simple analysis allows. Applying the same reasoning 
to the phenakite-stable field in Figure 12 and using Equation (11b), one predicts that Be 
contents of phenakite-saturated peralkaline granites would be the same as in 
metaluminous granites (barring changes in Be melt speciation). Only with decreasing 
aSiO2, as in undersaturated syenites, would solubilities be substantially higher, perhaps by 
as much as a factor of two. In melts with exceptionally high P2O5 activities beryllonite 
and possibly other Be-bearing phosphates could substitute for beryl (chrysoberyl or 
phenakite) as the liquidus phase (Reaction 11c, Charoy 1999). 

This analysis underscores the conclusion of Evensen and London (1999) that Be 
mineral saturation in peraluminous melts is plausible for geologically reasonable Be 
contents and, furthermore that discrete magmatic Be minerals would not be expected in 
peralkaline and undersaturated systems except, perhaps, in very late pegmatites. 

MAGMATIC BERYLLIUM ENRICHMENTS 
Magmatic beryllium enrichments are apparently common, and of interest in their 

own right, but are they important to make Be deposits? This is uncertain. Enrichment in 
other elements, notably F for aqueous complexing of Be, may be more much important 
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for igneous-related hydrothermal systems. Here we review aspects of magmatic 
enrichments and the compositions of igneous rocks associated with non-pegmatitic 
deposits. 

In felsic magmatic systems, Be concentrations can exceed typical crustal 
compositions of 2-6 ppm by a factor of 10 or more (Beus 1966; Hörmann 1978). 
Magmatic Be concentration takes place in intrusive and volcanic rocks which range from 
strongly peraluminous to peralkaline in composition (as in pegmatites, cf. Černý 1991a, 
this volume; London and Evensen, this volume). Figures 5C and 5D also illustrate the 
range of Be contents in magmatic systems and the positive correlation between Be and F 
contents found in volcanic and hypabyssal rocks (Coats et al. 1962; Shawe and Bernold 
1966; Kovalenko et al. 1977; Macdonald et al. 1992). The correlation with F is not seen 
in many deeper rock suites as in pegmatites, for example, where F may be fugitive (e.g., 
Černý and Meintzer 1988; London 1997). Post-eruption loss of F also likely accounts for 
some of the variability in volcanic rock suites. 

In peraluminous rocks, magmatic Be contents appear to be limited to a few hundred 
ppm Be (e.g., Kovalenko and Yarmolyuk 1995; Raimbault et al. 1995) but they may 
exceed 1,000 ppm in some alkaline rocks (Meeves 1966; Richardson and Birkett 1996). 
This follows the known pattern of increasing Be solubility with increasing alkalinity of 
the melt (Evensen et al. 1999, cf. Fig. 5C). In metaluminous and peraluminous systems, 
Be enrichment commonly accompanies enrichment in Li, Cs, Ta whereas in peralkaline 
systems, Be enrichment sporadically accompanies enrichments in Zr, Nb, REE and others 
(Fig. 5D; Tischendorf 1977; Kovalenko and Yarmolyuk 1995; Pollard 1995a). The 
highest concentrations in most igneous environments are in late-stage pegmatites and 
post-magmatic hydrothermal alteration. Many systems exhibit a continuum between 
magmatic and hydrothermal features with Be-bearing igneous rocks having clearly post-
magmatic veins and cavities with hydrothermal Be minerals. It is commonly difficult to 
distinguish magmatic from post-magmatic enrichment. Beryllium- and F-enriched 
rhyolites (topaz rhyolites, ongonites, etc.) are widespread, typically in the same regions 
and commonly in the same districts as hydrothermal Be deposits (Shawe 1966; 
Kovalenko and Yarmolyuk 1995). 
Strongly peraluminous to metaluminous systems 

Peraluminous magmas may or may not show strong enrichment in Li with the Be 
enrichment. Some follow enrichment like that in Li-Cs-Ta pegmatites (“LCT” type of 
Černý 1991a and this volume). Examples include a number of the highly evolved 
Hercynian (Variscan) granitoids of Europe (e.g., Raimbault and Burnol 1998; Charoy 
1999), the Macusani rhyolite, Peru (Pichavant et al. 1988a), and the Honeycomb Hills, 
Utah (Congdon and Nash 1991). In contrast, many strongly peraluminous granites do not 
exhibit this extreme enrichment in rare elements (e.g., Transbaikalia, the western U.S.; 
Shaw and Guilbert 1990). Nonetheless they have high F contents and late magmatic 
(miarolitic to pegmatitic) beryl transitional into Be-bearing hydrothermal assemblages. 
They may evolve along a different path (cf. London 1992). In weakly peraluminous to 
metaluminous granitoids and volcanic rocks Be enrichments are not accompanied by 
dramatic (percent level) contents of Li, but they do have elevated values (Fig. 5). 

In most peraluminous to metaluminous igneous rocks, Be is dispersed as a trace 
element in the rock-forming minerals, most commonly the micas and sodic plagioclase 
(e.g., London and Evensen, this volume; Kovalenko et al. 1977). Accessory magmatic 
beryl is described in some granites, aplites and miarolitic zones (e.g., Sheeprock 
Mountains, Utah, Christiansen et al. 1988; Rogers and Christiansen 1989; Argemela, 
Spain, Charoy 1999; Mt. Antero, Colorado, Jacobson 1993b). Beryllonite is apparently 
the principal discrete Be mineral in the Beauvoir granite, France, where only modest 
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amounts of Be (ca. 100 ppm) occur in lepidolite (Charoy 1999). 
With the possible exception of the Beauvoir granite (Fig. 15; Cuney et al. 1992; 

Raimbault et al. 1995), non-pegmatitic peraluminous magmatically enriched rocks lack 
sufficient Be to be considered Be resources (cf. North Carolina Sn-Ta belt, Griffitts 1954, 
Fig. 3). At Beauvoir, a composite stock of fine-grained Li-rich leucogranite contains 20-
300 ppm Be (>100 ppm in the most evolved unit). It post-dates more voluminous 
muscovite-biotite granites which have associated greisen-style W and Sn mineralization. 
Similar patterns are common elsewhere in European Hercynian igneous centers (e.g., 
Cornwall, England; Manning and Hill 1990). 

 

 

 

 

 

 

 

 

Figure 15. Geology of the Beauvoir Li-F-Sn-Ta-Be granite, a strongly peraluminous system 
with magmatic rare-metal enrichments. (A) The Beauvoir rare metal granite is a late, 
volumetrically minor phase of the Echassières leucogranite complex; Sn and W mineral-
ization are associated with earlier phases. (B) Cross section through the Beauvoir granite 
showing three main phases and cross-cutting relationships with earlier granites and W 
mineralization. Beryllium is concentrated in lepidolite and beryllonite in B1, the final 
intrusive unit (Charoy 1999). Figures modified from Cuney et al. 1992. 

Peralkaline-metaluminous systems 
Peralkaline to metaluminous magmatic systems can have substantial Be enrichments 

in rocks ranging from riebeckite-aegirine granites to undersaturated syenites and their 
volcanic equivalents (Richardson and Birkett 1996; Sørensen 1997; Fig. 2, Appendix A). 
Like the magmatically enriched peraluminous suites, these rocks are typically enriched in 
F as well as Be but contain a different set of trace elements characterized by Y, Nb, REE 
with more moderate enrichment in Li (Table 2, Fig. 5; Černý 1991b; Sørensen 1992; 
Kovalenko et al. 1995a). Associated pegmatitic and hydrothermal deposits are common. 

In alkaline granites and quartz syenites Be enrichments can be in the 100s of ppm 
(Fig. 5; e.g., Khaldzan-Buregtey, Mongolia, Appendix A) and have associated Be-rich 
alkaline pegmatites. Large deposits with pegmatitic character at Strange Lake and Thor 
Lake in Canada (Fig. 2, Appendix A) formed during the terminal stages of the 
development of rare-element-rich alkaline centers. Both have complex internal structures 
and prominent hydrothermal overprints and the importance of magmatic versus 
hydrothermal processes concentration is contentious. At Thor Lake (Fig. 16) phenakite, 
bertrandite, gadolinite and helvite occur in late quartz-fluorite-polylithionite “greisen” 
zones in a composite feldspar-dominated “pegmatite” (Trueman et al. 1988). The Be 
mineralization postdates Ta-Nb-Zr mineralization; both are associated with syenite 
breccias in syenites and peralkaline granites of the Blachford Lake complex. The deposit 
post-dates the youngest intrusion, a syenite, and is emplaced in somewhat older alkali 
granite of the same complex. At Strange Lake, gadolinite, leifite and milarite form in 
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lenticular zones associated with the latest stages of a Zr-Nb-Y-enriched riebeckite granite 
complex. A hydrothermal overprint is clear, although it is debated whether the 
enrichments are fundamentally magmatic (Miller 1996) or hydrothermal (Salvi and 
Williams-Jones 1996). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Geology of the Thor Lake area and rare metal deposits, Northwest Territories, 
Canada. (A) The Thor Lake deposits are associated with the Thor Lake syenite, the 
youngest member of the alkaline Early Proterozoic (2.1 Ga) Blachford Lake Complex 
(Davidson 1982). (B) Be mineralization occurs in the T-zone deposits near the NW margin 
of the Thor Lake syenite. Phenakite(-bertrandite-gadolinite)-rich hydrothermal quartz-
fluorite-polylithionite pegmatitic “greisens” are superimposed on a complex set of albite, 
microcline, and magnetite-rich rocks (Trueman et al. 1988).  

The volcanic equivalent of magmatic Be-enriched alkaline granites may be 
represented by the F-Nb-Zr-Ta-Y-REE-rich trachytic rocks of the Brockman deposit, 
Western Australia (Ramsden et al. 1993; Taylor et al. 1995a). At Brockman, the 
hydrothermally altered “Niobium Tuff” averages several hundred ppm Be, which is 
present (redistributed into?) in quartz-carbonate-bertrandite veins that are restricted to 
this rare-element enriched stratum. Magmatic concentrations of Be up to 180 ppm occur 
in the hypabyssal cryolite-bearing, Nb- peralkaline to peraluminous rhyolites of the Sierra 
Blanca district Texas (Price et al. 1990), which have associated Be-F replacement 
deposits (see below). Although some rocks from both of these areas are chemically 
peraluminous, their geological associations, trace-element patterns and associated 
minerals clearly link them to the peralkaline family. 

Beryllium enrichments are also common in the late magmatic phases in 
undersaturated rocks including examples from the Kola Peninsula, Greenland, and the 
southwestern United States (Appendix A; Sørensen 1997). Lujavrites (eudialyte-acmite 
nepheline syenites) from Ilímaussaq, Greenland average 60 ppm Be, while contents up to 
1000 ppm have been reported from pegmatitic nepheline syenite at Wind Mountain, New 
Mexico (Meeves 1966; Steenfelt 1991; Sørensen 1992; Markl 2001). Large Be 
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inventories have been reported (Fig. 3; Appendix A), but none of the undersaturated 
alkaline systems appear to host plausible resources due to low grades and dispersion of 
Be in the rock-forming silicates. Large Be enrichments in phonolites have apparently not 
been recognized, although the elevated Be seen in shallow intrusive systems like 
Ilímaussaq and Wind Mountain make eruption of such magmas plausible (Fig. 4). They 
would be silica-undersaturated, peralkaline analogs of the Macusani rhyolites. 

Post-magmatic Be enrichments are widespread in syenitic pegmatites and 
hydrothermal veins in these locations and others, notably the Oslo province, the Kola 
Peninsula and Mt. Saint-Hilaire (Appendix A; Beus 1966; Vlasov et al. 1966; Engell et 
al. 1971; Horváth and Gault 1990; Men'shikov et al. 1999; see below). These under-
saturated, typically feldspathoid- or zeolite-bearing rocks contain a distinctive suite of Be 
minerals, notably the Al-poor, Na-Ca-Be silicates (e.g., epidydimite, leifite, leucophanite, 
chkalovite) plus others such as gadolinite, phenakite, bertrandite, genthelvite and 
bromellite. 

Magmatic vs. metasomatic albite-rich granitoids. Albite-rich granitoids (and some 
albite-rich syenites) can have either magmatic or metasomatic origins. Both types 
commonly have Be enrichments but they can be difficult to distinguish from one another. 
Magmatic varieties have F-enrichments and carry considerable concentrations of rare 
metals such as Ta, the specific suite corresponding to the overall genetic family 
(Kovalenko and Yarmolyuk 1995; Pollard 1995a). Such granitoids are extreme 
differentiates of F-rich magmas (Manning 1982). Fluorine-rich metasomatic albitization 
is also common in granitic systems and can carry contain broadly similar element 
enrichments (Charoy and Pollard 1989; Laurs et al. 1996; Haapala 1997). Distinguishing 
between the two requires textural or geochemical observations (sharp versus gradational 
geologic contacts; petrographic evidence for replacement, dissolution of earlier minerals 
such as quartz; high versus low variance assemblages, uniformity of phase proportions). 
Beryl concentrates in both settings (e.g., Beus 1966; Charoy 1999). 

HYDROTHERMAL OCCURRENCES ASSOCIATED  
WITH FELSIC MAGMATISM 

Hydrothermal Be deposits generated by felsic magmas are numerous and diverse 
(Table 2, Figs. 2, 4). Depositional environments, particularly the composition of the host 
rocks, exert the most prominent control on the styles of mineralization regardless of 
magmatic compositions. Igneous compositions strongly influence mineralogy, element 
enrichments and zoning. Magmatic Be enrichment can be important in some cases, but 
overall is apparently subordinate to other factors. We group systems by igneous 
compositions and foremost, by the degree of alumina saturation because this is predictive 
of mineral associations (Fig. 12) and correlates broadly with other intensive variables and 
geologic setting. Boundaries between groups can be arbitrary as there is clearly a 
continuum among these groups and many igneous centers possess a range of 
compositions. 

Vein, greisen and volcanic (fumarolic) deposits occur in felsic igneous and 
siliciclastic sedimentary host rocks. These deposits commonly have abundant F. 
Muscovite-rich alteration, quartz veins and variable amounts of W, Mo, Bi, and Sn typify 
the beryl-dominated mineralization that forms in strongly peraluminous systems. Li(-Fe) 
micas and alkali-feldspar alteration become characteristic with decreasing aAl2O3, as metal 
assemblages gain Zr-REE-Nb and lose W. Fenites and quartz-absent hydrothermal veins 
form in silica-undersaturated systems. At low temperatures (<300°C) bertrandite-bearing 
quartz veins can form commonly with K-feldspar±carbonate±sericite±fluorite, in some 
cases with Mn-rich, base-metal sulfide-rich associations. 
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Skarn, greisen and replacement deposits form in carbonate-bearing host rocks where 
they generally contain abundant fluorite. They comprise the economically most important 
deposits including the fluorite-rich replacement deposits in the carbonate-lithic-rich tuff 
of Spor Mountain. All silica-saturated magma types can produce garnet, pyroxene and 
vesuvianite-rich Be-bearing skarns where mineral ratios and compositions tend to reflect 
the redox state of the related granites (cf. Einaudi et al. 1981). Aluminum-rich 
metasomatism—which produces muscovite, other micas and diaspore (cf. “apocarbonate 
greisen” of Shcherba 1970)—characterizes the BASH mineral-bearing deposits that form 
near peraluminous granites. Less aluminous magmas generate skarns and K-feldspar-
bearing or Al-poor fluorite-rich replacement deposits. Typical minerals include 
phenakite, bertrandite, and the helvite group with less common bavenite, leucophanite, 
gadolinite, milarite and others. A distinctive texture found in many carbonate-hosted 
systems is rhythmically banded replacement containing alternating light and dark layers 
with combinations of fluorite, Be minerals (helvite-danalite is typical) and other minerals 
including silicates and magnetite (“ribbon rock” Jahns 1944b; “wrigglite” Kwak 1987; 
see photos in Fig. 18C and Fig. 22, below). 

