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INTRODUCTION

Non-pegmatitic occurrences of Be minerals constitute a diverse set of geologic
environments of considerable mineralogical and petrological interest; they currently
provide the majority of the world’s Be ore and emeralds and they contain the greatest
resource of these commodities. Of the approximately 100 Be minerals known (see
Chapter 1 by Grew; Appendix A), most occur in hydrothermal deposits or non-pegmatitic
igneous rocks, where their distribution varies systematically with the setting and origin
(Table 1, Fig. 1).
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Figure 1. Chemography of the principal solid phases in the BeO-Al,05-SiO,-H,O(-F,0_))
“BASH” system with the projected positions of helvite group and alkali Be silicates. Also
shown are generalized fields for some of the major types natural of occurrences (cf. Table
1, Fig. 4; see text for discussion).

Beryllium minerals are best known from geologic systems associated with felsic
magmatism. They also occur in a variety of settings that lack evident igneous
associations. Environments range from the surface to the deep crust and host rocks range
from feldspathic to carbonate to ultramafic in composition. Genetically related igneous
rocks are felsic and share low calcium and high F contents, but are diverse in
composition, setting and origin. Compositions range from strongly peraluminous to
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Table 1. Beryllium minerals in non-pegmatitic deposits: formulas, use and occurrence.'

2

Mineral Formula Use Family Occurrence
Behoite (Bht)* Be(OH), ore? BASH alkalic pegmatite, skarns, rhyolites
. . granitic and alkalic pegmatites,
Bertrandite (Brt) Be,Si,0,(OH), ore BASH areisens, skarns, veins, rhyolites
. granitic pegmatites, greisens, skarns,
Beryl (Brl) Be;ALSigO g ore, gem BASH veins, rhyolites
. granitic pegmatites & metamorphosed
Berylv. Emerald  Bey(ALCr,V)SisOns gem BASH equivalents, veins, metamorphic rocks
Beryllite (Byl) Be;Si04(OH),-H,O BASH alkalic pegmatite
Bromellite (Brm) BeO BASH skarns, desilicated pegmatites
Chrysoberyl (Ch)  BeAl,O4 ore, gem BASH granitic pegmatites, skarns
Clinobehoite (Cbe) Be(OH), BASH desilicated pegmatites
Euclase (Euc) BeAISiO,(OH) gem BASH gii‘il:slc pegmatites, greisens, skarns,
Phenakite (Ph) Be,Si0, ore, gem BASH alkaI.me & gra nitic pegmatites, skarns,
greisens, veins
Bazzite (Bz) Bes(Sc,Al),SigOqg BASH+  alkalic and granitic pegmatites, veins
Magnesiotaaffeite-
2N’2S (Taf) Mg-Al schists (metamorphosed
+
(“Taaffeite”, BeMgsAliOis gem BASH pegmatite?), skarns
“Taprobanite”)
Magnesiotaaffeite-
6N’3S (Mgr) BeMg,AlcO1, gem BASH+  metamorphosed pegmatites
(“Musgravite”)
.. (Na,0)(Fe’* Al Mg), - . .
+
Stoppaniite (Spp) BesSic0,5-H,0 BASH alkaline volcanic
Surinamite (Sur) Mg;Aly(BeSizOy4) BASH+  metamorphosed pegmatites
Aminoffite (Am) Ca;Be,Si301¢(OH), alkaline  skarns
Barylite (Bar) BaBe,Si,0, ore alkaline alkalic pegmatite; skarns; greisens
. . . alkalic and granitic pegmatites, veins,
Bavenite (Bav) CayBe, Al Si90,4(OH), alkaline skarns, greisens
Chkalovite (Chk) Na,BeSi,0¢ alkaline  alkalic pegmatites
Epididymite (Epd) Na,Be;SisO,5-H,O ore? alkaline  alkalic pegmatites, skarns
Eudidymite (Eud)  Na,Be;Sic0,5-H,O alkaline  alkalic pegmatites
Gadolinite*-(Y), — . . alkaline pegmatites and granites, veins,
(Ce) (Gad) Be,Fe(Y,REE),S1,0, ore alkaline areisens
Gugiaite (Gug) Ca,BeSi,0, alkaline  skarns
Hingganite*-(Y) Be,(O,Fe)(Y,REE),Si,05- . . .
(Hin) (OH,0), alkaline  alkaline pegmatites
Hsianghualite (Hsh) Ca;Li,Be;(Si04);F, alkaline  skarns
. (Ba,Pb,K)4(Ca,Y)2Sig— . _ « 9. . .
Hyalotekite (Htk) (B.Be)y(Si.B),0xsF alkaline  Fe-Mn “skarns”; alkaline pegmatites
2+ 3+
Joesmithite (Jo) PbCar(Mg,Fe” Fe™)s alkaline  Fe-Mn “skarns”

[SigBe,0,,](OH),
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Leifite (Lf) (Na,d)(H,0,0)NagBe,[Al, alkaline  alkaline pegmatites
5i,Zn)3Si;5039F]
Leucophanite (Lph) CaNaBeSi,O¢F ore? alkaline  alkaline pegmatites; skarns
Lovdarite (Lv) K;,Nag(BesSi14036)-9H,0 alkaline alkaline pegmatites
Meliphanite (Mph) C(al;‘(()l\l)a,Ca)4Be4A1817024— alkaline  alkaline pegmatites; skarns
)4
o . K(O,H,0,Na),(Ca,Y, . alkaline & granitic pegmatites; skarns;
Milarite (Mil) REE)y(Be.Al)sSi; 00 alkaline veins
. . K,(Na,Ca,Sr)4(Na,Li)Ca,- . . .
Odintsovite (Od) (Ti.Fe> Nb),0,[BesSi;sOx] alkaline  alkaline veins
.. Caz[BC(OH)zAlzsi4ol3] . . .
Roggianite (Rg) «<2.5H,0 alkaline  veins, pegmatites
. Ca;4,Mn;Zn,(Zn,Be),Bes- . « »
Samfowlerite (S . . alkaline ~ Fe-Mn “skarns
Merte (5D (8i04)(S07)(OH.Fs
Semenovite-(Ce) (Ce,La,REE,Y),Naj,(Ca,Na)g- . . .
(Sem) (Fe,Mn)(Si.B¢)30(0,0H. F)as alkaline  alkaline pegmatites
Sorensenite (Ss) Na,SnBe,Sic0;5-2H,0 alkaline alkaline veins
Sverigeite (Sv) Na(Mn,Mg),Sn[Be,Si;0,,(OH)] alkaline  Fe-Mn “skarns”
Trimerite (Trm) (Mn,Ca)[BeSiOy4]; alkaline  Fe-Mn “skarns”
Tugtupite (Ttp) Na,BeAlSi,0,,Cl alkaline  alkalic pegmatites & veins
Wawayandaite (Ww) Ca;;MnyB,Be;5Si1,044(OH,Cl); alkaline Fe-Mn “skarns”
. Ca,Mg; sMn” " cFe1Sb>" | 50,- . « »
Welshite (Wsh) [Siy sBe; Fe* 0 052l 7480170 4] alkaline = Fe-Mn “skarns
Danalite (Dn) Fe,Be;Siz0)5S ore helvite skarns, granitic pegmatites
Genthelvite (Gnt)  ZnyBe;Siz0(,S helvite alkaline pegmatites, carbonatite
Helvite (HIv) Mn,Be:Si;0 18 helvite veins, skarns, greisens, alkaline and

granitic pegmatites

Babefphite (Bf) BaBe(PO,)F non-silicate placer (alkaline igneous?)
Bearsite (Bs) Bey(AsO4)(OH) -4H,0 non-silicate polymetallic porphyry
Bergslagite (Bsg) CaBeAsO4(OH) non-silicate Fe-Mn “skarns”

Beryllonite NaBePO, non-silicate granite and granitic pegmatites
“Glucine” (GI) CaBey(PO4),(OH),-0.5H,0 non-silicate weathering

Hambergite (Hmb) Be,(OH,F)BO; non-silicate alkaline and granitic pegmatites
Herderite (Hrd) CaBePO,(F,OH) non-silicate greisens, granitic pegmatites
Hurlbutite (Hrb) CaBe,(POy), non-silicate granitic pegmatites, veins
Moraesite (Mr) Be,(PO4)(OH)-4H,0 non-silicate granitic pegmatites, weathering
Swedenborgite (Sw) NaBe;SbO, non-silicate Fe-Mn “skarns”

Uralolite (Ur) Ca,Bey(PO,)3(OH)3-5H,0 non-silicate greisen, granitic pegmatites
Berborite (Bb) Be,BO;(OH,F)-H,O non-silicate pegmatite, alkaline igneous(?), skarn

' More common minerals in bold. Compiled from Mandarino (1999), Strunz and Nickel (2001) and
Appendix 1 of Chapter 1 of this volume.

* Minerals are grouped into the four families by common chemical characteristics: (1) predominantly BeO-
Al,05-Si0,-H,0 the “BASH” group, including a subgroup “BASH+" for minerals also containing Mg, Fe,
Sc and Na, (2) Na-Ca-K silicates—"alkaline” group, (3) M4Be;Si;0,S helvite group, and (4) complex non-
silicates (phosphates, borates, arsenates, etc.).

3 Abbreviations for Be- and other minerals are taken from Kretz (1983) or constructed to be consistent with
that paper. They are used in most figures, Table 2 and Appendix A. In alphabetical order (by abbreviation)
these are: Act (actinolite), Ad (K-feldspar var. adularia), Aeg (aegerine), Agt (aegerine-augite), Ab (albite),
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Table 1 footnotes, continued.

? Abbreviations, continued: Am (amphibole), Amz (K-feldspar var. amazonite), Anc (analcime), And
(andalusite), Ap (apatite), Ath (anthophyllite), Bt (biotite), Cal (calcite), Carb (carbonates), Chl (chlorite),
Chr (chromite), Col (columbite), Cpx (Ca-clinopyroxene), Crn (corundum), Cst (cassiterite), Cyl (cryolite),
Dsp (diaspore), Drv (dravite), Ep (epidote), Eud (eudialyte), Fa (fayalite), F1 (fluorite), fo (forsterite)Fs
(feldspar), Ghn (gahnite), Grt (garnet), Hbl (hornblende), Hdd (spodumene var. hiddenite), Hem (hematite),
Kfs (K-feldspar), KIn (kaolinite), Ky (kyanite), Mag (magnetite), Mc (microcline), Mnz (monazite), Mo
(molybdenite), Ms (muscovite), Ne (nepheline), Ntr (natrolite), Ofs (oligoclase), Pas (parisite), Phl
(phlogopite), Pll (polylithionite), Pl (plagioclase), Prl (pyrophyllite), Px (pyroxene), Py (pyrite), Qtz
(quartz), Rbk (riebeckite), Sch (scheelite), Sid (siderite), Sdl (sodalite), Sid (siderophyllite), Tlc (talc), Toz
(topaz), Tr (tremolite), Ttn (titanite), Tur (tourmaline), Ves (vesuvianite [idocrase]), W (water), WIf
(wolframite), Znw (zinnwaldite), Zrn (zircon).

* Most investigators have not distinguished gadolinite-(Y) and gadolinite-(Ce), so gadolinite-group
minerals are simply referred to in the text as “gadolinite”. Similarly, hingganite-group minerals are simply
referred to in the text as “hingganite.”

peralkaline and can be silica undersaturated. Beryllium minerals also occur in
metamorphic and basinal environments and are redistributed by surface processes. Table
2 summarizes the types and significance of major groups of occurrences by their
lithologic associations. Figure 2 shows the global distribution of some important
examples and regional belts. For most types, at least one example has been described in
some detail and can be used to help evaluate general patterns; however, even in these
only rarely has Be been the principal economic interest.

Few papers cover this spectrum of deposits. The classic synthesis studies are from
the Soviet literature (e.g., Beus 1966; Vlasov 1968; Zabolotnaya 1977; Ginzburg et al.
1979; Grigor'yev 1986) with few extensive summaries in the western literature (e.g.,
Warner et al. 1959; Mulligan 1968; Sinkankas 1981). The golden age of investigation
was in the 1950s and 1960s, driven by exploration interest in the U.S. and the (then)
Soviet Union, with most papers published between about 1960 and 1985. Much quality
work was done by Soviet scientists, a moderate amount of which is available in English
translation. Unfortunately many of the detailed studies are in limited-distribution
monographs and reports that are difficult to access. Many compendia of papers dealing
with aspects of rare metal systems have been published that contain related papers (Evans
1982; Hutchison 1988; Taylor et al. 1988; Moeller et al. 1989; Stein et al. 1990; Seltmann
et al. 1994; Pollard 1995b; Kremenetsky et al. 2000b and earlier volumes). Continuing
work on Be-bearing magmatic systems, particularly pegmatites, is reviewed by Cerny
(this volume) and London and Evensen (this volume).

This chapter reviews the principal types of non-pegmatitic Be occurrences—
magmatic, hydrothermal, metamorphic and surface-related—covering aspects of their
mineralogy, stability, geologic framework, genesis and global distribution. Although
there is a continuum between pegmatitic and non-pegmatitic occurrences, granitic
pegmatites are only briefly mentioned here. In spite of the considerable study that the
non-pegmatitic occurrences have received as possible sources of Be as a commodity or of
Be minerals as gems or specimens, there remains a great deal to be learned about the
characteristics and origins of these systems.

Economic sources of beryllium and beryllium minerals

Berjflium ore. Prior to about 1970, the main source of Be was hand-picked
pegmatitic beryl typically from small, labor-intensive operations. New uses for Be in
nuclear and other high-tech applications motivated extensive exploration campaigns for
Be and other rare metals from the 1940s through the early 1960s. These efforts resulted in
the discovery in the Soviet Union, the United States, and Canada of many significant
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occurrences of non-pegmatitic Be mineralization. The Spor Mountain, Utah Be deposits,
the world's most important source of Be (Cunningham 2000), were discovered during
intensive regional Be exploration in 1959 and began producing in 1969. This exploration
was aided by the recognition of the association of Be with chemically evolved felsic
igneous rocks, the occurrence with F-rich rocks, and the development of neutron-sourced
gamma ray spectrometers (‘“berylometers”, Brownell 1959), which enabled rapid semi-
quantitative assay in the field of the Be content of rocks (e.g., Meeves 1966).

Global production of Be in 2000 was 226 tonnes (t) of metal equivalent of which
about 75% (180 t) was produced in the U.S. from the Spor Mountain operation of Brush
Wellman Corporation (Cunningham 2000). In 1998, Brush Wellman reported reserves for
the Spor Mountain district of 7 million tonnes (Mt) at 0.26% Be (0.72% BeO) or about
18,300 t of contained metal. Global production was down from 289 t in 1998 and
represents less than half of world capacity. Consumption in 1998 (390 t) was
substantially larger and was supported by sales of ore from U.S. government stockpiles.
A total value of $140 million was based on quoted prices for Be-Cu master alloy, the
main product.

Presently there is little economic incentive for Be exploration, because the Spor
Mountain district alone contains roughly 50 years of resource at current consumption
rates and large, sub-economic resources have been identified in a number of other areas
(Fig. 3, see Appendix A). Solodov (1977) gave general estimates for types of Be deposit
as a function of age, setting, and type. His estimates totaled >100,000 t of contained Be
metal of which half is in non-pegmatitic deposits with grades >0.05% Be. Many times
this amount likely exist in the numerous unevaluated occurrences that resemble the
better known deposits (data compiled in Appendix A indicate >200,000 t of contained
Be).

Gems. Non-pegmatitic deposits are also major sources of gems, notably emerald,
aquamarine, red beryl and alexandrite (chrysoberyl). Desilicated granitic pegmatites and
veins in ultramafic and mafic rocks provide emerald, chrysoberyl, and some phenakite
(Beus 1966; Sinkankas 1981). Shear-zone and vein-type emerald deposits are also
important, especially the black shale-hosted deposits of Colombia (Snee and Kazmi 1989;
Cheilletz 1998). Most aquamarine occurrences are pegmatitic, however some gem
material comes from miarolitic cavities, greisens and veins, and a considerable fraction is
reworked by surficial processes into placer deposits. Many of the hard rock occurrences
also produce sought-after specimens of other Be minerals such as phenakite and
bertrandite (Sinkankas 1981; Jacobson 1993a). In 1999 U.S. production of beryl
gemstones totaled approximately $3 million and U.S. consumption of cut emeralds (~1/3
world total) amounted to about 5 million carats (1,000 kg) worth approximately $180
million (Olson 2000). Global resource estimates for Be gemstones do not exist.