Mafic and ultramafic host rocks are relatively uncommon, but they can be important 
in that they host most emerald deposits, which form where beryl-bearing pegmatites or 
veins gain Cr and lose silica during original emplacement or subsequent metamorphism. 
Most such systems are peraluminous. Biotite-producing metasomatism is ubiquitous. 
This group is treated separately below. 
Peraluminous magma-related systems 

Hydrothermal Be mineralization occurs with many strongly peraluminous 
muscovite- or cordierite-bearing granites as well as with weakly peraluminous biotite 
granites (“pG” in Appendix A). This suite contains some of the more important non-
pegmatitic Be deposits, including large sub-economic resources in the Seward Peninsula, 
Alaska, eastern Nevada and central Kazakhstan. It is also notable for emerald and 
aquamarine deposits associated with ultramafic and greisen host rocks, respectively (e.g., 
Reft River, Ural Mtns; Sherlova Gora, Transbaikalia). The salient characteristics of the 
peraluminous group are aluminum-rich hydrothermal alteration and predominance of 
BASH minerals. 

The peraluminous family can be cast into two groups (cf. Fig. 4A): (1) specialized 
strongly peraluminous granites, commonly with exceptionally high Li-Cs-Ta (LCT) and 
other lithophile elements, locally with associated greisen Sn mineralization, and (2a) less 
specialized but strongly peraluminous granites with or without W-Mo(-Sn) 
mineralization, or (2b) weakly peraluminous Sn-W(-Mo) systems with elevated rare 
metal contents. The last group commonly has late muscovite-bearing leucogranites. 
Although this group can be considered to form a continuum with metaluminous systems, 
it generally has highly aluminous alteration assemblages in various rock types that are 
lacking in the latter. Most of hydrothermal systems formed at <5 km depth, but some, 
particularly those associated with strongly peraluminous muscovite-biotite granites, 
formed in the 5-10 km range. Geochemical data and geological associations point to a 
metasedimentary, perhaps dominantly pelitic, source for the magmas of group (1), a 
mixed crustal source for the magmas of group (2), and a hybrid crust and mantle source 
for the magmas of group (3) (cf. Černý 1991b; Newberry 1998).  

It is unusual to find hydrothermal Be mineralization associated with the more 
evolved Li-Cs-Ta-type magmas even though many have substantial magmatic Be 
contents (Fig. 5; e.g., Macusani, Beauvoir, Richemont). For example, most specialized 
granites of the European Hercynian lack hydrothermal Be occurrences (Stussi 1989; 
Manning and Hill 1990). In the Cornubian Sn-W district Be minerals occur in greisens, 
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veins and skarns that are related to the biotite(-muscovite) granites but do not form with 
the highly specialized topaz granites (Appendix A; Jackson et al. 1989; Manning and Hill 
1990). Where Be minerals are mentioned with Li-Cs-Ta-type magmas they form in early 
assemblages, for example in the Erzgebirge where beryl and herderite are minor 
constituents of proximal quartz-topaz greisens at Ehrenfriedersdorf and elsewhere 
(Baumann 1994). Similar relationships are apparent in the Geiju district, Yunnan, China 
where Be-W mineralization occurs at the apex of greisenized rare-metal granites and 
zones outward into Sn and sulfide mineralization (Kwak 1987). The lack of hydrothermal 
accumulations in many of these systems may reflect their low solidus temperatures, their 
low water contents and limited ability to exsolve water, and the relatively low partition 
coefficients for Be into coexisting aqueous fluid (London et al. 1988; Raimbault and 
Burnol 1998). In contrast to the Li-Cs-Ta-group, the less compositionally extreme 
peraluminous magmas are associated with many occurrences. 

Feldspathic host rocks: These rocks host three common styles of fracture-controlled 
Be mineralization: beryl in quartz-K-feldspar(-mica) veins, beryl in albitized rocks, beryl 
and other Be minerals in muscovite-topaz-fluorite-dominated greisens. The latter are by 
far the most important. Many areas contain all three styles in a progression from early, 
proximal and typically deeper K-feldspar-stable assemblages through albitization to late, 
commonly distal greisen associations. Occurrences are widespread, notable examples 
found with biotite±muscovite granites occur in China, central Asia, the North American 
cordillera, and western Europe (Appendix A). 

Small, coarse-grained quartz-K–feldspar(-muscovite-biotite) veins containing acces-
sory beryl, molybdenite and wolframite occur with some peraluminous pegmatites and 
W-Mo(-Sn) affiliated granitoids (e.g., in the Canadian cordillera and maritime provinces, 
Mulligan 1968). These veins typically lack fluorite and paragenetically later Be-rich 
veins are rare. Geological context indicates that they formed at considerable depth; they 
could represent root zones of other deposit types. One variant on this theme is illustrated 
by the large Verknee Qairaqty and Koktenkol stockwork W(-Mo) deposits in Kazakhstan 
where minor beryl occurs only in early, 300-400°C quartz-K–feldspar-molybdenite-
scheelite veins (Mazurov 1996; Russkikh and Shatov 1996). Beryllium is distributed 
throughout the paragenesis at Dajishan, Jiangxi, China where quartz-feldspar-beryl veins 
change with time and distance into helvite-bearing fluorite-muscovite-quartz veins with 
wolframite, scheelite and molybenite (Raimbault and Bilal 1993). Another variant may 
be represented by the relatively F-poor Sn-W deposits of SE Asia where Be mainly 
occurs as beryl in pegmatitic bodies (Suwimonprecha et al. 1995; Linnen 1998). 
Feldspar-dominated veins are of little economic interest and consequently are thinly 
documented. Conversely, alkali feldspars are present in many F-rich greisen and albitic 
assemblages associated with major Be deposits. 

Albitized rocks are widespread in Be-rich peraluminous systems where they grade 
into mica-dominated greisen assemblages. Typically, albite+muscovite±fluorite±chlorite 
replace igneous feldspars and micas; modal quartz also commonly decreases. These form 
pipes, veins, vein envelopes (commonly around mica-rich greisen veins), and pervasive 
zones particularly near the tops of intrusions. Accessory beryl with albitic assemblages is 
reported in many systems (Beus 1966; Dyachkov and Mairorova 1996). A well described 
example at Triberg, Germany (Markl and Schumacher 1996, 1997) formed from biotite-
muscovite leucogranites that have late beryl-bearing miarolitic pegmatites. Hydrothermal 
beryl-albite-muscovite-fluorite alteration ultimately grades into beryl(-bertrandite-
phenakite)-bearing quartz-muscovite-topaz greisen veins. Like many other beryl-rich 
two-mica systems, the mineralizing fluids contained <10 wt % NaCl equivalent (NaCleq) 
and Sn and W were only weakly concentrated. Rogers (1990) describes similar 



626 Chapter 14:  Barton & Young 

relationships in muscovite-bearing biotite granite in the Sheeprock Mountains, Utah. 
Quartz-rich greisens with abundant accessory muscovite, topaz, fluorite and 

siderophyllite contain most Be minerals (beryl > phenakite, bertrandite, euclase) found in 
peraluminous-related deposits. Beryl can be either in the vein fill with quartz and other 
minerals or it can concentrate at the outer margins of the greisen envelopes against 
feldspar-stable assemblages (generally albite; Beus 1966). Overall Be distribution varies 
in greisens; it is typically distal or late within the intrusions and may or may not extend 
into surrounding veins or skarns. Hematite-bearing alteration and helvite group minerals 
are rare with the peraluminous group in contrast to greisens associated with 
fundamentally metaluminous biotite granites. 

Many examples from around the world illustrate these patterns (Appendix A). In the 
Great Basin, reduced (low Fe+3/Fe+2) Cretaceous muscovite-biotite granites and their 
clastic host rocks contain minor beryl in muscovite-fluorite-quartz-pyrite±wolframite 
greisen veins. Paragenetically earlier quartz-K–feldspar veins and albitization typically 
lack beryl. This is compatible with the paucity of Be in the correlative pre-greisen stages 
of associated skarns. These systems contain large quantities of F, Be and Zn, with minor 
Mo (proximal), W and Sn (distal). Associated fluids had moderate CO2 contents and 
salinities (5-10 wt % NaCleq) and were of magmatic derivation. In the northern 
Cordillera, sparse beryl occurs in proximal muscovite- or topaz-bearing alteration in W-
Mo (e.g., Logtung, Yukon) and Sn-W (e.g., Lost River, Alaska) systems. Similar 
relationships hold along the western margin of the Pacific in southeastern China (e.g., 
Wangfengshan, Guangdong) and eastern Australia (e.g., Mole Granite, New South 
Wales) 

Many Be-bearing W-Mo(-Sn) greisens occur in central and eastern Kazakhstan 
where they are associated with mainly Late Paleozoic biotite±muscovite leucogranites 
(Appendix A; Burshtein 1996; Serykh 1996; Ermolov 2000). Beryllium occurs in several 
modes: as beryl in muscovite-topaz-quartz greisens (e.g., Aqshatau; Fig. 17), as 
bertrandite±helvite (after beryl) in late fluorite-rhodochrosite-sulfide veins (e.g., East 
Qonyrat), and as chrysoberyl and other minerals in F-rich skarns (e.g., Qatpar).  

Among peraluminous-related deposits greisen deposits are the more common than 
other types and the only variety from which Be has been produced. The largest reported 
resource is the Aqshatau district in Kazakhstan (Fig. 17; Appendix A; Beskin et al. 1996) 
where beryl has been produced from W(-Mo-Bi) greisen veins. Beryl formed in the distal 
parts of the quartz-topaz-muscovite-wolframite greisen veins where BeO contents can 
exceed 0.1% (Fig. 17B). These veins exhibit zoning centered on a multi-phase 
muscovite-biotite leucogranite complex that appears to be the fluid source. Extensive 
study demonstrates that saline (>30 wt % NaCleq) magmatic fluids account for most of 
the mineralization with fluid pressures fluctuating near lithostatic values. These fluids 
were followed by an influx of dilute, meteoric waters under hydrostatic conditions that 
formed late quartz-sulfide-carbonate assemblages. 

The noted aquamarine locality at Sherlova Gora, Siberia (Sinkankas 1981) has 
extensive beryl-bearing quartz veins (with BeO ≥ 0.02%) with topaz, siderophyllite, 
fluorite and muscovite greisens (Beus 1966). These occur in the outer portion of a 
variably miarolitic and porphyritic biotite±muscovite granite pluton. Within the pluton, 
beryl is late and tends to be distal in the greisen veins. Beryllium as well as alkalis are 
removed from intensely greisenized rocks. In the system as whole, beryl and minor Mo-
W±Sn mineralization form proximally whereas Sn-polymetallic mineralization extends 
well away from the intrusions (Troshin and Segalevich 1977). This district, although 
emplaced at shallower levels than those in the Great Basin, is also characterized by both 
muscovite-bearing granites and relatively low Sn-W-Mo contents. 
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Figure 17. Geology of the Aqshatau (Akchatau) greisen W-Mo-Bi-Be district, central Kazakhstan. 
(A) Geology map showing the distribution of granitoids and hydrothermal features in the central 
part of the district. Older, Carboniferous granodiorites and granites of the Qaldyrma complex are cut 
by cupolas of the ore-related Permian biotite-bearing leucogranites of the Aqshatau complex. Note 
lateral zoning of W-Mo-Be mineralization away from the latter. (B) Zoning of WO3, Mo and BeO 
(values in %) along the 146 vein (see A for location). [A,B redrawn from Beskin et al. 1996.] 

Although greisen-type alteration hosts most Be minerals in peraluminous granitoids, 
Be minerals are commonly sparse when compared to the amounts present in adjacent 
carbonate hosted-mineralization. With only a handful of exceptions worldwide 
(Aqshatau, Sherlova Gora), the peraluminous granite-hosted deposits have not been a 
significant source of either Be metal or gems. This is well illustrated by Phanerozoic Be-
rich magmatic-hydrothermal systems around the circum-Pacific (e.g., Cretaceous 
Cordillera, Tasman system, SE China; see Appendix A). 

Carbonate host rocks.  In carbonate rocks, Be deposits related to strongly 
peraluminous granitoids are characterized by exceptionally high F and Al contents and 
elevated contents of many other elements including Li, Sn, and W. Beryllium occurs both 
in skarns and in superimposed or distal apocarbonate greisen or replacement deposits. In 
skarns, Be is reported to isomorphically substitute in vesuvianite and other silicates (e.g., 
Beus, 1966), whereas in the greisen or replacement deposits Be clearly forms discrete 
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phases. Fluorite, F-rich silicates, micas (muscovite, Li-micas, phlogopite), topaz, albite, 
K-feldspar and quartz can all be abundant. Typical Be minerals include chrysoberyl, 
phenakite, beryl, bertrandite, euclase and bertrandite. Rarely present are bavenite and 
Mg-bearing aluminates of the taaffeite group (Table 1). Quartz is typically sparse in 
carbonate-hosted greisen-style alteration. Iron and base metal contents vary considerably. 
Pressure (depth of emplacement) appears to be an important factor in quartz and sulfide 
abundances: higher salinity fluids, more extensive metal transport and silica-under-
saturated assemblages occur at <1-1.5 kbar, whereas more siliceous assemblages (due to 
higher silica mobility) and less concentrated metals (linked to lower fluid salinities) are 
more common at higher pressures (cf. Fig. 11A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Textures of carbonate-hosted Be mineralization associated with strongly peraluminous 
granites showing characteristic F- and Al-rich veins and replacements. (A)-(C) Mica-fluorite-beryl 
(-quartz) veins from the deep W(-Mo) systems at McCullough Butte, Nevada (Appendix A).  
(A) Trench face with typical muscovite-fluorite(-beryl-pyrite-scheelite-sphalerite-bertrandite-quartz) 
veins and fluorite-phlogopite envelopes in brecciated dolostone. This exposure averages about 25% 
CaF2 and 0.25% BeO. (B) Quartz-aquamarine-dolomite(±muscovite) vein cutting muscovite-
fluorite-beryl(white) veins with inner fluorite to outer fluorite+phlogopite envelopes. (C) Rhythmi-
cally banded fluorite-phlogopite skarn envelope on muscovite-fluorite-beryl-pyrite vein.  
(D) Mottled chrysoberyl-rich replacement from the shallow Lost River Sn(-W) district, Alaska. 
Very fine-grained chrysoberyl+diaspore vein cuts mottled white mica (Li, Be-bearing)+tourma-
line+diaspore+chrysoberyl replacement of limestone. (E)-(F) Phenakite-bertrandite-fluorite vein and 
replacement mineralization Mount Wheeler Mine, Nevada (Appendix A) which typical of distal 
fluorite-rich mineralization in carbonate rocks associated with many magma types (cf. Zabolotnaya 
1977). (E) Phenakite(-bertrandite)-fluorite-muscovite-adularia vein-cutting fluorite-adularia-man-
ganosiderite-phenakite replacement of limestone. Fluorite is dark and comprises more than half of 
these zones. (F) Micrograph of central vein from (F) showing phenakite-fluorite-adularia (Kfs) vein 
with muscovite border. All photos by M.D. Barton (except for A—modified from Sainsbury 1969). 



 Non-pegmatitic Deposits of Beryllium 629 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
Figure 19. Geology of Be-F-Sn-W mineralization in the Lost River area, Seward 
Peninsula, Alaska. (A) Geologic map of the region showing the distribution of Be-F 
replacement mineralization, Sn and skarn mineralization, and igneous rocks. Note 
the strong structural control. Qal – Quaternary alluvium. Simplified from Sainsbury 
(1969). (B) Cross section of the Lost River mine area showing the generalized 
distribution of early and hydrous skarns and multiple stages (early and late) fluorite-
mica-Be veins. Simplified from Dobson (1982). 
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High-grade Be mineralization in carbonate rocks typically consists of paragenetically 
complex fine- to coarse-grained fluorite±mica, K-feldspar, diaspore or tourmaline-rich 
open-space and replacement veins (Fig. 18; Ginzburg et al. 1979). These veins typically 
comprise stockwork systems that can extend up to several kilometers from known 
sources and proximal skarns (e.g., McCullough Butte, Nevada; Lost River, Alaska; Fig. 
19). Rhythmic layering is common as it is in other Be-bearing systems (Fig. 18C). The 
ore minerals range from very fine-grained—“curdy” chrysoberyl is common and 
represents a metallurgical challenge for economic recovery (Fig. 18D; Apollonov 
1967)—to quite coarse-grained, which is common with phenakite-bertrandite-fluorite 
replacements (Fig. 18E; Ginzburg et al. 1979). Chrysoberyl occurs principally in the 
lower pressure, better metallized districts. 