Although economic deposits of Be and Be gems are limited to Spor Mountain,
granitic pegmatites, and a large handful of gem producing districts, the varied occurrence
of and popular and scientific interest in Be minerals merit a more general treatment.

TYPES OF DEPOSITS

We group Be deposits by geologic setting (Table 2) specifically emphasizing
differences in (1) associated sources (magmas or other materials) and (2) depositional
environment (magmatic or metasomatic, and the host). Figure 4 illustrates the general
geologic environments for the major groups of occurrences. Beryllium deposits naturally
divide into igneous-related and non-magmatic types. They divide further by the nature of
the associated magma and the host rock. As explained below, host rock and magma
compositions exert strong controls on Be mineralogy as a function of their acidity-
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Figure 3. BeO concentrations and tonnage for some better documented Be-bearing mineral
deposits. These are a mixture of published resource estimates and geologic inventories reflecting the
sparse data available for Be occurrences. A considerable fraction in some systems likely resides as
isomorphic substitutions in micas or other silicates (e.g., Beauvoir, McCullough Butte). Data and
sources are summarized in Appendix A except for the pegmatite deposits (in black; Tanco: Sinclair
1996, Zavintoskoe: Kremenetsky et al. 2000a) or districts (in gray; Minas Gerais: Sinclair 1996;
North Carolina tin belt: Griffitts 1954). Most Russian deposits lack tonnages, but grade and
minimum sizes are given by Kremenetsky et al. (2000a). The two highest grade systems with the
highest rank (size) are plotted at their minimum reported sizes (Zavitinskoe and Ermakovskoe,
which are italicized). The point labeled “hypothetical Be-bearing magma” illustrates the small
amount of magma required to make a world-class Be deposit compared to 100 km® or more for most
other metals.

basicity and their degree of silica saturation. Emerald deposits are commonly treated as a
group unto themselves (Sinkankas 1981; Snee and Kazmi 1989; Cheilletz 1998); here, we
also treat them separately, but group them by origin. The text and Figure 4 are organized
around this geological classification in order to emphasize mineralogical and petrological
similarities, whereas Appendix A and Figure 2 are organized geographically and can
serve as an index to the text via the “types” columns.

Within the igneous-related group, there is a continuum from Be-enriched magmas to
complex behavior in pegmatites (London and Evensen, this volume) to the wide variety
of hydrothermal deposits considered in this paper. The latter include skarns, replacement
bodies, greisens and veins which form in aluminosilicate, carbonate, and ultramafic host
rocks (cf. Shcherba 1970). Most non-pegmatitic accumulations form in the upper crust,
typically in the upper 5 km. Mineral assemblages and compositions vary systematically
with compositional variations of host rocks and related igneous rocks. Magmatic
compositions are uniformly felsic but range from strongly peraluminous through
metaluminous to peralkaline. Most source rocks are quartz-rich with the important
exception of silica-undersaturated syenitic suites (Fig. 5A). Apart from sharing highly
felsic compositions, igneous-related systems are chemically diverse (Fig. 5B). Likewise,
tectonic settings are quite varied although moderately thick continental crust and late- or
post-orogenic timing are common themes. It is the shared low CaO and elevated F
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Figure 4. Sketches illustrating the main types of Be deposits. (A) Deposits associated
with strongly peraluminous magmatism. The distinction between the Li-Cs-Ta
enriched group and the others is gradational, see text for details. (B) Deposits
associated with metaluminous to weakly peraluminous magmas. These rarely have
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Figure 4, continued. Sketches illustrating the main types of Be deposits. (C) Deposits
associated with peralkaline magma types. These are further divided by silica saturation
into undersaturated (nepheline syenites) and oversaturated (granites and quartz
syenites). (D) Non-magmatic systems of diverse origins. Examples are listed in Tables
2 and Appendix A; locations are shown in Figure 2. See text for further description and

discussion.
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contents, and not magma sources or other intensive variables such as oxidation state or
water content, that probably favor magmatic and post-magmatic Be enrichment (Fig.
5B,C).

Traditionally, the magmas associated with rare metals (e.g., Li, Be, Nb, Ta, REE, W)
have been divided into three broad groups by their associated enriched elements (e.g.,
Tischendorf 1977; Kovalenko 1978; Pollard 1989):

e normal (biotite = muscovite) granites with or without W(-Mo-F-Bi-Sn)
mineralization

e Li-F rare-metal enriched granites typically with Sn-Ta(-Nb-Cs) enrichments

e peralkaline granites with associated Nb-Ta-Zr-F concentrations.

This classification does not explicitly distinguish differences in alumina saturation
(aan0;)or silica saturation (asio,). Given that these variables strongly influence Be and
alteration mineral stability, the three traditional groups reflect neither distinct Be mineral
assemblages nor distinct types of hydrothermal alteration. In light of this, we divide
igneous rocks (volcanic and intrusive, including pegmatitic) and associated Be
occurrences into four groups that emphasize differences in magmatic as,o, and asio,
(e.g., Shand 1927; Carmichael et al. 1974; cf. Fig. 12, below):

e strongly to weakly peraluminous suites that range from chemically non-
specialized with W-Mo mineralization to Li-F-Sn so-called “specialized”
granites—these have BeO-Al,03-Si0,-H,O (“BASH”) family minerals;
muscovitic hydrothermal alteration is characteristic,

e metaluminous to weakly peraluminous suites with variable Nb, Ta, F, Sn, Mo
and Li enrichments—these have phenakite, bertrandite, and helvite group
minerals; Li-Fe micaceous hydrothermal alteration is characteristic,

e peralkaline to metaluminous quartz-saturated suites typically with Nb-Y-F
enrichments—these have phenakite, bertrandite, and Ca-Na-Be silicates;
feldspathic hydrothermal alteration is characteristic, and

e silica-undersaturated, generally peralkaline suites with high Nb-REE-Y—these
have Ca-Na-Be silicates and helvite group minerals; feldspathic hydrothermal
alteration is characteristic.

There can be a wide-range of element enrichments (geochemical specialization) within
each group. Not surprisingly, this division has parallels with Cerny's classification of
common and rare-metal pegmatites (Cerny 1991a and Chapter 10, this volume). An
advantage of using this four-part classification is that it systematizes and makes
predictable the principal differences in Be mineral parageneses and alteration mineralogy.
Thus it is possible, in principle, to place a deposit into one of these groups based on the
mineral parageneses present. These compositional variations also broadly correlate with
tectonic setting and with time as is discussed in the concluding section of this paper. In
contrast, more traditional approaches that focus on depositional environment (e.g., skarn,
vein, replacement, greisen etc.) do not by themselves distinguish fluid sources or broader
environments.

Beryllium minerals also occur in a handful of metamorphic, sedimentary and
surficial environments (Table 2). At best, these have tenuous connections to felsic
magmatism. Some types, such as the Colombian emerald deposits, have distinctive basin-
related hydrothermal origins, whereas others, such as some of the “shear-zone” emerald
deposits likely form by local redistribution of materials during metamorphism
(Grundmann and Morteani 1989). Placer accumulations are best known where coarse, Be
minerals are sourced from high-grade metamorphic terrains (Rupasinghe et al. 1984;
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Figure 5 (opposite page). Plots summarizing whole rock chemical data for selected igneous suites
associated with non-pegmatitic Be deposits. Major element data are from sources cited in Appendix
A and the text. (A) Total alkalis vs. silica showing fields for rock suites grouped by alumina
saturation (same as in B). Compositional ranges for alkaline and subalkaline global volcanic rocks
shown for comparison (Wilson 1989). (B) ALO; and CaO contents normalized to
(Na,O+K,0+CaO) for Be-associated igneous suites highlighting the wide range of alkalinities and
aluminum saturation index (ASI = molar Al,03/(Na,O+K,0+Ca0) but low overall CaO. This
projection shows the location of the boundaries for strongly peraluminous, weakly peraluminous,
metaluminous, and peralkaline compositions while highlighting the relative CaO contents. (C) and
(D) Beryllium, F and Li concentrations in glasses (Macusani, Spor Mtn., Topaz Mtn., Khaldzan-
Buregtey), other volcanic rocks and intrusive rocks (data from Coats et al. 1962; Tauson et al. 1978;
Christiansen et al. 1984, 1988; Cemy and Meintzer 1988; Pichavant et al. 1988a; Trueman et al.
1988; Kovalenko et al. 1995b; Raimbault et al. 1995). Also shown on the right-hand side of (C) is
beryl solubility at 650°C in granitic melt for ASI values of 1.0 and 1.3 (Evensen et al. 1999). Note
the contrasting trends for magmatic evolution—strongly peraluminous systems evolve to Li-Cs-Ta-
enriched compositions (“LCT”), whereas most other systems show more subdued rare alkali
enrichment (cf. the Nb-Y-F = “NYF” mixed types of ern¥ 1991a).

Dissanayake and Rupasinghe 1995). These commonly provide outstanding gem material
(Sinkankas 1981).

Emerald deposits deserve special comment because of their economic importance
and popular appeal. They form with granitic pegmatites and magmatic-hydrothermal
veins of many types, by local metamorphic redistribution of materials, and in basin-
related and metamorphic-derived hydrothermal systems. Like other Be deposits, no single
factor controls emerald formation save for the requirement of Cr (£ V) from local host
rocks to generate their deep green color.

BERYLLIUM MINERAL COMPOSTIONS

Most of the Be minerals listed in Table 1 exhibit little natural compositional
variability (e.g., Chapter 1 by Grew, this volume; Chapter 10 by Cerny, this volume). In
non-pegmatitic occurrences, the main exceptions are the beryl group (beryl, stoppaniite
and bazzite, plus structurally related milarite) and the helvite group (helvite, danalite, and
genthelvite), plus minerals including the taaffeite group, the gadolinite group and
meliphanite-leucophanite. Given the variably F-rich nature of Be occurrences,
substitution of F for OH may be more common than appreciated even though evidence
for this substitution mainly restricted to herderite, euclase and bertrandite (Beus 1966;
Hsu 1983; Lebedev and Ragozina 1984; see Chapters 10 and 13, this volume by Cerny
and Franz and Morteani, respectively). A few other minerals such as chrysoberyl have
minor, though petrologically and gemologically interesting variations in cation contents.
Examination of compositional patterns in the beryl and helvite groups both documents
systematic differences with environment and yields insight into differences in the
conditions of formation.

Beryl group—(0,Na,Cs,H,0)(Be,Li)s(Al,Sc,Fe*,Cr,Fe*2, Mg),[SisO1s]

Composition. The compositions of beryl and related minerals have long been known
to vary with geologic environment (Fig. 6A; Staatz et al. 1965; geusTl(%66). The principal
chemical substitutions in the beryl structure, “0O “"Be; Aly[ " "SigO;3], can be
represented as:

CDOA1+3 — C(Na,K)O(Mg,Feﬂ,Mnﬂ) (1)
°0"®Be"? = °(Na,Cs,Rb) ®Li 2)
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Figure 6. Beryl compositions plotted in terms of transition metal and alkali contents (except Li) per
formula unit (6 Si). Broadly, this corresponds to octahedral and channel substitutions as noted on the
diagram (following Aurisicchio et al. 1988; see Hawthorne and Huminicki, this volume). (A) Data
classified by general geologic environment. Compare Figure 7. See text for discussion. (B) Data
classified by color (as reported by the authors). The arrow indicates the trend from pale blue to dark
green color in the Somondoco, Colombia (Kozlowski et al. 1988) and Khaltaro, Pakistan (Laurs et
al. 1996) emerald localities. Many analyses including most alkali beryls have no reported color and
are not plotted—most may be colorless or weakly colored. (Data compiled from Deer et al. 1978;
Aurisicchio et al. 1988; Kozlowski et al. 1988; Laurs et al. 1996; Calligaro et al. 2000; S. Young

and M.D. Barton, unpubl. analyses).
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OA1+3 — O(Fe+3’sc+3’cr+3’v+3) (3)
“0 =°(H,0, CO,, Ar) 4

(Aurisicchio et al. 1988, Cerny, this volume, Hawthorne and Huminicki, this volume).
The first two coupled substitutions lead, respectively, to “octahedral” (Exchange 1) and
“tetrahedral” (Exchange 2) beryls. Both are probably limited to no more than about 0.5
per formula unit (pfu) because they lead to underbonding on one of the oxygens in the
beryl structure (Aurisicchio et al. 1988; cf. Fig. 6A). In contrast, exchange between Al
and other trivalent cations in the octahedral site (Exchange 3) can go to completlon as
evidenced by the end-member minerals bazzite (Sc™) and stoppanute (Fe™). Other
substitutions are permissible. Li can exchange with Na and Cs in the alkali site as
demonstrated by experiment (Manier-Glavinaz et al. 1989b); however, its importance in
nature is unclear given that atomic Li rarely exceeds the other alkalis less divalent cations
(i.e., the amount required for type 2 exchange).

Non-pegmatitic beryls range from end-member beryl to large octahedral
substitutions by both Exchanges 1 and 3. In these beryls, tetrahedral substitution is minor
(Fig. 6A). In contrast, pegmatitic beryls—except for pegmatite-related emeralds—range
from nearly pure compositions with at most limited type 1 exchange (<0.2 pfu) to quite
high values of type 2 exchange (~0.5 pfu; Fig. 6). The most extensive type (1)
substitution occurs in metamorphic-hosted beryls—both emeralds and non-emeralds
(e.g., Franz et al. 1986). The more extensive type (3) substitutions, up to bazzite and
stoppaniite, occur in metaluminous granites and syenites as well as in some metamorphic
rocks. Channel volatile contents (dominantly H,O) can be virtually nil, as in volcanic red
beryl (Shigley and Foord 1984), but fall mostly between ~0.6 and 2.8% in both
pegmatitic and non-pegmatitic types. Other components typically reflect host rock
compositions: V in sedimentary rocks, Mn in chemically evolved pegmatites and
Volcamc rocks, Cr and Mg in ultramafic, mafic and some sedimentary rocks, and Sc and
in Fe™ in A-type (mildly alkaline, oxidized) granites. Where chrysoberyl forms in the
same settings, for example in desilicated pegmatites as the gem variety alexandrite, it
accommodates Fe™ and Cr to about the same degree as beryl.

Milarite, (K,O,H,0O,Na),(Ca,Y,REE),[(Be,Al);Si11,03], resembles beryl in having a
structure of double six-membered rings interconnected by Be tetrahedra and Ca octahedra
(Hawthorne and Huminicki, this volume). As in beryl, alkalis and water can substitute in
channels which in milarite are defined by stacking of the double rings. Milarite occurs in
skarns, alplne veins and various alkaline-related metasomatic rocks (Appendix A) as well
as in various types of pegmatites (Cerny, Chapter 10, this volume). Compositional
variations of milarite are sparsely documented, but the (Y REE)-rich varieties appear to
be more common in alkaline settings (cf. Cem}’/).

Color and composition. Not surprisingly, transition-metal-rich, octahedrally sub-
stituted beryls typically have more intense colors, mostly blues or greens, although red is
characteristic of volcanic-hosted beryl (Fig. 6B). Pegmatitic beryls can be intensely
colored (e.g., aquamarine and emerald), however, most tetrahedrally substituted beryls, if
not colorless, tend to be pale in color, typically pink, less commonly yellow, green
or blue.