Associated anhydrous calcic skarns range from reduced types with hedenbergitic 
pyroxene > aluminous garnet+vesuvianite to oxidized types with andraditic garnet± 
vesuvianite±magnetite > diopsidic pyroxene (cf. Newberry 1998). The latter are more 
common with shallow, Sn(-W) systems, like those associated with biotite granites in 
western Alaska or Tasmania, whereas the former are more common with W(-Mo-Sn) 
skarns associated with biotite±muscovite granites from southeastern China and the 
western USA (Fig. 4). Magnesian skarns of both types differ in having more abundant 
humite-group minerals, other Mg-silicates, sellaite, spinel and magnetite (cf. Einaudi et 
al. 1981; Kwak 1987). 

One of the best-documented districts is at Lost River on the Seward Peninsula, 
western Alaska (Appendix A; Fig. 19). This area contains the second largest U.S. Be 
resource after the tuff-hosted ores at Spor Mountain, Utah. Biotite granites and late 
muscovite-bearing leucogranites in the Seward Peninsula are all peraluminous, but they 
differ from strongly peraluminous granitic suites in that they are commonly more 
oxidized (higher Fe+3/Fe+2) and they mostly lack Al-saturating phases such as muscovite 
or cordierite (Sainsbury 1969; Swanson et al. 1990). The Be deposits occur as fine-
grained, commonly laminated chrysoberyl-diaspore-mica-fluorite veins and replacement 
bodies in limestones and dolomites (Fig. 18D). Also present are minor phenakite, beryl 
and euclase. These bodies are developed along faults and adjacent to dikes and extend 
kilometers from the Sn-rich greisenized granites and skarns. There is a strong vertical 
control on the distribution of hydrothermal alteration that reflects level of exposure in the 
systems. The Be-F-Al replacements are mainly distal and structurally high. Proximal 
iron-rich skarns can contain helvite with fluorite and magnetite, but more commonly are 
dominated by andraditic garnet, vesuvianite, magnetite, fluorite, scapolite and minor 
pyroxene overprinted by hydrous skarn with hornblende, biotite, fluorite, cassiterite and 
sulfides (Dobson 1982; Swanson et al. 1990). The skarns abut topaz-tourmaline-
muscovite greisenized fine-grained biotite±muscovite granites (Fig. 19 inset). Carbonate-
hosted greisen veins both predate and postdate the skarns and thus indicate multiple fluid 
release events (Dobson 1982). 

Systems similar to Lost River occur elsewhere in Alaska and, notably, down the 
eastern side of Asia from Siberia into southern China (Fig. 2; Appendix A). Systems in 
southeastern China are associated with middle to late Mesozoic biotite±muscovite 
granites, typically with greisen mineralization within the intrusions. Unlike in North 
America, several of these complex polymetallic districts are economically important for 
other commodities. The Shizhuyuan, Hunan W(-Sn-Mo) district contains the world’s 
premier W deposit and has Be-rich Mo-W-B-Sn±Cu±Pb skarns, greisens and 
replacement bodies (Mao et al. 1996b). At Xianghualing, Hunan, late chrysoberyl-
fluorite-phlogopite ribbon rock and later fluoborite-chrysoberyl (-taaffeite group mineral) 
mica veins with spinel envelopes and minor sulfides overprint garnet-vesuvianite skarns 
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and ribbon magnetite skarns. These magnesian skarns contain chondrodite, vesuvianite, 
diopside, amphibole, tourmaline and formed in dolomitic host rocks adjacent to beryl-
bearing albitized and greisenized biotite granite and (Lin et al. 1995a, p. 238-242). 
Similar Be-F-rich mica-dominated veins overprint and are distal to complex polymetallic 
Sn skarns in the Geiju Sn district (Kwak 1987). 

In districts with less compositionally evolved magmas, Be tends to be dispersed 
either in rock-forming silicates or as minor beryl. High Be concentrations occur only in 
particularly favorable traps. For example, many large hydrothermal systems are 
associated with Cretaceous two-mica granites in the Great Basin of the western United 
States (Appendix A). At McCullough Butte, Nevada two-mica granite contains 6-12 ppm 
Be and 0.03-0.2% F (Barton, unpubl. data), whereas contemporaneous two-mica 
granitoids emplaced at 20+ km depths in the Ruby Mountains have 0.5-4 ppm Be (Calvin 
Barnes, written comm., 2000). Around and above the shallower plutons (emplaced at  
5-10 km depth), muscovite-phlogopite-fluorite-quartz-bearing veins and replacement 
zones overprint or are peripheral to reduced W(-Mo-Sn)-bearing pyroxene>garnet skarns 
(Fig. 18A-C). Some of these hydrothermal systems contain much Be (e.g., McCullough 
Butte, Fig. 3), but high concentrations (>0.1% BeO) only formed in distal locations 
where fluids traversed unreactive quartzites prior to encountering carbonate rocks. This is 
illustrated by McCullough Butte (see Fig. 18A) and, most extensively, around the Mount 
Wheeler mine, Mt. Washington district, Nevada (Fig. 20). In the Mt. Washington district, 
a substantial Be(-W-F) resource (Fig. 3) occurs in laterally extensive phenakite-
bertrandite-beryl-scheelite-fluorite replacement bodies that formed in the basal carbonate 
unit above a thick clastic section overlying an unexposed granite (Fig. 20B). In place of 
skarn minerals, early mineral assemblages in this distal, cool hydrothermal system 
contain Fe-Mn carbonates and quartz, and were followed by deposition of progressively 
Al-, F-, and Be-enriched assemblages that culminate in muscovite-fluorite-beryl-quartz 
veins. 
Metaluminous magma-related systems 

Notable non-pegmatitic deposits of Be occur throughout the world with 
metaluminous or weakly peraluminous magmatism (“G” in Appendix A, Fig. 2). The 
preeminent region comprises Spor Mountain and other deposits associated with mid-
Tertiary felsic magmatism in southwestern North America. In contrast to strongly 
peraluminous-related systems where Be can be economically concentrated in pegmatites 
and igneous-hosted vein deposits, metaluminous suites lack major intrusion-hosted 
deposits even though phenakite, beryl, helvite group and gadolinite occurrences are 
widespread. Instead, carbonate and volcanic rocks host the important deposits which 
mostly are fluorite-rich, bertrandite-, phenakite- or helvite-bearing veins and replace-
ments. Beryl is normally subordinate to the other Be minerals or is completely absent. 

Genetically related igneous rocks are highly felsic—typically biotite-bearing 
leucogranites and high-silica rhyolites (Fig. 5A,B). Coeval syenites and hornblende-
bearing calc-alkaline granites are commonly present, whereas muscovite-bearing variants 
are scarce. They may occur in bimodal suites with mildly alkaline mafic rocks. Typical 
associated metals include Mo, Sn(>W), Ta, Nb and Zn. Most, but not all, of these 
systems are F-rich and many are sulfur-poor as evidenced mineralogically by widespread 
genthelvite-danalite solid solutions (Fig. 9) and other indicators of relatively low S such 
as Pb-enriched feldspar (amazonite). Another common feature of metaluminous-related 
systems, shared to some degree with other types, is an association with distal Mn-rich 
replacement or vein mineralization. In some areas, for example south-central New 
Mexico, helvite-bearing base-metal sulfide replacements formed near skarn and volcanic-
hosted Be mineralization. A link to proximal Be-enrichments is not evident in other  
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Figure 20. Geological relationships in the Mount Wheeler Mine area, Mount Washington district, 
Nevada. Beryllium mineralization here is associated with non-specialized strongly peraluminous 
granites. This district contains the most extensive and highest grade Be mineralization of the >20 
occurrences associated with Late Cretaceous two-mica granites in the Great Basin (Barton 1987; 
Barton and Trim 1991). (A) Cross section through the district showing lateral extent of 
hydrothermal system. High-grade Be(-W-F) mineralization is laterally extensive but vertically 
restricted to carbonate rocks in the Pioche Shale, the lowest reactive beds in the sedimentary 
sequence. Only sparse granite porphyry dikes are exposed at the surface, but large two-mica granite 
bodies are exposed nearby in the southern Snake Range (Barton, unpubl.). (B) Sketch map showing 
the localization of high-grade (ca. 1% BeO & WO3; 20% CaF2) low-temperature (<300°C) 
replacement bodies that form where sheeted quartz veins intersect the basal carbonate rocks. See 
Figure 18E,F. 

examples, including helvite in the epithermal Mn-rich mineralization at Silverton, 
Colorado and in the distal polymetallic Mn-mineralization at Butte, Montana district 
(Warner et al. 1959). These occurrences share features with distal rhodochrosite-
bertrandite and Mn-silicate/carbonate occurrences in many districts in central and east 
Asia (e.g., East Qoynrat, Kazakhstan; Shizhuyuan, China). 

Felsic host rocks in non-volcanic settings: In intrusive environments pegmatitic, 
miarolitic, albitized and greisenized bodies contain gadolinite, beryl, bazzite, phenakite, 
bertrandite, bavenite, and helvite group minerals. Although many features overlap with 
peraluminous systems, mineral assemblages are typically less acid (higher molar 
(K+Na/)Al). Cavity filling and alteration mineral associations are dominated by alkali 
feldspars, quartz and trioctahedral micas (siderophyllite, zinnwaldite, etc.). Muscovite is 
common in some greisens, but is generally less abundant than in strongly peraluminous 
examples. Beryl and (rare) euclase are largely restricted to muscovite-bearing greisens. In 
a number of regions, porphyry Mo style mineralization is associated with the Be-bearing 
intrusive complexes (e.g., in Norway, southwestern US, central Asia; cf. Geyti and 
Schønwandt 1979; Burt et al. 1982; Burt and Sheridan 1986). Although few of these 
areas have detailed petrologic documentation, most appear to have formed at no more 
than 5 km depth from moderate salinity magmatic fluids. None of the granite-hosted 
deposits have been major sources of Be. 

Biotite granites and monzonites with accessory Be minerals in miarolitic cavities and 
pegmatitic veins are well known in the southern Alps, Oslo Rift, Colorado (Pikes Peak 
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batholith; Mt. Antero), and the Younger Granites Province of Nigeria (Appendix A). 
These occurrences are small and mainly of mineralogical interest. For instance, sparse 
gadolinite, bazzite, and bavenite are present in pegmatitic quartz-feldspar(±beryl) 
assemblages in biotite granite plutons in northern Italy and in miarolitic cavities in the 
peralkaline to metaluminous Oslo Rift intrusions. Mid-Tertiary calc-alkaline batholiths in 
Colorado (Mount Antero area, Mt. Princeton batholith) and Idaho (Sawtooth batholith) 
have biotite granites with miarolitic cavities and pegmatitic quartz veins that are noted for 
their aquamarine and other specimen material. At Mt. Antero, beryl, phenakite and 
bertrandite form sequentially in miarolitic cavities, pegmatites and muscovite-bearing 
quartz-molybdenite veins all associated with the apex of a small chemically specialized 
biotite leucogranite (Adams 1953; Jacobson 1993b). Geologic relationships and fluid 
inclusion data from Mt. Antero indicate that associated fluids were magmatic in origin 
had fairly low salinities (0.5-8 wt % NaCleq) and spanned a wide temperature range (~600 
to 200°C; Kar 1991). 

In metaluminous-related Be-rich hydrothermal systems, paragenetically early 
metasomatic K-feldspar±K-Fe mica assemblages are commonly mentioned; however, 
these assemblages are not well-described and they apparently lack Be minerals. This is a 
bit surprising given the common co-occurrence with beryl and other minerals in 
miarolitic cavities. Similarly, albitization with quartz loss and Li-Fe-Al mica growth in 
metaluminous systems mostly lacks Be minerals (e.g., Beus 1966; Charoy and Pollard 
1989). An exception is at Sucuri, Brazil where helvite-group minerals occur with iron and 
base metal sulfides (Raimbault and Bilal 1993). Albitization of uncertain origin—
magmatic or hydrothermal—is widely reported. Haapala (1997) argued that much of the 
albite is magmatic or due to local post-magmatic redistribution of components without 
significant sodium metasomatism. Albitization is widely reported in the Nigerian alkaline 
complexes in the same areas that contain Be-bearing greisens. According to Bowden et 
al. (1987) the albite has “snowball texture” (albite laths and zinnwaldite enclosed in large 
microcline and quartz crystals)—a texture that plausibly seems magmatic (e.g., Lin et al. 
1995b, but cf. Kempe et al. 1999). Given the focus placed on albite-rich rocks as either an 
evolved magmatic source or a leached metasomatic source for Be this topic remains a 
fertile one for additional work. 

In felsic host rocks hydrothermal Be mainly occurs in small greisen veins and pipes 
with or without associated albite-rich assemblages. Well-known regions are commonly 
Sn-rich and include Karelia, Brazil, Nigeria, Colorado and central Asia (Fig. 2, Appendix 
A). Hydrothermal quartz, Li-Fe-Al sheet silicates, and fluorite are ubiquitous. Topaz, 
cassiterite, wolframite and Mo-Zn(-Pb-As-Cu) sulfides are common. Cryolite can be 
present in fluid inclusions or as a separate phase. Sheet silicates include chlorite, Li-
muscovite, siderophyllite and Li-Fe micas with chlorite being most common in the outer 
part of vein envelopes. Although muscovite is prominent in some deposits, greisens in 
many areas contain only trioctahedral micas (e.g., in Nigeria, Bowden and Jones 1978). 
Beryl is the most widely reported Be mineral and bertrandite, genthelvite and phenakite 
are common. These bodies typically zone from central quartz-rich bodies with topaz 
through inner mica-quartz envelopes to outer chlorite-mica-K-feldspar envelopes. A 
characteristic reddening of vein envelopes due to dispersed hematite is widely reported 
(e.g., Nigeria, Karelia). Beryllium minerals typically occur in the central part of greisen 
bodies along with other ore minerals. Petrological studies of several systems in Nigeria, 
Karelia and Mongolia show that mineralizing fluids are of magmatic origin and saline (10 
to >40 wt % NaCleq), can have moderate CO2 contents, commonly show evidence of 
phase separation, and were trapped at temperatures from 200 to 500°C (Haapala 1977a; 
Imeokparia 1992; Akande and Kinnaird 1993; Graupner et al. 1999). 
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Figure 21. Geology of the greisen Be deposits associated with the Redskin biotite granite, 
Tarryall Mountains, Colorado (Hawley 1969). The Redskin granite is late, highly evolved 
phase of the 1 Ga Pikes Peak batholith (Desborough et al. 1980). Like some other 
fundamentally metaluminous systems, it has late muscovite-bearing phases which are 
associated with the Be-rich muscovite-quartz-fluorite-topaz greisens (inset). Miarolitic and 
other pegmatitic Be mineral occurrences occur widely in nearby parts of the Pikes Peak 
batholith (Eckel 1997). The distribution of rock types, hydrothermal features, and structures 
make it seem likely that the complex is tilted at moderate angles to the southwest giving an 
oblique section. 

A well studied example of greisen-type mineralization is that associated with late 
units of the Redskin biotite granite in Colorado (Fig. 21; Hawley 1969). The Redskin 
granite is an evolved late phase of the variably alkaline 1.0 Ga Pikes Peak batholith, 
Colorado (Desborough et al. 1980). As a whole the batholith is known for Nb-Y-F-type 
miarolitic pegmatites that contain genthelvite, phenakite, bertrandite, gadolinite but lack 
beryl (Levasseur 1997; see next section). Quartz-lithian muscovite-topaz-fluorite 
(±wolframite-cassiterite-sulfide) greisens form small (1-20 m) pipes and veins developed 
within and above variably muscovite-bearing porphyritic and aplitic biotite granites. 
These occur along the southern and western phases of the intrusion which likely was the 
upper part of the now tilted intrusive system. Beryllium minerals (beryl+bertrandite±rare 
euclase) were quite localized within the greisen bodies and in places formed unusually 
high grade deposits (>5% BeO; Hawley 1969). The deposit at the Boomer Mine produced 
the first non-pegmatitic Be ores in the United States, operating between 1956 and 1965 
(Meeves 1966; Hawley 1969). 