In emerald, the intense green color reflects substitution of Cr™ for Al and a paucity
of Fe (Fig. 7A) regardless of setting, whereas the rare alkali content does reflect their
environment of origin (Fig. 7B). The latter is true in spite of the fact that all emeralds are
dominated by the octahedral substitution (Fig. 6A). Given these patterns and the great
interest in emeralds in the gem trade, it is obvious why chemical fingerprinting of
emerald provenance has been pursed with some vigor and success (e.g., Dereppe et al.
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2000). Emerald is properly restricted to beryl where Cr exceeds other coloring agents by
weight (Kazmi and Snee 1989a). The analogous substitution of V™ in beryl also creates
an intense green coloration that is often termed emerald. Even the deep red Mn-rich
volcanic-hosted beryl from Utah has been marketed, controversially, as “red emerald”

(Spendlove 1992).
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Figure 7. Emerald and other beryl compositions from the literature (see Figure 6 for sources). (A)
Plot illustrating the elevated Cr contents and low Fe to Mg (etc.) ratios of emeralds compared to
other types of beryls. This illustrates the main difference with other environments. Cr is not reported
in many of the other analyses; it may have either been below detection or not sought. As in Figure 6,
the arrow shows the trend from pale blue to dark green colored beryls at Somondoco, Colombia
(basin-related) and Khaltaro, Pakistan (pegmatite). (B) Plot of rare alkalis in emeralds from various
settings illustrating variations analogous to those seen in other beryls. See text for discussion.
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Petrologic controls on berd composition. A simple analysis of the common
substitutions in terms of alumina activity (aa,0,) and the availability of other cations
helps rationalize their correlation with geologic environment. In the simplest case,
illustrated by equation 5, the type 3 substitution of trivalent Cr, Fe, V and Sc for Al will
be promoted by the relative abundance of these elements in certain rocks or by decreasing
aal0;. Alumina

OAI? + 0.5 My0; = °(M™) + 0.5 ALO; (5)

activity will be low in aluminum-deficient assemblages (e.g., many ultramafic and
carbonate rocks) and in alkaline igneous rocks. Reaction (6) shows that alkalinity and
alumina activity inversely correlate in feldspar-bearing rocks:

NaA1813Og ,plagioclase — =0. 5Na20 +0. 5A1203 +3 SlOz (6)

Similarly, any combination of decreasing aano;, increasing alkalinity, or increasing
availability of (Mg, Fe, Mn)O will promote type 1 (octahedral) substitution:

Cl:lc’Al+3 +0.5 A,0 + MO =“A""°M"™ + 0.5 ALO; (7a)
“O°AI" + NaAlSi;Os + MO = “Na"'°M™ + ALO; + 3 SiO, (7b)

Thus, as observed, beryl group minerals forming in metaluminous igneous rocks and in
ultramafic or carbonate host rocks should generally have higher octahedral substitutions
than beryls from peraluminous varieties. For example, emerald and green vanadian beryls
are most common in rocks lacking muscovite (e.g., Kazmi and Snee 1989b). Ferric-iron-
rich aquamarines, the Fe™ end member stoppaniite, and the Sc* end member bazzite are
most typical of metaluminous rocks—biotite granites or, in the case of stoppaniite,
syenite (Ferraris et al. 1998; Della Ventura et al. 2000). Conversely, in some circum-
stances Fe contents may be suppressed either by intrinsically low Fe relative to other
octahedral cations (as in ultramafic rocks) or by sequestration in other phases (e.g., pyrite
in the Colombian emerald deposits, Ottaway et al. 1994).

The tetrahedral (type 2) substitution is common in Li-Cs-Ta pegmatites, but
apparently is rare elsewhere. It logically follows Reaction (8) where availability of Li or
Cs is the key.

°O™@Be* + 0.5 Li,0 + 0.5 A,0 = CAT®Li + BeO ®)

Increasing overall alkalinity (reaction 6) is not likely to be a factor given that Li-Cs-Ta
pegmatites are strongly peraluminous (Cerny 1991a), but it could contribute to tetrahedral
substitution in some mildly alkaline greisen-type systems. Unfortunately very few
complete beryl analyses are available for the latter. One might expect octahedral
substitutions to accompany the tetrahedral except for the fact that highly evolved
pegmatites with high Li and Cs have very low contents of Mg and Fe and only modest
Mn. This may contribute to the separation of the field for tetrahedrally substituted beryls
from the other occurrences in Figure 6A.

Helvite group—(Mn,Fe,Zn),[BeSiO,4]3S)

Composition. Helvite-group minerals are present in minor quantities in Be-bearing
skarns, alkaline igneous settings, and some hydrothermal veins. Changes in Mn-Fe-Zn
ratios spanning all three end-members account for most of compositional variation in the
helvite group (Fig. 8) Rarely, Al substltutes for Zn; Finch (1990) proposed that the
mechanism is 2 AI™ + O = 3 Zn™ based on comp0s1t10na1 variations in hydrothermal
genthelvite from the syenitic Motzfeldt intrusion, Greenland which contains to ~10 wt %
Al,O;. Other elements might be present, for example Na given the structural similarity
with tugtupite (Nas[BeSiO4]3Cl), or Cd where genthelvite coexists with greenockite
(Nechaev and Buchinskaya 1993).
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Figure 8. Analyzed helvite group minerals plotted in terms of the end member compositions and
distinguished by geologic environment (sources of data include: Vlasov 1966b; Dunn 1976; Kwak
and Jackson 1986; Larsen 1988; Perez et al. 1990; Ragu 1994a). The inset shows the chemographic
relationship of helvite group minerals to silica, phenakite, and Mn-Fe-Zn oxides, sulfides and
silicates.

As illustrated in Figure 8, helvite-group compositions differ systemati-cally between
genetic environments. Zinc-rich compositions (genthelvite) with or without Al typically
occur in pegmatites, miarolitic cavities or veins associated with metaluminous to peralka-
line granites and syenites (Burt 1988; Larsen 1988; Perez et al. 1990). Peraluminous
granitic pegmatites and occurrences in base-metal-sulfide veins and replacements are
typically Mn-dominated, whereas variable Fe:Mn varies from near end-member danalite
to helvite in skarns and Sn lodes (greisens), with danalite being dominant common in the
more reduced systems (Burt 1980; Kwak and Jackson 1986).

Petrologic controls on helvite-group compositions. The unusual composition of the
helvite group—combining Be,;Si04, a metal sulfide, and a metal orthosilicate (Fig. 8
inset)}—means that these minerals are sensitive to redox and sulfidation states as well as
to the activity of phenakite (Burt 1980, 1988). Conditions favorable for formation of the
various end-members differ based on the relative stability of the related sulfides and
silicates as illustrated in Figure 9. For each of the three, maximum stability occurs along
the boundaries where their respective orthosilicates and monosulfides coexist along with
phenakite. Departure from the ideal conditions by oxidation, reduction, gain or loss of
sulfur, or reducing the activity of phenakite will all be unfavorable. Hence, low aa,0,
(“alkaline” conditions) favor helvite group minerals because beryl replaces phenakite and
lowers age,sio, With increasing aaj,o, (see next section). Danalite preferentially occurs in
reduced and low sulfidation state environments; helvite dominates in more sulfidized,
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Mn-rich settings where pyrite and sphalerite sequester Fe and Zn; and genthelvite is
restricted to relatively oxidized but low sulfur settings characteristic of many
(per)alkaline rocks where Fe and Mn mainly enter oxides and other silicates (cf. Burt

1980, 1988).
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Figure 9. Helvite group mineral stability a function of oxidation and
sulfidation state relative to some other zinc, iron and manganese minerals. End
members should have maximum stabilities on the orthosilicate- monosulfide
boundaries (inset; also see Fig. 8 inset). Note the that maximum stability for
danalite would project along the dashed line were it not for magnetite
formation. Calculated using thermodynamic data from Barton and Skinner
(1979) and Robie et al. (1978).

Other minerals

Gadolinite group minerals, (Y,REE),(Fe,0)[Be,Si,05](O,0H),, leucophanite,
CaNaBeSi,O¢F, and meliphanite, Cas4(Na,Ca)sBesAlSi70,4(F,0)s, occur mainly in
alkaline or metaluminous pegmatites or miarolitic cavities but are also found in a handful
of alkaline-rock related hydrothermal deposits (Table 1, Appendix A). Little is published
about gadolinite-group compositions in non-pegmatitic occurrences. Based on the study
of Pezzotta et al. (1999) who studied a range of granite-related occurrences in the
southern Alps, considerable variation in Y / LREE / HREE would be expected as well as
variable B contents. Leucophanite and meliphanite solid solutions are reported from
alkaline metasomatites (Ganzeeva et al. 1973; Novikova 1984) presumably reflecting
differences in Ca/Na.

BERYLLIUM MINERAL STABILITIES

Available data on beryllium mineral stabilities, derived from experiment, theory and
natural assemblages, provides a valuable framework for classification and understanding
of natural occurrences. Published studies on Be mineral stabilities are summarized in
Appendix B and have been reviewed extensively elsewhere (Barton 1986; Burt 1988;
Wood 1992; Franz and Morteani, London and Evensen, Chapters 13 and 11, respectively,
this volume). Most of this work has focused on the BeO-Al,03-Si0,-H,O (BASH)
system and coexisting melts and aqueous fluids. Here we briefly review mineral
equilibria and solubilities of particular relevance to non-pegmatitic deposits and focused
on BASH minerals.
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The figures presented here were calculated using the internally consistent
thermodynamic model for BASH phases and topaz from Barton (1982b, 1986), which
were adapted to the SUPCRT database (Johnson et al., 1992) by adjusting for differences
in the enthalpy of formation of Al,O; between the databases, and refitting the heat
capacities to the Meier-Kelly function. Presently, there is a need to reevaluate the
thermodynamic data for BASH minerals by including results published since 1985
(Appendix B) in a rigorous fit. In addition, one could also build a thermodynamic model
for other phases, such as the helvite group and the Na-Be silicates, by combining
available experimental data with constraints from natural assemblages.

Pressure-temperature-activity relationships

P-T. Other than for the BASH system there are essentially no reversed equilibrium
data for the pressure-temperature stability fields of Be minerals (Appendix B). In the
BASH system, the salient characteristics of pressure-temperature phase relationships
(Fig. 10) are (1) that the hydrous minerals (excepting beryl) are stable only at
temperatures below 500°C and (2) that the assemblages are not distinctly pressure
sensitive. Bertrandite persists only up to about 300°C. The lower limit of beryl stability is
between 200 and 350°C depending on coexisting minerals (Fig. 10 inset). In quartz-
bearing assemblages, chrysoberyl is restricted to near-magmatic and higher temperatures,
although the position of the reaction chrysoberyl+quartz = beryl+aluminum silicate is
sensitive to beryl composition and its position remains controversial. See Barton (1986)
and Franz and Morteani (this volume) for further discussion of these relationships.
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Figure 10. Pressure-temperature projection of phase relationships in the BeO-Al,0;3-SiO,-H,0
(BASH) system. Redrawn from Barton (1986). Limiting reactions for bertrandite and beryl both can
depend on solid solution effects, F for OH in bertrandite, and multiple components in beryl (inset).

T-activity In contrast to the limited insight available from the P-T relationships,
activity diagrams are of considerably greater utility in understanding the occurrence of Be
minerals because of the metasomatic origin of most non-pegmatitic Be deposits (Figs. 9,
11-14). The most useful independent variables are: (1) temperature, which varies
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markedly in time and space in most Be-bearing geologic systems, and (2) the activities of
the major components, notably alumina and silica. Silica and alumina are key because
they frame the thermodynamic conditions defined by many rock-forming minerals and, in
addition, can be related to alkalinity of melts and fluids through reactions (6) and (9).
Reaction (9) relates fluid acidity to alkalinity in the presence of plagioclase when aai,o,
and agjo, are defined.

H+ + NaAlSigogaplagioclase = Na+ +0.5 Hzo +0.5 A1203 +3 SlOz (9)

Figure 11 plots BASH mineral assemblages in terms of each asio, and aapo0, as
functions of temperature. At high T, beryl, phenakite, and chrysoberyl (T > 600°C) are
stable at high silica activities (Fig. 11A,C. With decreasing silica activity beryl is
replaced by chrysoberyl+phenakite and phenakite is ultimately replaced by bromellite.
This is the characteristic sequence found in desilicated pegmatites. A similar progression
occurs at lower temperatures except that chrysoberyl is strongly quartz undersaturated
and first euclase and then bertrandite become key phases. Skarns and carbonate hosted
replacement bodies typically exhibit zoning that reflects these varying degrees of silica
saturation and paths from high- to low-temperature across Figure 11A. At <1 kbar
solutions can become strongly undersaturated with respect to quartz, whereas at higher
pressures they may stay closer to quartz saturation (Fig. 11A inset). These contrasting
paths rationalize differences observed in carbonate-hosted hydrothermal systems.

Another useful contrast comes from consideration of a0, a variable which
highlights differences between Al-rich and Al-poor assemblages (Fig. 11B).
The saturation surface for the Al-only phases, corundum (T > 360°C) and diaspore
(T < 60°C), neither of which is stable with quartz, bounds the top of the diagram. Quartz
coexists with andalusite at high temperature, but then pyrophyllite followed by kaolinite
formed with decreasing temperature. Chrysoberyl and euclase are the characteristic
minerals at high asno,, whereas beryl occupies an intermediate field (Fig. 11B). In
contrast, phenakite and bertrandite are stable only at distinctly lower a0, conditions
until bertrandite and kaolinite become stable together at about 225°C. A key boundary is
that between K-feldspar and muscovite which separates strongly peraluminous
assemblages from others. Considering this reaction, it becomes clear why in most quartz-
bearing rocks, beryl is the dominant silicate down to relatively low temperatures barring
conditions of unusual acidity (as in some greisens) or basicity (as in peralkaline rocks).
On cooling in the presence of muscovite and K-feldspar, only below T = 300°C does
beryl give way to phenakite+quartz (arrow in Fig. 11B). Solid solution will expand the
beryl field to still lower temperatures (Fig. 10 inset).

Odintsova (1993)derived an analogous topology as a function of ag.o and
temperature. She subsequently use it to interpret the paragenesis of ultramafic-hosted
emerald deposits in the Ural Mountains (Odintsova 1996). Because BeO is rarely more
than a minor component, most assemblages will only have a single saturating Be phase,
thus relationships among Be-bearing mineral assemblages are more readily applied when
cast in terms of other components.

Activitgactivity Projecting the variables from Figure 11 into aay,o; - asio, space (Fig.
12) provides a particularly revealing look at Be mineral assemblages because reactions
among rock-forming minerals separate major rock types on the same diagrams. In Figure
12, quartz-saturated rocks (granitoids, rhyolites, etc.) lie along the top of the diagrams
passing downward into undersaturated rocks. The latter are split by key reactions such as
Mg,SiO4 + SiO; = Mg,Si,06. Saturation with muscovite and andalusite occurs along the
right boundary, defining strongly peraluminous rocks, whereas peralkaline assemblages
(and rocks) are located near the acmite-bearing reaction that passes diagonally across the
left half of the diagram.
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Figure 11 (opposite page). (A) Beryllium mineral stability as a function of temperature and
concentration of aqueous silica at 1000 bars. Shading outlines the upper as;o, limit of chrysoberyl,
the lower ag;o, limit of beryl, and the upper thermal stability of euclase. The inset shows aqueous
silica concentrations at two pressures and 3 alternative fluid paths. Path (a) represents cooling with
little decompression and would remain quartz saturated; path (b) represents decompression, whereas
path (c) represent isobaric cooling but quartz undersaturation because of the low-P retrograde
solubility of quartz. See text for additional discussion. (B) Beryllium mineral stability as a function
of temperature and the activity of alumina (corundum) at 1000 bars. Shading outlines stability limits
for beryl, the upper a0, limit for phenakite/bertrandite, and the upper thermal stability of euclase.
Note the arrow and label for the lower limit of stability for beryl in the presence of K-feldspar (cf.
inset in Fig. 10). (C) BASH mineral compatibilities at 225, 350 and 500°C projected from H,O onto
the BeO-Al,03-SiO, plane (cf. Fig. 1). Mineral abbreviations from Table 1. (A) and (B) are
modified from Barton (1986).

By examination of the superimposed Be mineral stability boundaries at 600°C (Fig
12A), it is clear why beryl is typical of strongly peraluminous granitoids and rocks, why
phenakite (£ helvite group) is common in metaluminous and peralkaline rocks, and why
alkali Be silicates occur in peralkaline silica-undersaturated rocks. Chrysoberyl has a
large stability field but only for unusual rocks that must be Al-rich and Si-poor (e.g.,
desilicated pegmatites). With decreasing temperature, the fields for euclase and,
especially, the Al-free Be silicates expand at the expense of the beryl and chrysoberyl
fields. Topologically-correct phase boundaries for beryllite, epididymite and chkalovite
are shown in the upper left based on occurrences in peralkaline syenites. The breadth of
the phenakite/bertrandite fields is consistent with widespread occurrence of these
minerals in low-temperature deposits, particularly carbonate replacements. The right
hand side matches assemblages found in strongly peraluminous igneous-hosted greisens
(top) and in silica-undersaturated greisens developed in carbonate rocks (right; the
meaning of greisen is discussed below).

Activity relationships in terms of other components are germane to a number of
occurrences, particularly HF, CaO, MgO and P,Os. Increasing the activity of acid
fluoride species leads to topaz replacing other Al-bearing silicates and fluorite replacing
other Ca-bearing minerals—these are typical minerals of greisens (Burt 1975, 1981).
Phenakite and bertrandite replace beryl and euclase with increasing HF as well as with
increasing alkalinity (e.g., K'/H', see Fig. 13, cf. Fig. 11B) consistent with their
widespread occurrence in greisens of various flavors. Fluorine has a similar role in Ca-
bearing rocks, where fluorite formation sequesters Ca and leads to more acid (Al-
dominated) mineral assemblages. This was considered by Burt (1975) who used natural
assemblages to derive topologies for activity diagrams involving P,Os, CaO and F,0._;
and analyze the relationships between beryl, phenakite and various Be phosphates.