Carbonate host rocks.  As in the case of peraluminous-related systems, limestone 
and dolostone make excellent hosts for F- and Be-rich skarn and replacement deposits. 
These commonly accompany skarn, replacement and greisen Sn, W and base-metal 
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mineralization. In some regions only carbonate-hosted mineralization comprises ore (e.g, 
Karelia, Haapala 1977b). Styles share some common features with strongly peraluminous 
systems, notably that anhydrous skarns with little Be are overprinted by hydrous, 
typically F-rich assemblages with higher Be contents. They differ in that the 
metaluminous-related skarns tend to be more oxidized (garnet/vesuvianite > pyroxene; cf. 
Einaudi et al. 1981) and have replacement assemblages that are typified by fluorite plus 
iron sulfides, oxides and silicates. Topaz- and muscovite-bearing assemblages can occur 
in greisenized areas, but they are minor compared to the abundant aluminous 
assemblages (micas+fluorite±plagioclase±diaspore±topaz) found with peraluminous 
granites. Tourmaline and other boron minerals can be abundant. Typical Be minerals are 
phenakite, bertrandite, danalite and helvite. Beryl and chrysoberyl are rare, but 
considerable Be can be bound in vesuvianite and other silicates (up to ~1% BeO, Beus 
1966).  

Notable examples of carbonate-hosted deposits include Pitkäranta, Russia, Iron 
Mountain, New Mexico, and a number of Sn skarn-greisen-replacement deposits in 
Tasmania and elsewhere in eastern Australia (e.g., Mt. Garnet, Queensland; see Appendix 
A and Fig. 2). This Sn-rich group has been thoroughly reviewed by Kwak (1987) and 
Newberry (1998). In comparison, a distinct group of Mo-W-bearing andraditic skarns 
contain only minor helvite (e.g., Oslo Rift, southeastern Arizona). In Tasmania, Be 
minerals occur in hydrous silicate assemblages that are developed after earlier calcic or 
magnesian skarns and they occur in iron sulfide/iron oxide-fluorite replacement bodies. 
Phenakite and bertrandite replace danalite in greisenized areas (Kwak and Jackson 1986). 
Kwak (1987) summarizes fluid inclusion data for the Tasmanian deposits which formed 
from high salinity (>30 wt % NaCleq) fluids and spanned a large temperature range. 
Lower temperature variants on these deposits are best expressed in volcanic-associated 
Be deposits, however Bulnayev (1996) links some moderate temperature (140-350°C) 
carbonate-hosted fluorite-bertrandite-phenakite deposits to subalkaline granitoids. 

At Iron Mountain, New Mexico, 29 Ma porphyritic alkali granites intruded Paleozoic 
sedimentary rocks and formed oxidized Sn-, W-bearing andradite-magnetite skarns which 
are overprinted by helvite-bearing fluorite-rich assemblages (Fig. 22; Jahns 1944a). 
Skarns formed during several intrusive events (Robertson 1986) and the intrusive rocks 
contain abundant small veins consisting of quartz-K-feldspar, quartz-biotite-fluorite, or 
biotite. The Be ores form small bodies in skarn or marble and consist of rhythmically 
banded fluorite containing variable amounts of helvite, magnetite, vesuvianite, chlorite, 
and scheelite (Fig. 23). In his original description Jahns (1944b) coined the term “ribbon 
rock” for this texture while citing earlier descriptions at Lost River, Alaska and 
Pitkäranta, Karelia, Russia (formerly Finland). In New Mexico, contemporaneous 
volcanic rocks in adjacent fault blocks contain higher level bertrandite-rich 
mineralization (Meeves 1966), a few red beryl occurrences (Kimbler and Haynes 1980), 
and many volcanogenic cassiterite (wood tin) deposits (Rye et al. 1990). Southern New 
Mexico also hosts numerous other Be occurrences including helvite-bearing sulfide-
carbonate replacement bodies at the Grandview Mine within 30 km of Iron Mountain 
(Warner et al. 1959). 

Volcanic associated deposits: Shallow low-temperature (150-250°C) replacement 
and vein deposits of Be are linked to volcanic and hypabyssal high-silica rhyolites and 
granite porphyries. These “epithermal” deposits are the main source of non-pegmatitic Be 
ore (Spor Mountain, Utah) and the sole source of gem red beryl (Fig. 2; Appendix A). 
Although best known in the Basin and Range Province of the western United States, 
similar deposits are reported from a number of areas in Asia (Zabolotnaya 1977; 
Kovalenko and Yarmolyuk 1995). Genetically related volcanic and hypabyssal biotite-
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bearing topaz rhyolites (ongonites) are weakly peraluminous to metaluminous and are 
particularly rich in F, Be, and Li (Fig. 5C,D; Kovalenko et al. 1979; Burt et al. 1982; 
Christiansen et al. 1983). In the western United States they formed in an extensional 
tectonic setting and they belong to a compositionally expanded magmatic pattern that is 
bimodal in character and has felsic rocks that range from peraluminous to peralkaline. 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 22. Geology of the Iron Mountain area, New Mexico (modified from Jahns 1946). 
(A) Simplified district geology showing extent of Fe-rich skarn and replacement deposits in Paleozoic 
carbonate rocks adjacent to Oligocene intrusions. The system is tilted about 30° to the east.  
(B) Detail of the central part of the district showing distribution of banded helvite-fluorite-iron oxide 
skarns at the marble contact or superimposed on earlier Sn-bearing andradite and W-bearing magnetite 
skarns. Be-F mineralization is related to the younger fine-grained granite (Robertson 1986). 

 
 

Figure 23. Rhythmically banded helvite-rich replacement 
from Iron Mountain, New Mexico. Magnetite±hematite 
(dark bands) alternating with fluorite-helvite-vesuvianite 
(light bands; photo modified from Jahns 1944a,b). 

 

 

Fine-grained bertrandite and, rarely, beryl or behoite are associated with hydro-
thermal silica (quartz, chalcedony, opal), calcite; fluorite, carbonate, K-feldspar and Li 
clays in tuffs and breccias. Fluorite, although abundant in some of the better mineralized 
deposits, is not always present. Although sulfides are absent, Zn, Mo, Li and other metals 
can be concentrated in Mn oxides and clays (Lindsey 1975). BeO concentrations range 
from a few hundred parts per million to a few percent. 



 Non-pegmatitic Deposits of Beryllium 637 

Fluorite-absent quartz/chalcedony veins with bertrandite-adularia-calcite±clays are 
described in Utah (Rodenhouse Wash, Griffitts 1965) and the former Soviet Union 
(Rozanov and Ontoeva 1987). Bertrandite-bearing (up to 2.5% BeO) clay-altered rhyolite 
tuff at Warm Springs, New Mexico also lacks fluorite (Hillard 1969). Most occurrences 
contain abundant fluorite in addition to silica minerals, bertrandite, calcite, K-feldspar 
and various clays. Zabolotnaya (1977) describes a quartz-fluorite-bertrandite±adularia 
stockwork with epithermal textures in subvolcanic Paleogene rhyolites. Similar deposits 
are present in Mongolia (Kovalenko and Yarmolyuk 1995). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Generalized geological relationships and mineralization in the Spor Mountain 
and Thomas Range area, Utah, locus of the world’s principal Be supply. (A) Geologic 
map of the district showing distribution of Be deposits in Miocene lithic tuff and 
regionally associated hydrothermal alteration (K-feldspar, fluorite and argillic types; 
adapted from Lindsey 1975). (B) Cross sections from the Roadside deposit (see A) 
showing types and distribution of hydrothermal alteration in early Miocene lithic tuffs 
and distribution of bertrandite mineralization in carbonate-clast-rich lithic tuff. The tuff is 
also enriched in Li, Zn and other elements. (Alteration from Lindsey et al. 1973. Be 
content from Griffitts and Rader 1963.) 
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The volcanic-hosted bertrandite-fluorite-silica ores of the Spor Mountain district are 
only one of several dozen Be occurrences in the region (Appendix A; Meeves 1966; 
Shawe 1966). At Spor Mountain and in the adjacent Thomas Range voluminous 
Cenozoic volcanic rocks overlie a carbonate-dominated Paleozoic sedimentary section 
(Fig. 24). Volcanism began with 39-38 Ma latites and andesites, followed by 30-32 Ma 
rhyolitic ash-flow tuffs. It culminated 
with early and late Miocene topaz 
rhyolite flows—the 21 Ma Spor Moun-
tain Rhyolite, and the 6-7 Ma Topaz 
Mountain Rhyolite (Lindsey 1977). 
Interestingly, this bimodal distribution of 
topaz rhyolites occurs throughout western 
Utah. The topaz rhyolites have been 
intensively studied (e.g., Christiansen et 
al. 1984) and rocks of each episode have 
high concentrations of Be, F, Li and other 
lithophile elements (Fig. 5D). Uranium-
lead dating of uraniferous silica yields an 
estimated oldest age of 20.8 Ma for Be 
mineralization but that younger thermal 
events were also likely (Ludwig et al. 
1980). 

Beryllium mineralization is local-
ized in stratified tuff breccia immediately 
beneath rhyolite flows of Spor Mountain 
Formation (Figs. 24B and 25A). The tuff 
is extensively altered with a progression 
from regional diagenetic clays and K-
feldspar (Lindsey 1975) to intense K-
feldspathization with secondary sericite 
and smectite in the immediate vicinity of 
Spor Mountain (Lindsey et al. 1973). 
Dolostone clasts in the tuff breccia show 
corresponding alteration from original 
dolomite to calcite to silica to fluorite 
(Fig. 25B,C). Figures 24B and 25B,C 
show how Be grade increases with 
intensity of alteration in the tuff matrix 
and in carbonate nodules within the tuff. 
The source of the Be-bearing fluids is 
uncertain. Hydrogen and oxygen isotopic 
data (Johnson and Ripley 1998) are 
consistent with involvement of surface 
waters. Fluorite-rich, Be-poor (≤20 ppm) 
breccia pipes cut the Paleozoic carbonate 
rocks beneath the older rhyolites. These 
pipes lie along structures that also appear 
to control the Be orebodies. Lindsey et al. 
(1973) speculated that a connection to 
deeper Be mineralization exists; how-
ever, the deposits could reflect shallow 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 25. Photos of spot Mountain mineral-
 Ization. (A) Open pit with ore body at the bottom 
beneath unmineralized tuff (photo by Steve
Young). (B) and (C) Two mineralized carbonate 
clasts from lithic tuff in the Roadside deposit illu- 
strating the progression in alteration and BeO 
contents (cf. Fig.7 in Lindsey et al. 1973). Mineral-
ogy is labeled (qz = quartz, op = opal, fl = fluorite, 
ca = calcite), as are appromimate BeO contents, 
(B) Partially replaced carbonate nodule from deeper 
part of the tuff with calcite core and quartz to opal 
outer zones with minor fluorite and bertrandite. 
(C) Carbonate clast fully replaced by fluorite-silica-
bertrandite from the upper part of the tuff. 
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degassing of a magma without deeper mineralization, or they might have formed by 
leaching of the Be-rich Spor Mountain Rhyolite (cf. Wood 1992). 

In the same region and of considerable gemological interest are occurrences of 
strongly colored, Mn-rich red beryl. These are restricted in occurrence to topaz rhyolites 
and were first described from the Thomas Range, Utah (Hillebrand 1905). In that area, 
small (<1 cm) red beryl occurs in gas-phase cavities along with topaz, bixbyite and quartz 
in 6-7 Ma rhyolites that overlie the Early Miocene rhyolites related to the Spor Mountain 
deposits. South of the Thomas Range, in the Wah Wah Mountains gem red beryl has 
been commercially produced from 22-23 Ma topaz rhyolite (Keith et al. 1994; 
Christiansen et al. 1997). In the Wah Wah Mountains, crystals exceeding 2 cm in length 
occur in cooling joints near the flow tops. Early bixbyite, topaz and silica polymorphs are 
followed by red beryl and ultimately kaolin plus mixed layer clays. The beryl is post-
magmatic and is interpreted by Keith and coworkers to form by reaction of Be fluoride 
complexes released from the devitrifying rhyolite and subsequently react with feldspar 
and bixbyite along the joints. Red beryl also occurs the Sn-bearing rhyolites of the Black 
Range, New Mexico (Kimbler and Haynes 1980) which are close in time and space to the 
hypabyssal felsic intrusions that are associated with the Iron Mountain skarns and nearby 
volcanic-hosted bertrandite deposits (Meeves 1966). Given the small amounts of beryl 
present, it appears that these occurrences require no more than local redistribution of Be 
from the host topaz rhyolites. 
Peralkaline magma-related systems 

Sodic amphibole and sodic pyroxene-bearing granites, quartz syenites and nepheline 
syenites are associated with several large Be deposits and a number of mineralogically 
interesting occurrences (Appendix A). These are uncommon compared to deposits 
associated peraluminous and metaluminous igneous systems, likely reflecting the relative 
rarity of peralkaline magmas. This diverse group shares styles that range from magmatic 
pegmatitic assemblages to low-temperature (<200°C) hydrothermal systems hosted by a 
variety of rocks (Table 2; Fig. 4). As such they provide a useful mineralogical 
counterpoint to those deposits generated by more aluminous magmas. Consistent with the 
overall alkaline compositions, characteristic Be minerals include Na-Ca silicates 
(epididymite, chkalovite, leucophanite, milarite, leifite), gadolinite, and the Zn-Mn 
members of the helvite group (Table 1). Alteration assemblages in felsic rocks are 
dominated by Na(±K)-rich framework and chain silicates commonly with Li micas with 
or without quartz. Many of these assemblages can be termed fenites given that the key 
alteration minerals are K-feldspar or albite plus sodic pyroxenes and amphiboles. The 
local dissolution of quartz, the peralkaline silicates, and the rarity of acid assemblages 
provide a striking contrast with analogous post-magmatic metasomatism in peraluminous 
and most metaluminous systems (recall that Li-micas are not acid minerals; Eqn. 10). 
Carbonate-hosted systems differ less from the metaluminous environment. Fluorite-rich 
replacement bodies with or without skarns develop in carbonate rocks with characteristic 
Be minerals being phenakite, bertrandite, leucophanite and milarite among others. 

In many regions, notably extension-linked alkaline felsic provinces like Nigeria, 
Norway and southwestern North America, metaluminous to weakly peraluminous biotite 
granites form concurrently with peralkaline aegirine- or riebeckite-bearing granites and 
syenites (Fig. 2). Where they coexist in the same igneous centers both peralkaline and 
metaluminous rocks may have rare element enrichments. Within the same intrusive suite, 
hydrothermal Be deposits more commonly form with the biotite granites, for example as 
in Nigeria, the Pikes Peak batholith, west Texas and nearby areas, and Norway (see 
Appendix A for references). Nevertheless, magmatic systems that are largely or entirely 
peralkaline do host major Be mineralization as described next. 
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Peralkaline granites.  Beryllium mineralization generated by peralkaline granites 
ranges from pegmatitic to low temperature hydrothermal, paralleling the spectrum found 
in more aluminous systems. The hydrothermal systems have abundant K-feldspar and 
albite-rich alteration typically with quartz veining. Sodic amphibole, pyroxene and 
fluorides can be present as can be late hematitization and mica-rich greisens. Beryllium 
minerals tend to be late and are commonly distal. Zabolotnaya (1977) groups such 
deposits into helvite-group or leucophanite-bearing types with feldspathic metasomatism. 
Unfortunately, very few deposits are well described. 

Feldspathic host rocks.  At the high-temperature end of the spectrum, Nb-Y-F-type 
pegmatites and miarolitic cavities are common. For example, pegmatites in the locally 
peralkaline granites and quartz syenites from Pikes Peak batholith, Colorado have 
phenakite, bertrandite, genthelvite, barylite, and gadolinite in pegmatites containing 
quartz, albite, amazonite, and Li-mica (Levasseur 1997; Kile and Foord 1998; cf. Russian 
localities: Bazarov et al. 1972; Nedashkovskii 1983). More acid associations containing 
muscovite and beryl are relegated to greisen zones in the metaluminous Redskin biotite 
granite (last section). In the pegmatitic Strange Lake deposit, Labrador, the original Zr-
Nb-Y-Be concentrations are likely magmatic (Miller 1996). Nonetheless, high-
temperature sodic pyroxene hydrothermal assemblages and moderate-temperature calcic 
hydrothermal alteration culminate in hematite-fluorite-Be mineral (leifite, gadolinite, 
milarite) assemblages (Salvi and Williams-Jones 1996). This paragenesis parallels the 
shifts to calcic assemblages that occur in undoubted hydrothermal systems (see Novikova 
1983 and carbonate-hosted systems below). 

Even though proximal mineralized pegmatites are common, the best developed Be 
concentrations in most of these systems are hydrothermal, late, and distal. Permian-age 
fluorite-phenakite-helvite(-gadolinite-milarite-barylite-bertrandite) mineralization occurs 
on the outer fringes of a hydrothermal system that is associated with variably porphyritic 
riebeckite granites in the Verknee Espee district in Kazakhstan (Belov and Ermolov 
1996). These granites have pegmatitic facies and are feldspathically altered adjacent to 
proximal Nb-Ta-Zr-REE mineralization. The latter is hosted by K-feldspar-riebeckite-
aegirine-fluorite±quartz veins with albite-riebeckite-aegirine-biotite envelopes in clastic 
rocks and tuffs. Hingganite-rich quartz-fluorite-albite-aegirine stockworks with up to 
0.15% BeO occur in apical portions of aegirine-riebeckite granites at Baerzhe, Inner 
Mongolia (Wu et al. 1996). Analogous albite, fluorite and hematite-bearing styles of 
hydrothermal alteration formed with the Be-enriched magmas at the Khaldzan-Buregtey 
Zr-Nb-REE deposit in Mongolia (Kovalenko et al. 1995b). 

Variations on this style occur in the northern Ukrainian shield, where genthelvite-
and phenakite-bearing Be-Ta-Sn deposits are associated with cryolite-bearing biotite and 
riebeckite granites of the Mesoproterozoic Perga complex (Appendix A; Esipchuk et al. 
1993; Kremenetsky et al. 2000a). Quartz-K–feldspar metasomatic rocks are common but 
greisen-type alteration with late sulfides, siderite and cryolite is also present (Vynar and 
Razumeeva 1972). Muscovite-bearing greisens and other acid assemblages in these 
systems are rare. Zabolotnaya and Novikova (1983) describe a possible example of more 
acid alteration from an unnamed Mesozoic occurrence in Siberia where 
dickite+bertrandite occurs with alkaline granites and quartz syenites in a hydrothermal 
system that is otherwise characterized by alteration to typical K-feldspar, albite, hematite, 
and fluorite-rich facies. 

Carbonate host rocks.  Beryllium-bearing replacement bodies associated with 
peralkaline magmatic systems are fluorite-rich. Skarn alteration can be abundant or there 
may only be small amounts of calc-silicate minerals present. The calc-silicate-poor 
fluorite-bertrandite replacement bodies at Sierra Blanca, Texas and Aguachile, Coahuila 
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belong to a continuum with this group because they formed in peralkaline intrusive 
centers, even though the most closely associated intrusions are not themselves 
peralkaline. Calcic-sodic Be silicates such as leucophanite, meliphanite and milarite are 
common in some deposits where they either post-date phenakite or bertrandite or are the 
main Be phase (e.g., Novikova 1984). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 26. Cross section through the aegirine-riebeckite granite-related hydrothermal system in the 
Ermakovskoe district, western Transbaikal, Russia. Fluorite-bertrandite-phenakite-leucophane 
mineralization is distal to and superimposed on garnet-pyroxene-vesuvianite skarns surrounding 
Mo-mineralized feldspathically altered alkali granites and granite porphyries (modified from figures 
based on the work of V. Gal’chenko presented in Zabolotnaya 1977 and Kremenetsky et al. 
2000a).This deposit produced Be in the past (Kremenetsky et al. 2000a). 

The best-described skarn-related example is the Ermakovskoe deposit in 
Transbaikalia, Russia (Appendix A; Zabolotnaya 1977; Lykhin et al. 2001). This deposit 
produced Be ore for the Soviet Union (Kremenetsky et al. 2000a). At Ermakovskoe, 
proximal skarns and skarn-overprinting to distal Be-F replacement bodies formed around 
and over a Triassic aegirine granite and related syenitic and granitic dikes (Fig. 26). The 
intrusion is variably albitized and potassically altered and it contains minor quartz-
feldspar-molybdenite mineralization in its upper portions. REE and Zr are also 
metasomatically enriched. Early metasomatism in the sedimentary and igneous host rocks 
created K-feldspar-rich assemblages in the aluminous rocks and vesuvianite(beryllian)-
garnet-pyroxene skarns in the carbonate rocks. Beryllium occurs mainly as phenakite 
(deep) and bertrandite (shallow) in late dark fluorite-adularia-calcite-ankerite replacement 
zones (Novikova et al. 1994). Subsequently, more calcic phases of alteration overprint 
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the system to form leucophanite, meliphanite, helvite, milarite and bavenite along with 
carbonates and sodic silicates. Fluid inclusion studies document a complex set of high-
salinity, carbonate- and sulfate-rich fluids with Be contents approaching 1000 ppm (Reyf 
and Ishkov 1999). Kosals et al. (1974) report additional homogenization data from an 
unnamed deposit that closely resembles Ermakovskoe. 

In another undisclosed Siberian location, leucophanite-fluorite-K–feldspar-albite 
veins and replacements occur in limestones along skarn-bearing contacts with a 
riebeckite granite (Kosals and Dmitriyeva 1973). Overprinting these is subordinate 
association containing fluorite, Li-mica, danalite, milarite, phenakite and bertrandite. 
Alteration in the granites and adjacent clastic rocks is dominated by riebeckite-albite-
quartz and riebeckite-microcline-albite assemblages with Ta-Zr mineralization. 
Gadolinite joins leucophanite where rare fluorite veins cut the granite. The fluid 
inclusions studied by Kosals and Dmitriyeva (1973) indicate the leucophanite 
mineralization occurred between 380 and 490°C from variably saline fluids. In yet 
another unnamed deposit related to a aegirine-riebeckite granite, phenakite mineralization 
occurs in aegirine-alkali feldspar fenites and later fracture-controlled quartz-hematite-
phenakite mineralization (Nedashkovskii 1970). 

Fluorite in these systems is commonly dark in color and REE-rich (Hügi and Röwe 
1970). Textures can be rhythmically banded or sieve-like with Be minerals and feldspars 
(Kosals et al. 1974; cf. Fig. 20). 

Silica-saturated peralkaline volcanic settings.  Deposits with peralkaline volcanic 
rocks are apparently rare. The best candidate is the Early Proterozoic Brockman Nb-Zr-
Ta deposit, Western Australia (Appendix A) where Be is remobilized into bertrandite-
quartz-carbonate veins in a weakly metamorphosed rare-metal rich volcanic tuff. Other 
possible examples include some of the volcanic-hosted bertrandite-fluorite occurrences in 
Mongolia (Kovalenko and Yarmolyuk 1995) and the helvite-bearing Shixi occurrence in 
China which is associated with hypabyssal dikes of Na-altered Nb-Ta-Zr-F-rich sodic 
rhyolite (Lin 1985; Appendix A). 

Nepheline syenites and carbonatites.  Hydrothermal Be enrichments may be more 
common with undersaturated igneous rocks than is generally appreciated. This is because 
the minerals are commonly dispersed in late igneous units or thin veins, they are easily 
weathered, and they are typically subtle in appearance. Chemically evolved units in 
nepheline syenite complexes commonly contain elevated Be in associated pegmatites, 
miarolitic cavities, hydrothermal veins and feldspathized rocks (Ilímaussaq, Mt. Saint-
Hilaire, Lovozero, Khibiny, Oslo graben; Appendix A; Sørensen 1997). Where present 
(e.g., Mt. Saint-Hilaire, Lovozero), pegmatites can have complex internal structures and 
are dominated by albite, natrolite, sodalite with accessory chkalovite, leucophanite, and 
epidydimite. In addition, nearly all described systems contain multiple types of quartz-
free metasomatic assemblages that contain albite, aegerine, analcime and other sodic 
minerals in both veins and wall rock alteration. Li micas are common whereas muscovite 
is absent. The absence of quartz and the scarcity of K-feldspar contrasts with the 
hydrothermal features associated with peralkaline granites. Genthelvite, bertrandite, 
epididymite, chkalovite, leucophanite are the more common of the large number of 
hydrothermal Be minerals present. Beryl forms only where quartz-bearing peraluminous 
rocks are cut by Be-bearing veins (Mt. Saint-Hilaire, Horváth and Gault 1990) and 
chrysoberyl has been reported in quartz-absent, aluminous(?) xenoliths and veins from 
the Khibiny massif (Men'shikov et al. 1999); euclase not reported. These mineral 
associations are consistent with the phase relationships presented in Figures 11 and 12. 

Geological relationships are well defined in only a few areas. Engell et al. (1971) 
describe Be distribution in the Ilímaussaq nepheline syenite complex. Hydrothermal 
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enrichments up to 0.1% BeO occur in zones with abundant veins. At Ilímaussaq more 
than a half dozen vein types contain combinations of aegirine, arfvedsonite, analcime, 
albite, natrolite, sodalite, Li mica, ussingite and other phases. These veins and associated 
albite-aegirine-arfvedsonite-natrolite fenites formed above late differentiates (lujavrites: 
eudialyte-acmite nepheline syenites) in the intrusion. The latter contain 10-30 ppm Be 
(30-80 ppm BeO). Hydrothermal Be minerals include chkalovite, tugtupite, bertrandite, 
beryllite among others (Engell et al. 1971; Sørensen et al. 1981; Markl 2001). Similar 
occurrences are known in the Lovozero and Khibiny complexes of the Kola Peninsula. 
Epididymite, leucophanite, chkalovite and many other Be minerals occur in hydrothermal 
albite-natrolite-polylithionite-bearing assemblages in pegmatites and veins (Men'shikov 
et al. 1999). As at Ilímaussaq, these are preferentially associated with late-crystallizing 
lujavrites. At Letitia Lake, Labrador (Appendix A; Fig. 2), epididymite and barylite 
constitute up to a few percent of zones with Nb-REE-Zn-bearing alkali-feldspar-rich 
veins and fenites in shallow syenitic and trachytic rocks. These hydrothermal zones 
contain about 0.4% BeO. In the Khibiny-Lovozero Complex, Kola, isotopic evidence 
points to involvement of meteoric waters in the later veins in these otherwise magmatic-
fluid dominated systems (Borshchevskii et al. 1987). The atypical abundance of 
hydrothermal quartz in the syenite-related deposit at Thor Lake, Canada (Fig. 16; 
described with magmatic deposits) may reflect the local granite host or a hidden quartz-
bearing intrusion or simply the cooling of magmatic fluids to low temperatures. 

Hydrothermal occurrences in carbonate host rocks are apparently rare. A plausible 
candidate is at Hicks Dome in southern Illinois where Paleozoic carbonate rocks host 
bertrandite-bearing fluorite mineralization (Baxter and Bradbury 1980; Kogut et al. 
1997). The latter centers on breccias are linked to alkaline magmatism, possibly a 
carbonatite. Mineralization is interpreted as due to mixing of F-rich magmatic fluids with 
basinal brines (Plumlee et al. 1995). 

Overall, relatively few reported Be enrichments occur with carbonatite complexes, 
even those with fluorite mineralization. At Muambe, Mozambique massive Y-LREE 
bearing fluorite with up to 1% BeO replaces the marginal parts of a carbonatite complex 
adjacent to K2O-rich fenitized shallow breccias (Appendix A). In the Magnet Cove, 
Arkansas, carbonatite complex, Erickson et al. (1963) found Be enrichments in late, 
thaumasite-bearing hydrothermal veins. At several other localities, Be enrichments occur 
in carbonatite-bearing alkaline complexes, but are most likely related to associated 
peralkaline syenites or granites. Barylite occurs in REE-Zr-Th-bearing fenitized rocks 
adjacent to nepheline syenites and carbonatites at Vishnevogorskii in the southern Urals 
(Zhabin and Kazakova 1960; Zhabin et al. 1960; Kogarko et al. 1995). Up to 0.6% BeO 
is reported with Zr-Y-Th-U-HREE breccia bodies associated with carbonatite dikes in the 
Coldwell alkalic complex, Canada, but are inferred by Smyk et al. (1993) on the basis of 
REE and rare metal enrichments to be derived from nearby felsic rocks. 
Igneous-related emerald deposits 

Although amagmatic origins for emeralds are clearly established in some deposits 
(e.g., see Giuliani et al. 1997, Franz and Morteani, this volume), most investigators link 
the majority of emerald deposits to metasomatism driven by granitic magmatism (Fig. 27, 
Appendix A; Kazmi and Snee 1989a; Sinkankas 1989). In the latter group, emerald forms 
where berylliferous granitic pegmatites or granite-derived quartz-mica-feldspar veins 
intersect Cr(±V) bearing host rocks. Most such host rocks are ultramafic or mafic in 
composition. The emerald-bearing veins and dikes typically have complex contact-
parallel quartz-poor metasomatic zones which are dominated by biotite(-phlogopite), 
other Mg(-Ca) sheet silicates, amphiboles, and plagioclase (Figs. 28, 29). Phenakite and 
chrysoberyl can accompany emerald mineralization in ultramafic rocks (Fig. 14).  



644 Chapter 14:  Barton & Young 

 
 
 
 

 

 

 

 

 

 

 

Figure 27. Global distribution of emerald and vanadian beryl deposits by geologic type. Compiled 
from Kazmi and Snee (1989a) and other sources. See text for discussion of and uncertainties in 
classification. 

Mineralogically, these emerald-bearing systems have many parallels with apocarbonate 
greisens reflecting formation in analogous silica-poor, Mg-Ca rich hosts. In contrast to 
the ultramafic and mafic-hosted Cr-rich types, vanadian green beryls (V > Cr) typically 
form in pelitic rocks which have higher V/Cr than most mafic and ultramafic rock (Fig. 
27). As many workers have pointed out, the rarity of emerald stems from the infrequent 
pairing of a beryl-forming environment with rocks that contain significant Cr. That said, 
many areas have this juxtaposition, yet lack reported emeralds and thus should be 
prospective for them. 