Beryllium mineral parageneses in the Ca-Mg silicate assemblages of ultramafic and
carbonate hosted deposits can also be usefully visualized by recasting phase relationships
in terms of the activities of CaO, MgO and SiO,. For example, Figure 14 illustrates
possible phase relationships and zoning paths in desilicated pegmatites or quartz-feldspar
veins at 500°C and 3 kbar. Starting with a granitic/vein assemblage on the high-silica
side, paths can go upward (as in a dolomitic limestone) into the actinolite (or
clinopyroxene) field and yield zoning from beryl to chrysoberyl to phenakite or
downward into phenakite and ultimately bromellite. Under these particular conditions,
beryl is near its stability limit (Fig. 14 inset) and small differences in solid solution can
have significant differences in the position of phase boundaries and thus paths.

The meaning of greisen. Many Be-bearing rocks are referred to as greisen, which
refers to a broad spectrum of Al-bearing metasomatic rocks that are typically F-rich and
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Figure 12. Beryllium mineral stabilities as a function of silica and alumina activities. The diagrams
illustrate the preeminent control that these rock-defined variables have on mineral assemblages in
Be-bearing hydrothermal systems. (A) Phase relationships of Be minerals as a function as,0, and
asio, at 600°C and 1 kbar related to mineralogy in felsic igneous rocks. The field for chkalovite
stability is speculative although topologically plausible and is consistent with the recent work by
Markl (2001). (B) Phase relationships of Be minerals as a function a,,0, and as;o, at 250°C and 1
kbar related to mineralogy in felsic igneous rocks and some major groups of Be deposits. The
activity of beryl = 0.5. The speculative fields for beryllite, chkalovite, epididymite / eudidymite are
consistent with their chemography and mineral associations reported from alkaline syenitic
pegmatites (stable with albite and analcime).
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commonly contain one or more newly formed mica group minerals (Shcherba 1970; Burt
1981; Kotlyar et al. 1995). Greisen is most common in feldspathic host rocks, but it is
described in many protoliths including carbonate and ultramafic rocks (“apocarbonate”
and “apoultramafic” greisens, respectively, see Shcherba 1970). This traditional, broad
definition lacks the mineralogical specificity to be petrologically useful. In this paper,
rather than restrict the long-ingrained usage, we simply focus on the mineral assemblages
and note their implications for intensive variable such as aaj,0, or acidity. For example,
whereas a beryl-bearing topaz-quartz-muscovite greisen is intrinsically acid (Fig. 13; e.g.,
from Agshatau, Kazakhstan), a phenakite-bearing polylithionite greisen (e.g., from Thor
Lake, Canada) is intrinsically alkaline compared to assemblages containing spodumene,
as demonstrated by Reaction (10):

2 LiAlSi;O¢ + 3 SiO, + K"+ Na" + 2 H,O =
KLi,Al[Si4010](OH), + 2 H" + NaAlSi;Os (10)
Solubility relationships

Another requirement in understanding Be occurrences is the behavior of Be in
fluids—aqueous solutions and silicate melts. Although few experimental data exist
(Appendix B; London and Evensen, this volume), the principal results merit comment
here because they yield useful insight into the processes and patterns in non-pegmatitic
deposits.

Ageous fluids. BeO is only sparlngly soluble in pure water, however Be
compounds with F', CO5?, CI” and SO, are all significantly soluble (or decompose) in
water at room temperature These potential ligands plus OH  have received some
attention from experimentalists, although not necessarily in experiments designed to yield
thermodynamic data (Appendix B). The nearly ubiquitous association of F-bearing
minerals with Be deposits has led many investigators to postulate that complexing by F~
is important (Beus 1966) A few others have advocated other complexes, partlcularly for
those deposits where F is apparently absent and other potential ligands such as CO3~
S04 are abundant (e.g., Griffitts 1965; Reyf and Ishkov 1999).

In his review and synthesis of the existing experimental data, Wood (1992)
concluded that only F, F-CO; and F-OH complexes can generate aqueous Be
concentrations >1 ppm in equilibrium with phenakite or bertrandite at temperatures up to
300°C and at plausible pH condltlons According to Wood’s analysis, fluoride complexes
(BeF", BeF,°, BeFsy, BeF,?) predominate at lower pH (2-5) whereas a mixed F-COs5~
complexes (e.g., BeCOs;F’) may dominate at higher pH (5-7), particularly where [F'] and
[CO;] both exceed about 0.01 molal. Beryllium concentrations exceeding 1 ppm seem
necessary to make many Be deposits, which commonly have >1000 ppm Be. In some
settings, lower concentrations may suffice, as for instance in the case of the Colombian
emerald deposits where Renders and Anderson (1987) believe that OH- complexes were
sufficient to move all the Be necessary to make the emeralds (but cf. Banks et al. 2000).

In spite of their obvious importance to understanding many hydrothermal deposits,
aqueous Be concentrations at T > 300°C are virtually unexplored except for a very few
studies. As is the case at lower temperatures, F~ is implicated as though not proven to be
the key complexing agent. Beus et al. (1963) found significant Be concentrations in F-
bearing solutions that had reacted with beryl, alkali feldspar and quartz at 490-540°C.
This is consistent with evidence from experiments on fluids equilibrated with Macusani
rhyolite at 650°C and 2 kbar (London et al. 1988). Macusani rhyolite melt (39 ppm Be,
1.3% F) furnishes only 6 ppm Be and 0.35% F to coexisting aqueous fluid (London et al.
1988). Given these results and the fact that beryl solubility in Macusani melts is near 500
ppm Be (Evensen et al. 1999), one can speculate that a plausible maximum Be
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concentration in a magmatically-derived aqueous fluid would be on the order of 100 ppm.
Such concentrations resemble those calculated by Wood (1992) at lower temperatures for
phenakite- and bertrandite-bearing assemblages. They are more than adequate to make a
major Be deposit.

Silicate melts. Beryllium solubility in felsic melts and its partitioning with coexisting
minerals and aqueous fluids has been extensively studied by David London and
coworkers (London et al. 1988; Evensen et al. 1999; Evensen and London 2002, London
and Evensen, this volume). Others have focused on distribution of Be among silicate
minerals in igneous rocks (e.g., Kovalenko et al. 1977; Bea et al. 1994).

Melting of beryllium phases in the end-member systems (Appendix B) has limited
geologic relevance, whereas the principal controls on Be solubility in felsic magmas are
asio,, 81,03, and, more rarely other components (Evensen et al. 1999):

Be3AlLSigO015 = 3 BeOnelt + Al2O03 mett + 6 S102 melt (11a)
Be2SiO4,phenaite =2 Beomelt + SiOZ,melt (1 lb)
2 NaBePO4,beryllonite + A1203,melt +6 SiO2,melt =2 NaAlSi3O8,plag + PZOS,melt (1 1C)

The first two reactions were investigated by Evensen and London (1999). They showed
that Be mineral solubility is a strong function of temperature, increasing by factors of 2-
10 from 650°C to 850°C, and that beryl is the saturating phase (+chrysoberyl) in
metaluminous and peraluminous melts (cf. Fig. 12). Their results in compositionally
simple haplogranite melts demonstrated that Be solubility decreases with the increasing
aano; consistent with Reaction (11a). Complexing of Be by other elements is implied by
increased beryl solubility in the Li-B-P-F-rich, but nonetheless strongly peraluminous
(andalusite- and sillimanite-bearing, Pichavant et al. 1988b) Macusani rhyolite.