Few emeralds form with metaluminous granitoids. Perhaps the only significant 
examples are the greisen-affiliated deposits related to the Nigerian Younger Granites 
(Abaa 1991; Schwarz et al. 1996). Syenitic occurrences are virtually non-existent because 
beryl does not form in these systems except where pelitic host rocks become involved 
(e.g., V-bearing “emerald” at Eidsvoll, Norway; ordinary beryl in hornfels at Mt. Saint-
Hilaire, Quebec). Most deposits arise from peraluminous biotite and biotite-muscovite 
granites; this connection likely reflects the elevated Al2O3 activities that are required to 
make beryl (Fig. 12). Within this last group, emerald occurs with multiple magma and 
vein types. Genetically related granites and pegmatites can be chemically specialized as 
indicated by associated Li, Ta or Sn minerals (e.g., Hiddenite, North Carolina; Poona, 
Australia; some Brazilian and Egyptian deposits), however many of the better 
documented examples are associated with mineralogically simple granites and related 
veins (Reft River, Russia; Khaltaro, Pakistan; Egypt; Carnaiba and Socoto, Brazil; 
Crabtree, North Carolina; cf. Giuliani et al. 1990). 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 28 (opposite page). Zoning in igneous-affiliated emerald deposits showing the diversity of 
source units (quartz veins, aplitic and pegmatitic dikes. felsic schist) and host rocks (silica-rich and 
silica-poor ultramafic and mafic compositions). For several of these occurrences metamorphic 
origins that long post-date magmatism have been proposed (Habachtal, Gravelotte, Franqueira, 
Sekeit; also see discussion under metamorphic occurrences). Compiled from sources listed on the 
figure. 
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In both ultramafic and mafic rocks, emerald crystals form both within hybridized 
veins and dikes and in their biotite-rich envelopes (Fig. 28). Veins typically show 
evidence of reaction with the country rock and can be dominantly quartz or mica 
(phlogopite or muscovite) or plagioclase with a wide-variety of additional minerals 
including K-feldspar, tourmaline, fluorite, molybdenite, and scheelite. Pegmatitic dikes 
are variably metasomatically modified (“desilicated”), typically expressed by lack of K-
feldspar, abundance of plagioclase and diminished amounts of quartz. This process may 
take place concurrently with emplacement or during later metamorphism, as can 
generation of the common (though not universal) mineral foliations. Where intense 
chemical exchange between the host and incoming fluids has affected the entire mass it 
may be impossible to tell if the causative fluids were magmatic or hydrothermal. 
Aquamarine and common beryl may be present in the less reacted interiors of pegmatites 
and veins, whereas emerald is most common in enveloping zones of metasomatic 
biotite±plagioclase±quartz. 

In peridotites or serpentinites, outer metasomatic zones consist of chlorite, talc, 
actinolite plus other amphiboles and they commonly contain minor chrysoberyl  
and phenakite. These “blackwall” assemblages are similar to those found worldwide at 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 29. Geology of the Reft River, Urals, Russia emerald deposits. (A) Regional 
geology showing distibution of emerald deposits in mafic to ultramafic metamorphic 
rocks adjacent to two-mica granite plutons. The deposits themselves are localized by 
dikes and veins from the granites. (B) Cross-section of an exposure with emerald and 
common beryl occurring adjacent to desilicated pegmatites. These form an apparent 
continuum with emerald-bearing quartz and/or albite veins (Beus 1966, p. 236-244). Both 
A and B redrawn after figures from Fersman (1929) as illustrated in Sinkankas (1981). 
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contacts between felsic and ultramafic rocks (e.g., Coleman 1966). Outer zones in 
ultramafic hosts may be relatively siliceous, for example with talc-bearing assemblages 
(Gravelotte), however serpentine or olivine bearing silica-undersaturated assemblages are 
more common. These silica-poor rocks have the best-developed chrysoberyl and 
phenakite which form in the intermediate to outer metasomatic zones (Beus, 1966) and 
may in turn be overgrown by emerald (e.g., Martin-Izard et al. 1995; Fig. 28). Desilicated 
units can also contain rare Be minerals including bromellite (Klement'eva 1970), bavenite 
(Kutukova 1946), and epididymite and milarite (Černý 1963). Surinamite, which replaces 
chrysoberyl+talc at high-pressure (Hölscher et al. 1986), may represent the high pressure 
or metamorphosed equivalent of lower-pressure blackwall assemblages. 

One of the better-studied ultramafic-hosted districts is along the Reft River in the 
Ural Mountains in Russia where pegmatites and veins derived from Devonian two-mica 
granites cut Paleozoic serpentinites (Fig. 29A). Emeralds are associated with both quartz-
feldspar-mica pegmatites and mica (muscovite/phlogopite/margarite), plagioclase-mica, 
and quartz-albite veins (Beus, 1966; Vlasov, 1968). The mica-rich varieties have been 
termed “glimmerites.” Metasomatic zoning is typical of the class and is similar around all 
varieties of veins and dikes—inner biotite to intermediate actinolite-chlorite to outer talc 
zones (Fig. 29B). Emeralds are concentrated in the biotite-rich rocks whereas phenakite 
and chrysoberyl are more distal. Some of the world’s finest chrysoberyl (variety 
alexandrite) comes from the intermediate zone in these mines. Egyptian, Brazilian, South 
African and Australian occurrences (Appendix A; Figs. 27, 28) are similar. The common 
presence of fluorite and F-bearing micas suggests that the Mg-Ca-rich host rocks 
triggered F precipitation, which may have led to the precipitation of Be and Al from 
solution to form emerald, chrysoberyl and other minerals (e.g., Soboleva et al. 1972). 

In contrast to the multiple metasomatic zones present in ultramafic host rocks, mafic 
rocks commonly develop only a biotite-rich envelope between the central veins or dikes 
and the host (Fig. 28). This likely reflects the higher activities of SiO2 and CaO and a 
lower activity of MgO in mafic rocks (Fig. 14). For example, at Khaltaro, Pakistan 
emeralds formed at the contact between mafic amphibolites and young (~9 Ma) 
greisenized and albitized leucogranites (Fig. 30; Laurs et al. 1996). These include 
emeralds formed in the outer plagioclase-rich margins of aquamarine-bearing albite-
quartz-muscovite veins and, rarely, in and around tourmaline-bearing simple pegmatites 
(Fig. 30). From whole rock analyses and modal mineralogy Laurs et al. (1996) deduced 
that the addition of F, alkalis and other elements to the amphibolite drove reactions 
making fluorite and biotite which in turn released the Cr and Fe needed for emerald 
formation.  

Although magmatic-hydrothermal origins are well established in many areas, 
emerald paragenesis remains controversial in some regionally metamorphosed settings 
where igneous bodies are present. The dilemma stems from the fact that many 
occurrences are small bodies that could originate either (1) through local bimetasomatic 
exchange by intergranular diffusion over the relatively long times available during 
regional metamorphism or (2) by infiltration±diffusion metasomatism generated during 
shorter lived magmatic / hydrothermal events. In many areas a regional metamorphic 
overprint is absent and there is unambiguous evidence for magmatic conditions and 
geochemical signatures. Oxygen isotopic data can discriminate between some igneous-
related systems and others of sedimentary or metamorphic origin (Fig. 31; Giuliani et al. 
1997). These differences have been used with great success by Giuliani et al. (2000a) to 
deduce global sources and trading patterns in jewelry. For example, their results show 
that distinctive 18O-enriched sedimentary-sourced Colombian emeralds spread throughout 
Europe within a decade of the discovery of the New World. In many cases, however, it is  
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Figure 30. Khaltaro, Pakistan emerald 
deposit associated quartz veins and peg-
matites from muscovite-biotite leucogranite 
intruding amphibolites (Laurs et al. 1996). 
(A) Sketch of relationships between quartz 
and albite vein. Modified from Laurs et al. 
(1996). (B) Photograph of emerald-rich 
sample from the margin of a quartz vein 
adjacent to the amphibolite. Note that the 
high abundance of beryl (emerald) far 
exceeds melt solubility and must be 
hydrothermal. Photo provided by Brendan 
Laurs. 

 

 

 

 
 
 

Figure 31. Oxygen isotopic compositions of 
emeralds for various deposits (vertical bars) 
and for different pieces of jewelry 
(numbered columns) as a function of 
fabrication age (redrawn from Giuliani et al. 
2000a). This demonstrates the variability 
among in δ18O in emeralds, which is a 
function of geologic environment (source, 
indicated by horizontal bands), and it shows 
that this systematic variation can be applied 
to the interpretation of trade patterns in 
gemstones. See Figure 27 for locations. 

 

 

not clear if one mechanism or the other dominates or if both are involved (e.g., 
Gravelotte, Franqueira, Seikeit; Appendix A). Other tests might help resolve the mode of 
origin of some deposits, for example, determining the extent of mobility of Al or accurate 
dating of intrusions, metamorphism and emerald formation. Unfortunately, for many 
emerald occurrences, these are not well documented and clearly merit further 
investigation. In the next section we turn to those deposits where non-magmatic origins 
are clearly indicated. 
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NON-MAGMATIC OCCURRENCES 
Non-magmatic processes are involved in many Be mineral occurrences, both in their 

genesis and in their subsequent modification. Local Be enrichments are noted in a varied 
group of Fe-Mn-oxide-rich rocks. Hydrothermal deposits related to sedimentary and 
metamorphic fluids comprise an important group of emerald deposits, notably the basin-
related Colombian emerald deposits. Metamorphic and surficial processes redistribute Be 
through local concentration, mineralogical transformations, and placer processes. Some 
of these can be important gem sources—especially metamorphic emerald deposits and 
placer deposits of aquamarine and other materials. 
Fe-Mn(-Zn) oxide-rich occurrences 

A handful of Fe-Mn(±Zn)-oxide-rich rocks contain Be minerals or moderate Be 
enrichments. These occurrences clearly contrast with the obviously igneous-linked Fe / 
Mn associations discussed earlier which typically have magnetite-fluorite-helvite or 
sulfide-bearing helvite-Mn-carbonate/silicate±fluorite assemblages. The oxide-rich 
systems occur in supercrustal rocks of both sedimentary and volcanic origin; the role of 
igneous activity in their generation is problematic (Grew, this volume). The best-known 
example is the metamorphosed deposit at Långban, Sweden (Moore 1970) which 
contains twelve Be minerals (Introduction, this volume). Similar rocks at Franklin, New 
Jersey (Palache and Bauer 1930) may have a granitic source for their Be. Miscellaneous 
locations include helvite with Mn-rich jaspers in the Pyrenees Mountains (Ragu 1994b), 
bergslagite and other Be enrichments with Mn-Fe oxide layers in Switzerland (Graeser 
1998; Brugger and Gieré 2000), and milarite with Mn oxide deposits in New South 
Wales (Kawachi et al. 1994). Mn-Fe-oxide-rich hot spring deposits in Nevada (Golconda, 
Sodaville) contain up to 60 ppm Be (160 ppm BeO) along with W and other metals 
(Warner et al. 1959). Zasedatelev (1973) suggested that similar materials occur 
elsewhere. Beyond a common oxide-rich, sulfide-poor geochemistry, it is not obvious 
that they share a common genesis. 
Basinal (and metamorphic?) brine-related emerald deposits 

Beryl, mainly emerald with minor aquamarine, is known from several areas around 
the world that share moderate temperatures of origin, saline fluids, high δ18O, and a lack 
of associated igneous rocks (Appendix A; Figs. 27, 31). Of these, the Colombian emerald 
deposits are seemingly unique in their geology as they are in the size, quality and number 
of emeralds produced. In all of these deposits, the concentration of beryl is low and most 
authors infer that Be is derived by local concentration from the wall rocks (see also Franz 
and Morteani, this volume). 

Emerald deposits in Colombia are hosted by Cretaceous siltstones, sandstones and 
shales and occur in two belts, one west and one east of Bogota (Fig. 32). The clastic host 
rocks belong to a Mesozoic sedimentary basin that contains marine evaporites. 
Mineralization in the western belt formed during Oligocene compression whereas 
mineralization in the eastern belt formed in the latest Cretaceous during an extensional 
episode (Cheilletz et al. 1994; Branquet et al. 1999). Beryl (mainly emerald, rarely 
aquamarine; euclase occurs at Chivor) occurs in gash veins with carbonate, quartz, albite, 
pyrite and other minerals in fractured, brecciated, variably albitized rocks (Fig. 33; Beus 
1979; Cheilletz and Giuliani 1996). Grades are extraordinarily low (Fig. 3): probably <10 
ppb gem emerald, and well under 100 ppb emerald overall even though the rocks 
themselves contain 500-5000 ppb Be (Feininger 1970; Kozlowski et al. 1988). 

Fluid inclusion studies show that the mineralizing fluids contained up to 40 wt % 
NaCleq and were between 250 and 400°C (Kozlowski et al. 1988; Cheilletz et al. 1994; 
Giuliani et al. 1995, 1999; Banks et al. 2000). Stable isotopic studies of beryl and gangue  
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Figure 32. Geologic setting of the Colombian emerald districts. (A) Regional geology 
showing distribution of emerald districts in thrust belts surrounding inverted Cretaceous 
basin. Emerald deposits on the eastern side are latest Cretaceous in age and formed 
during extensional faulting, whereas on the western side they are localized by Eocene-
Oligocene thrust and tear faults (Branquet et al. 1999). (B) Sketch of geologic 
relationships in the Muzo area showing correlation with compressional structures. Both 
figures redrawn from Sinkankas (1981). 

 
 
 
 

Figure 33. Front view (A) and side view (B) of 
emerald-rich quartz-albite-pyrite veins cutting at high 
angles across albitized siltstone from Chivor(?), 
Colombia. Albitization is common in the Colombian 
emerald districts with concomitant redistribution of Be, 
Cr and other components (Beus 1979; Cheilletz and 
Giuliani 1996). Photo and specimen courtesy of Frank 
Mazdab. 

 
 

minerals indicate a basinal brine source with high δ18O (16-25‰; Fig. 31) and sulfate 
reduction form sulfur to form pyrite. Hydrogen isotope ratios and fluid inclusion 
compositions indicate that two fluids were involved, a basinal brine and another, perhaps 
surface-derived fluid (Banks et al. 2000; Giuliani et al. 2000b). Basinal fluids are now 
generally accepted as the key ingredient in order to react with the host sedimentary rocks 
mobilizing the Be and Cr (±V) required to form emerald (Beus 1979; Ottaway et al. 
1994; Giuliani et al. 1999) perhaps with deposition due to mixing with a second calcium-
bearing fluid (Banks et al. 2000). Local redistribution of Be by breakdown of Fe-Mn 
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hydroxides (Giuliani et al. 1999) or organic matter (Ottaway et al. 1994) is plausible, but 
not required. 

Several other beryl occurrences have possibly analogous origins with basinal or 
metamorphic brines. In Uintah region of northeastern Utah, a single emerald crystal is 
reported from carbonate-rich veins that cut black shales and that have a basinal brine 
signature (Keith et al. 1996; Olcott et al. 1998). Gem beryl (aquamarine and emerald) 
occurs in the magnesite deposits of Brumado, Bahia, Brazil where it occurs with uvite, 
dolomite and topaz in quartz veins (Bodenlos 1954; Cassedanne and Cassedanne 1978). 
A basinal or metamorphic origin is conceivable given the association with bedded 
magnesite (which is commonly of basinal brine origin) and the lack of directly associated 
granitic bodies. A third candidate for basinal origin is the Mingora and nearby emerald 
deposits of the Swat district, Pakistan where beryl-carbonate-quartz veins cut ultramafic-
bearing metamorphic rocks (Kazmi et al. 1989). Oxygen isotope ratios from Mingora are 
relatively high (Arif et al. 1996) and could indicate fluids either cooled from an S-type 
leucogranite or from a metamorphic or sedimentary source. Fluid inclusions reveal that 
temperatures ranged from 250° to 450°C and that the fluids contained ≤0.03 mole 
fraction of CO2+CH4 with salinities up to 20 wt % NaCleq (Seal 1989). From these results 
Seal (1989) inferred that fluid mixing may have contributed to beryl deposition. Some 
Afghanistani deposits (e.g., Panjsher) that lie westward along the Indus suture share 
many of the characteristics that are compatible with a sedimentary or metamorphic brine 
origin (Kazmi et al. 1989; Giuliani et al. 1997; Fig. 31). Nwe and Morteani (1993) 
interpret similar brines that occur late in the paragenesis of the Gravelotte, South Africa 
emeralds to be of metamorphic origin and to be linked to the most Cr-rich crystals. 
Metamorphic occurrences 

A number of Be mineral localities, notably some emerald deposits and “alpine 
clefts,” occur in regionally metamorphosed rocks and lack evidence for magmatic 
involvement (Figs. 2, 27). Their origins are attributed to local redistribution and in some 
cases by introduction of new material during metamorphism. 

Shear zone or metamorphic emeralds.  Based on studies in the Alps and other 
regions Morteani, Grundman and coworkers have recognized that a number of emeralds 
and related minerals show compelling evidence for growth during regional meta-
morphism (Morteani and Grundmann 1977; Okrusch et al. 1981; Grundmann and 
Morteani 1989; Appendix A, Fig. 27). These occurrences have been termed metamorphic 
or shear zone deposits (Grundmann and Morteani 1989) and in some reviews they are 
combined with other non-magmatic deposits (Giuliani et al. 1998). Shear zone deposits 
resemble many igneous-related emerald deposits. Both types have emerald±phenakite 
±chrysoberyl in biotite-rich zones in metaultramafic and metamafic rocks. Although the 
biotite-rich zones commonly form at the contact with felsic lithologies, this is not always 
so. Textures show that beryl overgrows other metamorphic minerals, in some cases with 
curving inclusion trails clearly demonstrating synkinematic growth (Morteani and 
Grundmann 1977; Grundmann and Morteani 1989). As described above, these emeralds 
contain more Fe and Mg than most other types (Fig. 6). 

At Habachtal, Austria emerald formed at the contact of metaperidotites and felsic 
gneisses. Pegmatites and quartz veins are absent, but the felsic gneisses contain ample Be 
to form the emeralds (Okrusch et al. 1981; Grundmann and Morteani 1989). There and 
elsewhere in the Tauern Window Mg-Fe-Na-rich beryl grew relatively late in the 
metamorphic history, commonly on preexisting phenakite (Franz et al. 1986). Fluid 
inclusions have moderate salinities and CO2 contents consistent with a metamorphic fluid 
(Nwe and Grundmann 1990). Similar deposits that lack closely associated igneous rocks 
occur in Afganistan, Pakistan and Brazil (Kazmi and Snee 1989a; Giuliani et al. 1990). 
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These systems commonly have CO2-bearing inclusions and non-magmatic oxygen 
isotopic values that are consistent with metamorphic origins (Giuliani et al. 1997, 1998; 
Fig. 31). 

More controversial are deposits associated with pegmatites, veins and granites where 
Be was likely introduced as part of an igneous event, but emerald formation may 
significantly post-date magmatism. These include the deposits at Gravelotte, South Africa 
and Franqueira, Spain (Appendix A; e.g., Franz et al. 1996; Martin-Izard et al. 1996). 
Although textural and isotopic evidence can be compelling for metamorphic growth, the 
question of origin arises because available evidence does not necessarily preclude coeval 
magma emplacement. Synkinematic intrusion accompanied by progressive growth of 
metasomatic zones could lead to similar beryl overgrowth of phenakite during 
deformation. Conversely, metamorphism of pegmatitic or vein systems could drive 
additional local metasomatic exchange and emerald growth. 

Alpine clefts. Of mineralogical interest only, alpine clefts comprise metamorphic 
gash veins and a variety of igneous-related cavities and veins, all of which can contain 
minor accessory Be phases (Appendix A; Stadler et al. 1973; Graeser 1998). Although 
the term “alpine cleft” has been widely applied to open-space mineral occurrences in 
other parts of the world (cf. Cook 1998), in order for it to be petrologically useful it 
should be restricted to types analogous to those seen in the Alps, especially the open-
space metamorphic gash veins. The metamorphic occurrences represent a distinct 
environment for local concentration of Be where phenakite, milarite, bavenite and other 
minerals accompany quartz, chlorite, adularia, and hematite in open cavities that formed 
in moderate grade metamorphic rocks of felsic composition (Graeser 1998). Isotopic and 
fluid inclusion evidences indicate local metamorphic sources for Alpine-type veins 
(Luckscheiter and Morteani 1980; Mullis et al. 1994; Henry et al. 1996). In some ways 
this is analogous to the processes inferred for the Habachtal emerald deposits (above; 
Okrusch et al. 1981). In contrast to the phenakite, milarite assemblages of metamorphic 
clefts, the numerous Alpine igneous-hosted localities contain beryl, bazzite, bavenite, 
gadolinite and a variety of other minerals. The latter occur in aplites, miarolitic cavities, 
pegmatites and granite-related quartz veins of both Hercynian and Alpine age (Hügi and 
Röwe 1970; Pezzotta et al. 1999). Even among these occurrences, some may be primarily 
metamorphic in origin. The host felsic biotite granitoids that have modest Be enrichments 
in their differentiated phases (Hügi and Röwe 1970). 
Weathering and placers 

With the exception of some placer settings, Be minerals are typically dispersed 
during weathering and sedimentary processes (Grigor'yev 1986). Local increases in soils 
can occur where Be dispersed in rock-forming minerals concentrates in montmorillonite 
or, more rarely, oxides and hydroxides during weathering (Sukhorukov 1989). For the 
most part, however, Be concentrations are diluted except when particularly stable Be 
silicates are present. 

Beryllium minerals in the BASH group typically resist weathering and thus they 
occur in placer deposits. Alluvial deposits, particularly in Sri Lanka and related 
Gondwanan occurrences, are major sources of gem aquamarine, chrysoberyl and 
taaffeite-group minerals (Menon and Santosh 1995; Dissanayake et al. 2000; Shigley et 
al. 2000). These materials can be of unusually high quality because alluvial processes 
preferentially remove damaged (flawed) parts of crystals (Sinkankas 1981). Even in the 
world class Sri Lanka gem placers Be contents estimated to be 1 to 13 ppm comparable to 
or only slightly enriched over the local crust (Rupasinghe et al. 1984; Rupasinghe and 
Dissanayake 1985). 
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Supergene concentration is unimportant (Grigor'yev 1986). Local concentrations in 
soils, stream sediments and plants mainly represent residual accumulation and subsequent 
dispersion during weathering of hypogene mineralization (Sainsbury et al. 1967; 
Grigor'yev 1997). Beryl, phenakite and chrysoberyl typically do not weather; however, 
several Russian studies (Ginzburg and Shatskaya 1964; Novikova 1967; Grigor'yev 
1997) have shown that beryl and phenakite can break down during weathering of pyrite- 
and fluorite-rich rocks. In their examples, the products are Be-enriched clay minerals and 
secondary phosphates such as herderite and moraesite. The authors interpret the process 
to be one of acid attack by sulfate and fluoride bearing supergene fluids. Given that the 
association of sulfides, fluorite and Be minerals is common, this process should be fairly 
widespread. Bacterial enhancement of weathering might also be important. Experiments 
show that bacteria can increase dissolution rates of helvite, beryl and chrysoberyl by 
factors of 5 or more without apparent Be toxicity to the bacteria (Mel'nikova et al. 1990). 
Large supergene accumulations are not reported, but minor upgrading might be expected 
where F-bearing acid groundwaters flow from Be-bearing rocks into mafic or carbonate 
rocks. 

In contrast to the BASH group, other Be minerals such as those in the helvite, 
gadolinite and Na-Ca-silicate groups weather readily (Grigor'yev 1986). They react under 
near-surface oxidizing and weakly acid conditions to produce clays, oxides and some 
secondary silicates. Supergene changes are more widely reported in alkaline rocks, for 
example on the Kola Peninsula where hydrothermal chkalovite, epidydimite and 
eudidymite weather to produce beryllite, bertrandite and other phases (Vlasov et al. 
1966). These authors report no supergene enrichment. 

SYNOPSIS OF DEPOSIT CHARACTERISTICS AND ORIGINS 
In contrast to pegmatitic deposits of Be, which are widely distributed in time but of 

rather limited geological variability, non-pegmatitic deposits are mainly Phanerozoic in 
age and are geologically diverse (Figs. 2, 4; Appendix A; cf. Rundkvist 1977; 
Zabolotnaya 1977). This diversity is all the more remarkable given the ready substitution 
of Be into many rock-forming minerals at crustal abundances and the overall ineffective 
concentration of large amounts of Be by crustal processes. The largest districts contain no 
more Be than that in a few cubic kilometers of granite or rhyolite (cf. Fig. 3) in contrast 
to deposits of many other elements (e.g., Cu, Au, Mo) which require 10s to 100s of km3 
of crustal source materials. This section summarizes the key patterns in deposit 
characteristics at global and system scales. These patterns can readily interpreted in terms 
of experimentally determined Be mineral stabilities and well-known geologic processes. 
Ultimately, non-pegmatitic Be mineral occurrences form either (1) by concentration of 
Be during magmatic or hydrothermal processes, or (2) by local redistribution of Be 
during metamorphic or sedimentary processes. 
Global-scale patterns 

With geologic setting. As reviewed by others (e.g., Strong 1988), chemically 
evolved felsic magmas and related mineralization form in a wide variety of 
environments. Examples with prominent Be deposits (Fig. 2) include convergent margin 
compressional settings (e.g., the circum-Pacific Mesozoic), collisional to post-collisional 
transpressional to transtensional (e.g., the Indus suture, European Hercynian, Urals and 
central Asia), to extensional environments in rift or continental extensional environments 
(e.g., Norway, Niger-Nigeria, US-Mexico Cenozoic, Proterozoic alkaline systems across 
Laurentia). Amagmatic deposit types—whether metamorphic, basin-related or placer—
require orogenesis to drive material transport via fluid flow (Colombian emeralds, Alpine 
clefts) or local diffusion and recrystallization (shear zone type emeralds, granulite-
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sourced placers). Thus, all these settings generally share the requirement of relatively 
thick continental crust, which is needed for generation and differentiation of the diverse 
felsic magmas required for igneous-related deposits or for the crustal thickening required 
to drive regional metamorphism. 

Other contributing factors to regional patterns are less well understood. For example, 
felsic magmatism and lithophile element (Sn-W-Mo-F-Zn) systems are far more 
widespread than documented Be mineralization. Provincial differences are striking: 
Southwestern North America has many Be deposits ranging in age from Mesoproterozoic 
to Cenozoic, yet is devoid of economically important Sn deposits. Conversely, the major 
Bolivian and Thai-Malaysian Sn provinces lack major known Be occurrences. Could 
crustal characteristics (thus inheritance) be important as may be the case for elements like 
Sn? There seems little compelling reason to think so, given that ample Be is present in 
most felsic igneous rocks; however, other petrogenetic factors could be key to generating 
a favorable geologic environment (e.g., shallow F-rich hydrothermal systems or a 
distinctive differentiation path). Of course, worldwide patterns of Be mineralization are 
poorly known due to the lack of systematic Be exploration. 

Over geologic time. Examination of Appendix A and Figure 2 shows that non-
pegmatitic Be deposits are mainly Phanerozoic in age (cf. Rundkvist 1977; Zabolotnaya 
1977) and in this respect resembles the temporal distribution of other types of intrusion-
related and epithermal mineral deposits (Meyer 1981). Most major occurrences are 
younger than 350 Ma with the prominent exception of Proterozoic alkaline-related 
deposits in Canada and eastern Europe. This age distribution reflects the preservation 
potential of the generally shallow crust in which Be deposits form and the typically thick 
and thus elevated crust. Preservation of volcanic and subvolcanic levels is not expected 
for these environments any more than it is in other epizonal terrestrial mineralization 
(Meyer 1981). Thus volcanic and hypabyssal systems are most common in the late 
Mesozoic and Cenozoic, whereas deeper-seated varieties make up most older systems. 
The increased proportion of alkaline-related systems with age may reflect preservation by 
the crustal extension that typically accompanies alkaline magmatism (cf. Barton 1996). 

Principal episodes of Be mineralization are in the Proterozoic (1.6-1.0 Ga; Laurentia, 
Brazil), Devonian to Carboniferous (western Europe, Ural Mountains through the 
Altaides into eastern Asia; Tasman belt), the late Mesozoic (180-65 Ma; northern circum-
Pacific, east-central Asia; Nigerian rift; Colombia eastern belt), and the later part of the 
Cenozoic (35-5 Ma; western Colombian emeralds, southwestern North America, Indus 
suture, Alps). Other times can be regionally significant: for example, the Pan African 
(Late Proterozoic to early Paleozoic; Arabian-Nubian shield, eastern Brazil). Even within 
individual episodes the nature of the systems is diverse, as exemplified by the Cenozoic 
examples in southwestern North America. Thus, apart from the clear influence of 
preservation on the temporal distribution and the control exerted by magma types 
reflecting the pulse of orogenesis, the evidence shows that Be deposits have neither a 
compelling temporal progression nor a discernable global synchronicity. 
System-scale patterns 

Geological characteristics. As emphasized by the organization of this review, the 
most distinctive features of igneous-related Be systems are their felsic, F-rich character, 
and the systematic variation of mineralogical characteristics that reflect the variation in 
igneous compositions from peralkaline to strongly peraluminous and from quartz-rich to 
quartz-undersaturated (Table 3; Fig. 5). Non-magmatic deposits are much less common. 
Many of the latter have evidence for local, wall-rock sources of Be. Consequently, very 
few of them represent large mass accumulations of Be, even though some comprise major 
gem deposits (e.g., Giuliani et al. 1999). 
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Table 3. Synopsis of the paragenesis of Be minerals in non-pegmatitic occurrences. 

Occurrence type Mineral associations 
& abundance1 Time-space distribution 

Magmatic 
Li-Cs-Ta (LCT) magmas • minor Brl (or Hrd) with Qtz, alkali 

feldspar, Li micas 
• late magmatic phase 

 

Muscovite(-beryl) granites • minor Brl  
 

• late magmatic or post-magmatic 
in vugs and fractures 

Nb-Y-F (NYF) miarolitic 
pegmatites 

• minor Ph, Gad etc. with Li-Fe micas, 
alkali feldspars 

• post-magmatic 
 

Syenites • dispersed in rock-forming minerals in late 
differentiates; rare Chk, Epd, etc. in 
pegmatites 

• late magmatic phase or post-
magmatic 
 

Magmatic-Hydrothermal  
    Strongly peraluminous 
Li-Cs-Ta-F-Sn (LCT 
magmas) 

• rare Brl or Hrd in Qtz-Toz±Ms greisens 
or albitization 

• early, proximal 
 

Sn (-W) (Bt±Ms granites) • feldspathic host: (1) Brl-Ab-Ms-Fl; (2) 
Brl(-Brt-Euc) in Qtz-Ms-Fl±Toz±Tur 
veins; (3) uncommon Brl-Qtz-feldspar 
 

• carbonate host: (1) Ch-Ph / Brt in Fl-
mica±Dsp veins; (2) Hlv / Dn-Fl±Mag-
silicate replacement 

• (1) proximal (outer parts of 
intrusion), relatively early; (2) 
intermediate position and time; 
early and proximal 

• both groups typically post-date 
and can be distal to Fe-rich 
garnet skarns; sulfides later 

W-Mo (Bt+Ms granites) • feldspathic host: (1) Brl common in Qtz-
feldspar(-mica-Wlf-Mo) veins; (2) Brl-
Ab-Ms-Fl; (3) Brl(-Brt±Euc) in Qtz-Ms-
Fl±Toz veins; sulfide-Brt- Fl-carbonate 
veins 
 

• carbonate host: (1) Brl-Ph or Brt in Fl-
mica veins; (2) Ph-Brt-Fl-Kfs-Qtz-
carbonate veins and replacements 

• ultramafic/mafic host: Brl(emerald)-Ph-
Ch with Bt-Pl±Qtz 

• (1) early, proximal veins with 
central Brl; (2) commonly at 
intrusion margins, intermediate 
timing; (3) intermediate in time 
& position, Brl commonly distal; 
(4) late or distal 

• (1) intermediate to late, can 
overprint in Grt-Px-Ido skarns; 
(2) distal may or may not be late 

• Brl is central, other Be minerals 
are distal 

    Metaluminous-weakly peraluminous 

Mo(-W-Sn) (Bt granites & 
rhyolites) 

• feldspathic host: (1) Brl, Ph, Brt or Hlv in 
Qtz-Toz±Li-Fe mica or Kfs greisen veins; 
(2) Gnt-Brt-Qtz-Hem veins 

• carbonate host: (1) Hlv or Ph with Fl-
Mag-K-silicates; (2) Brt-Fl±Qtz ±clay 
replacement 
 

• volcanic host: (1) Brt-Fl-silica-Kfs-clay-
carbonate; (2) red Brl-Qtz-Mn-Fe oxides
 

• (1) Be intermediate to late & 
distal; (2) late, proximal?  
 

• (1) Be minerals late & typically 
distal after andradite-rich skarn; 
(2) distal, timing uncertain, 
skarn absent 

• (1) distal, overall timing 
uncertain; (2) intermediate 
timing during cooling of flows 
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    Peralkaline 

Nb-REE-Y-F (aegirine-Rbk 
granites & rhyolites) 

• feldspathic host: Gad-Ph-Hlv-alkali 
feldspar -Qtz±Li mica Rbk±Mag 
metasomatism  

• carbonate host: (1) Ph-Brt-Lph-Fl-Kfs-
Qtz replacement; (2) Brt-Fl-clay±Kfs 
replacement 

• proximal (pegmatitic) to distal 
(replacement) timing variable; 
proximal Nb-Ta-REE  

• (1) distal to / overprint Grt-Px 
Ido skarns; (2) distal in low-T 
shallow settings 

Nb-REE-Y (undersaturated 
syenites) 

• feldspathic host: (1) Eud-Bar-alkali 
feldspar-Na amphibole; (2) Epd-Lph-Chk 
etc.-Ab-Anc±Sdl (3) Fl-Brt replacement 
 

• (1) position & timing unclear; 
(2) intermediate to late in host 
intrusion; (3) distal, timing 
unknown 

Non-magmatic 

Fe-Mn-oxide • rare, mainly non-silicates • discrete Be minerals are late 

Brines / basinal & 
metamorphic 

• sparse Brl ±Euc) in Qtz-carbonate-
feldspar-Py veins 
 

• with main vein-forming event, 
temporal pattern uncertain 

Metamorphic deposits 
• shear zone: Brl(-Ph-Ch) with Bt(-Tlc-

Act-Chl-Pl) 
 

• Alpine cleft: Ph-Mil-Qtz-Chl-Kfs-Hem 

• near felsic contacts; syn-or post-
peak metamorphism; some could 
be syn-magmatic 

• post-peak metamorphism 

Surficial deposits • minor Brl, Ch etc. in placers with other 
resistant minerals 

• in alluvial systems downstream 
from pegmatite/granulite sources

1 Mineral abbreviations after Kretz (1983) or as in Table 1. Feldspathic hosts include granitoids and clastic 
sedimentary rocks. 

As shown in Figure 34, a salient feature of non-pegmatitic Be deposits is the wide 
range of formation conditions and fluid compositions. Depths range from the surface to 
>10 km and temperatures from magmatic conditions to surface temperatures, and 
commonly exhibit a broad range within a single deposit. Fluids vary from hypersaline to 
dilute; they may or may not have CO2 and/or CH4 and have diverse redox states and 
acidities. These fluid compositional characteristics generally correlate well with igneous 
compositions and depth. Sn, W and base metal-rich systems tend to be acid, saline and 
shallow. Oxidation and sulfidation states directly influence alteration and metallic 
mineralogies. These variables also govern helvite group stability (Fig. 9) and the 
transition metal contents of beryl. Hydrothermal alteration assemblages directly control 
the identity of stable Be minerals primarily by imposing values of aAl2O3 and aSiO2 (Figs. 
11, 12). 

The systematic progression in hydrothermal mineral associations resembles that in 
many other types of magmatic-hydrothermal ore deposits (Table 3). In feldspathic rocks 
early, high-temperature pegmatitic and miarolitic cavities form a geological continuum 
with feldspar-mica±quartz veins and sodic or potassic feldspathization. Later mica-rich 
and the latest-stage polymetallic assemblages form at somewhat lower temperatures and 
tend to be more extensive. Fluorine is typically abundant as evidenced by the presence of 
fluorite, topaz and/or F-bearing mica. Magmatic albite-rich rocks are common, however 
even more widespread is hydrothermal albitization which is clearly significant in many 
igneous-related systems and in the Colombian basin-related deposits. 

Deposits hosted in carbonate-rich and ultramafic rocks have similar broad 
similarities, with differences in detail with host rock and magma type. Skarns form early. 
Vesuvianite, garnet and pyroxene typify calcareous hosts, whereas humite-group 
minerals and other magnesian silicates occur in magnesian carbonates (e.g., Kwak 1987).  
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Figure 34. Synopsis of pressure-temperature-salinity conditions of formation for many types of Be-
enriched deposits. Summarized from sources cited in the text and Appendix A. 

Although there is a tendency for more reduced and pyroxene-rich skarns with increasing 
aluminum saturation index in associated intrusions, these patterns are complex as has 
long been recognized in other skarn systems (e.g., Einaudi et al. 1981; Newberry 1998). 
Skarn mineral assemblages may contain some Be but most ends up in later F-rich veins 
and replacements. As a class, low-T replacement deposits comprise the bulk of high-
grade Be mineralization, whether as fluorite-silica-bertrandite after carbonate clasts at 
Spor Mountain, fluorite-diaspore-micas-chrysoberyl at Lost River, or fluorite-adularia-
phenakite at Ermakovskoe and Mount Wheeler. Replacements of carbonate or skarn by 
fluorite and iron-rich oxides, sulfides and sheet silicates form another major group, 
typically with Sn-bearing hydrothermal systems. Reaction between veins and dikes in 
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ultramafic rocks leads to metasomatic assemblages dominated by micas, plagioclase, 
other sheet silicates, and amphiboles that are broadly analogous to the skarns and 
apocarbonate greisens. The lack of garnet and pyroxene in ultramafic-hosted deposits 
reflects their high Mg/Ca. 

Mineral associations are one of the most prominent correlations with magmatic 
compositions and the phase equilibrium reasons were described at some length under 
“Beryllium Mineral Stabilities” above. To summarize the key features: Micas change 
from muscovite-rich in peraluminous systems to Li-bearing trioctahedral micas in more 
alkaline systems. Mica-rich assemblages are not created equal—trioctahedral-mica 
dominated greisens are not acid (e.g., low K+/H+) assemblages (cf. Eqn.10). The latter 
thus should not be equated chemically with muscovite-bearing greisens or sericitic and 
related assemblages that occur in most porphyry Cu and Mo systems. BASH phases 
occur with peraluminous and some metaluminous granites; helvite group, phenakite and 
bertrandite with lesser beryl occur with metaluminous to peralkaline varieties and helvite 
group and alkali Be silicates in silica-undersaturated alkaline rocks (see Fig. 12). 
Amagmatic systems show a corresponding variation with alkalinity of the host materials: 
BASH phases form in aluminous rocks (e.g., Colombian and shear zone emerald 
deposits) whereas helvite group, phenakite and other Al-poor Be minerals form in Al-
poor rocks (e.g., Fe-Mn oxide group). 

Time-space relationships. No single pattern captures the time-space distribution of 
Be minerals in hydrothermal systems. Beryllium may be precipitated early or late, 
proximally or distally (cf. pegmatites; see Černý, this volume). Be is proximal in more F-
poor systems both in granitic pegmatites and in quartz-feldspar veins, but more 
commonly it is distal and late. In volcanic-related deposits, Be minerals (bertrandite, red 
beryl) are generally late and low temperature (e.g., western Utah), whereas in systems 
with clear magmatic enrichments beryl (in peraluminous rocks), epidydimite (in 
peralkaline rocks) or other Be minerals are prominent in early stages (e.g., Mount Antero; 
Sherlova Gora, Sheeprock, Mt. Saint-Hilaire, Ilímaussaq, Lovozero), although a large 
suite of later Be minerals can crystallize through much of the sequence. The classic 
carbonate-hosted systems, regardless of the aluminousity of associated igneous rocks, 
tend to have Be concentrated in lower temperature assemblages, typically distal parts of 
the systems. Length scales can be meters to kilometers. Phenakite, bertrandite and, to a 
lesser extent chrysoberyl tend to be distal to beryl-bearing assemblages. Although one 
has the impression in many systems that there is a simple evolution from high-
temperature, proximal assemblages to late and overprinting lower-T assemblages, 
patterns can be more complex with multiple events and reversals in sequence (Lost River, 
Shizhuyuan, Birch Creek). 
Origins 

Ultimately, these patterns in the non-pegmatitic occurrence of Be minerals reflect 
original rock compositions, controls on solubility, and magmatic evolution at the source 
of fluids. Magmatic concentrations are relatively low due to the limited solubility of Be 
minerals in silicate melts. Hydrothermal deposits derived from such melts would have 
proximal Be and might lack significant Be in distal or low-temperature assemblages if 
aqueous complexing is weak (e.g., in the F-poor quartz-feldspar vein association in Table 
3). When Be is strongly complexed (e.g., by F) and is not near saturation at its source, 
aqueous fluids could travel some distance before Be precipitation occurs in a favorable 
physical or chemical setting. Precipitation mechanisms include cooling, mixing, 
neutralization, and removal of F from the fluid. Wall-rock reaction, particularly with 
carbonate or mafic mineral rich rocks, would be particularly effective for the last two 
depositional mechanisms; this is abundantly illustrated by fluorite-rich deposits of many 
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types (Table 3). Differences in timing and zoning may also be due to evolution of the 
magma itself. Multiple magma batches, commonly of distinct origin, are well 
documented in many areas (e.g., Birch Creek, Cornwall, Beauvoir, Iron Mountain, 
Shizhuyuan). 

The common features of Be-enriched igneous-related deposits are: (1) a magma that 
does not strongly remove Be in early formed minerals, and (2) a mechanism for 
generating and focusing F- and Be-bearing fluids. Melts with abundant Ca and Mg (i.e., 
most subalkaline types) will be unfavorable for magmatic enrichment because Be is 
partitioned strongly into sodic plagioclase (cf. London and Evensen, this volume). 
Likewise, mafic and calcic minerals sequester F in igneous systems either during 
crystallization (e.g., in biotite or apatite) or by formation of fluorite and other minerals on 
fluid release (cf. Barton 1987). For these reasons, igneous-related Be deposits are 
restricted to felsic, alkaline (low CaO/[Na2O+K2O+CaO], cf. Fig. 5) igneous suites, but 
are not restricted in terms of alkalinity or silica saturation (in the sense of aAl2O3 and 
aSiO2). Instead, the latter factors govern hydrothermal alteration types and Be mineral 
assemblages (Fig. 12), and are reflected in the suites of associated elements (Fig. 4; Table 
3). Wall rocks as well as magmas may source Be in some of these systems, particularly 
where sodic plagioclase is destroyed and thus releases Be to the hydrothermal system 
(Beus et al. 1963). These processes deserve further investigation. 

In contrast to igneous-related systems, in most non-magmatic deposits Be is only 
locally redistributed, Be concentrations are low, and the occurrences are mainly of 
mineralogical or gemological interest. Original enrichment in Be-bearing felsic rocks 
plays a role in some emerald deposits. Elsewhere, Be deposits are inferred to originate 
either by the action of aqueous fluids that release Be by mineralogical changes in the host 
rocks (e.g., Colombian emeralds, Alpine clefts) or by reworking by surficial processes 
(e.g., placer deposits). 
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APPENDIX B: SELECTED STUDIES RELEVANT TO BERYLLIUM 
MINERAL STABILITIES 

(see also Franz and Morteani, pp. 561ff, this volume) 
 

  
Appendix B. Selected studies relevant to beryllium mineral stabilities (see also Franz and 

Morteani, this volume). 

Material Synthesis and Reversal 
Experiments 

Thermodynamic 
Data 

Equation 
of State 

Theoretical & 
Natural 

Fluids 
Melt-mineral Ganguli et al. 1975; Cemič et al. 

1986; London et al. 1989; 
Icenhower and London 1995; 
Evensen et al. 1999; Evensen 
and London 2002; London and 
Evensen (this volume) 

  Bea et al. 1994 

Melt-aqueous London et al. 1988    

Aqueous 
species 

Beus et al. 1963; Soboleva et al. 
1977, 1984b; Samchuk and 
Mitskevich 1980; Barton 1986; 
Renders and Anderson 1987; 
Koz'menko et al. 1988; Prasad 
and Ghosh 1988; Clegg and 
Brimblecombe 1989 

Samchuk and Mitskevich 
1980; Barton 1986; 
Renders and Anderson 
1987; Wood 1992 

 Wood 1992 

BASH 
Behoite  Kostryukov et al. 1977; 

Barton 1986 
  

Bertrandite Bukin 1968; Klyakhin et al. 1981; 
Hsu 1983; Lebedev and 
Ragozina 1984; Barton 1986 

Kiseleva et al. 1985, 
1986; Barton 1986; 
Hemingway et al. 1986 

Hazen and Au 1986  Kosals et al. 1974; 
Burt 1978; 
Kupriyanova 1982; 
Wood 1992; 
Odintsova 1993 

Beryl Syromyatnikov et al. 1972; Franz 
and Morteani 1981; Klyakhin et 
al. 1981; Hsu 1983; Aines and 
Rossman 1984; Franz and 
Morteani 1984; Polupanova et al. 
1985; Barton 1986; Cemič et al. 
1986; Renders and Anderson 
1987; Manier-Glavinaz et al. 
1988,1989a; Wang et al. 1992; 
Evensen et al. 1999 

Barton 1986; Hemingway 
et al. 1986; Kiseleva et 
al. 1986; Renders and 
Anderson 1987; 
Gurevich et al. 1989; 
Pilati et al. 1997 

Morosin 1972; 
Deganello 1974; 
Schlenker et al. 
1977; Hazen et al. 
1986; Haussuehl 
1993 

Burt 1975, 1978; 
Kupriyanova 1982; 
Odintsova 1993; 
Kupriyanova and 
Shpanov 1997; 
Markl and 
Schumacher 1997; 
Evensen et al. 1999 

Bromellite Barton 1986 Barton 1986 Hazen and Finger 
1987; Pilati et al. 
1993 

 

Chrysoberyl Franz and Morteani 1981; Hsu 
1983; Ospanov 1983; Barton 
1986; Cemič et al. 1986; 
Hölscher et al. 1986; Wang et al. 
1992 

Kiseleva et al. 1985; 
Barton 1986; 
Hemingway et al. 1986; 
Kiseleva et al. 1986; 
Hofmeister et al. 1987 

Au and Hazen 1987; 
Hazen and Finger 
1987 

Burt 1978; 
Kupriyanova 1982; 
Odintsova 1993; 
Kupriyanova and 
Shpanov 1997 

Euclase Franz and Morteani 1981; Hsu 
1983; Ospanov 1983; Barton 
1986 

Franz and Morteani 1981; 
Kiseleva et al. 1985; 
Barton 1986; 
Hemingway et al. 1986; 
Kiseleva et al. 1986 

Hazen et al. 1986 Burt 1978 

  
Phenakite Bukin 1968; Syromyatnikov et al. 

1972; Franz and Morteani 1981; 
Ospanov 1983; Lebedev and 
Ragozina 1984; Soboleva et al. 
1984a; Barton 1986; Wang et al. 
1992 

Matveev and Zhuravlev 
1982; Topor and 
Mel'chakova 1982; 
Kiseleva and Shuriga 
1983; Barton 1986; 
Hemingway et al. 1986 

Hazen and Au 1986; 
Hazen and Finger 
1987; Yeganeh-
Haeri and Weidner 
1989; Pilati et al. 
1998 

Kosals et al. 1974; 
Burt 1978; 
Odintsova 1993; 
Pilati et al. 1998 

Be-Mg-Al-Si Hölscher et al. 1986  Schmetzer 1981 Grew 1981; Grew, 
this volume 

Helvite group 
Danalite Fursenko 1982 Ospanov 1983  Burt 1980, 1988 

Genthelvite Fursenko 1982 Ospanov 1983; 
Mel'chakova et al. 1991 

 Burt 1980, 1988 

Helvite Klyakhin et al. 1981; Fursenko 
1982 

 Werner and Plech 
1995 (also tugtupite) 

Burt 1980, 1988 

Others
Chkalovite Ganguli et al. 1975 Kiseleva et al. 1984a,b Henderson and Taylor 

1989 
Markl 2001 

Gadolinite Ito and Hafner 1974  Demartin et al. 1993 
 

 

Phosphates   Klaska and Jarchow 
1973; Henderson and 
Taylor 1984 

Burt 1975 
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Appendix B, continued
   Phenakite,  
      cont. 
   Phenakite,  
      cont. 
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