Evensen and London’s experimental results are roughly consistent with what one
would expect from Reaction (11a) and the 1 to 1.5 log unit difference in a0, between
strongly peraluminous granites (e.g., Al,SiOs-saturated) and metaluminous granites (at
the phenakite-beryl boundary) shown in Figure 12. Using Reaction (11a), predicted Be
contents of beryl-saturated melt should increase by approximately 0.5 log units (a factor
of 3) from the ALSiOs limit to phenakite-saturated conditions. This is compatible with
the experimentally observed 3-8 times increase in Be solubility over a simila range of
ASI. The differences likely reflect more complex speciation (and thus activity-
composition relationships) than this simple analysis allows. Applying the same reasoning
to the phenakite-stable field in Figure 12 and using Equation (11b), one predicts that Be
contents of phenakite-saturated peralkaline granites would be the same as in
metaluminous granites (barring changes in Be melt speciation). Only with decreasing
asio,, as in undersaturated syenites, would solubilities be substantially higher, perhaps by
as much as a factor of two. In melts with exceptionally high P,Os activities beryllonite
and possibly other Be-bearing phosphates could substitute for beryl (chrysoberyl or
phenakite) as the liquidus phase (Reaction 11c, Charoy 1999).

This analysis underscores the conclusion of Evensen and London (1999) that Be
mineral saturation in peraluminous melts is plausible for geologically reasonable Be
contents and, furthermore that discrete magmatic Be minerals would not be expected in
peralkaline and undersaturated systems except, perhaps, in very late pegmatites.

MAGMATIC BERYLLIUM ENRICHMENTS

Magmatic beryllium enrichments are apparently common, and of interest in their
own right, but are they important to make Be deposits? This is uncertain. Enrichment in
other elements, notably F for aqueous complexing of Be, may be more much important



620 Chapter 14: Barton & Young

for igneous-related hydrothermal systems. Here we review aspects of magmatic
enrichments and the compositions of igneous rocks associated with non-pegmatitic
deposits.

In felsic magmatic systems, Be concentrations can exceed typical crustal
compositions of 2-6 ppm by a factor of 10 or more (Beus 1966; Hormann 1978).
Magmatic Be concentration takes place in intrusive and volcanic rocks which range from
strongly peraluminous to peralkaline in composition (as in pegmatites, cf. Cerny 1991a,
this volume; London and Evensen, this volume). Figures 5C and 5D also illustrate the
range of Be contents in magmatic systems and the positive correlation between Be and F
contents found in volcanic and hypabyssal rocks (Coats et al. 1962; Shawe and Bernold
1966; Kovalenko et al. 1977; Macdonald et al. 1992). The correlation with F is not seen
in many deeper rock suites as in pegmatites, for example, where F may be fugitive (e.g.,
Cerny and Meintzer 1988; London 1997). Post-eruption loss of F also likely accounts for
some of the variability in volcanic rock suites.

In peraluminous rocks, magmatic Be contents appear to be limited to a few hundred
ppm Be (e.g., Kovalenko and Yarmolyuk 1995; Raimbault et al. 1995) but they may
exceed 1,000 ppm in some alkaline rocks (Meeves 1966; Richardson and Birkett 1996).
This follows the known pattern of increasing Be solubility with increasing alkalinity of
the melt (Evensen et al. 1999, cf. Fig. 5C). In metaluminous and peraluminous systems,
Be enrichment commonly accompanies enrichment in Li, Cs, Ta whereas in peralkaline
systems, Be enrichment sporadically accompanies enrichments in Zr, Nb, REE and others
(Fig. 5D; Tischendorf 1977; Kovalenko and Yarmolyuk 1995; Pollard 1995a). The
highest concentrations in most igneous environments are in late-stage pegmatites and
post-magmatic hydrothermal alteration. Many systems exhibit a continuum between
magmatic and hydrothermal features with Be-bearing igneous rocks having clearly post-
magmatic veins and cavities with hydrothermal Be minerals. It is commonly difficult to
distinguish magmatic from post-magmatic enrichment. Beryllium- and F-enriched
rhyolites (topaz rhyolites, ongonites, etc.) are widespread, typically in the same regions
and commonly in the same districts as hydrothermal Be deposits (Shawe 1966;
Kovalenko and Yarmolyuk 1995).

Strongly peraluminous to metaluminous systems

Peraluminous magmas may or may not show strong enrichment in Li with the Be
enrichment. Some follow enrichment like that in Li-Cs-Ta pegmatites (“LCT” type of
Cerny 1991a and this volume). Examples include a number of the highly evolved
Hercynian (Variscan) granitoids of Europe (e.g., Raimbault and Burnol 1998; Charoy
1999), the Macusani rhyolite, Peru (Pichavant et al. 1988a), and the Honeycomb Hills,
Utah (Congdon and Nash 1991). In contrast, many strongly peraluminous granites do not
exhibit this extreme enrichment in rare elements (e.g., Transbaikalia, the western U.S.;
Shaw and Guilbert 1990). Nonetheless they have high F contents and late magmatic
(miarolitic to pegmatitic) beryl transitional into Be-bearing hydrothermal assemblages.
They may evolve along a different path (cf. London 1992). In weakly peraluminous to
metaluminous granitoids and volcanic rocks Be enrichments are not accompanied by
dramatic (percent level) contents of Li, but they do have elevated values (Fig. 5).

In most peraluminous to metaluminous igneous rocks, Be is dispersed as a trace
element in the rock-forming minerals, most commonly the micas and sodic plagioclase
(e.g., London and Evensen, this volume; Kovalenko et al. 1977). Accessory magmatic
beryl is described in some granites, aplites and miarolitic zones (e.g., Sheeprock
Mountains, Utah, Christiansen et al. 1988; Rogers and Christiansen 1989; Argemela,
Spain, Charoy 1999; Mt. Antero, Colorado, Jacobson 1993b). Beryllonite is apparently
the principal discrete Be mineral in the Beauvoir granite, France, where only modest
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amounts of Be (ca. 100 ppm) occur in lepidolite (Charoy 1999).

With the possible exception of the Beauvoir granite (Fig. 15; Cuney et al. 1992;
Raimbault et al. 1995), non-pegmatitic peraluminous magmatically enriched rocks lack
sufficient Be to be considered Be resources (cf. North Carolina Sn-Ta belt, Griffitts 1954,
Fig. 3). At Beauvoir, a composite stock of fine-grained Li-rich leucogranite contains 20-
300 ppm Be (>100 ppm in the most evolved unit). It post-dates more voluminous
muscovite-biotite granites which have associated greisen-style W and Sn mineralization.
Similar patterns are common elsewhere in European Hercynian igneous centers (e.g.,
Cornwall, England; Manning and Hill 1990).

Beauvoir Li-Sn-Ta-Nb-Be granite, |A. e  _ Y- NNE
Massif Central, France granite imits  °_ ~ . o
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Beauvoir Granite & related features
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Figure 15. Geology of the Beauvoir Li-F-Sn-Ta-Be granite, a strongly peraluminous system
with magmatic rare-metal enrichments. (A) The Beauvoir rare metal granite is a late,
volumetrically minor phase of the Echassiéres leucogranite complex; Sn and W mineral-
ization are associated with earlier phases. (B) Cross section through the Beauvoir granite
showing three main phases and cross-cutting relationships with earlier granites and W
mineralization. Beryllium is concentrated in lepidolite and beryllonite in B1, the final
intrusive unit (Charoy 1999). Figures modified from Cuney et al. 1992.

Peralkaline-metaluminous systems

Peralkaline to metaluminous magmatic systems can have substantial Be enrichments
in rocks ranging from riebeckite-aegirine granites to undersaturated syenites and their
volcanic equivalents (Richardson and Birkett 1996; Serensen 1997; Fig. 2, Appendix A).
Like the magmatically enriched peraluminous suites, these rocks are typically enriched in
F as well as Be but contain a different set of trace elements characterized by Y, Nb, REE
with more moderate enrichment in Li (Table 2, Fig. 5; Cemy 1991b; Serensen 1992;
Kovalenko et al. 1995a). Associated pegmatitic and hydrothermal deposits are common.

In alkaline granites and quartz syenites Be enrichments can be in the 100s of ppm
(Fig. 5; e.g., Khaldzan-Buregtey, Mongolia, Appendix A) and have associated Be-rich
alkaline pegmatites. Large deposits with pegmatitic character at Strange Lake and Thor
Lake in Canada (Fig. 2, Appendix A) formed during the terminal stages of the
development of rare-element-rich alkaline centers. Both have complex internal structures
and prominent hydrothermal overprints and the importance of magmatic versus
hydrothermal processes concentration is contentious. At Thor Lake (Fig. 16) phenakite,
bertrandite, gadolinite and helvite occur in late quartz-fluorite-polylithionite “greisen”
zones in a composite feldspar-dominated “pegmatite” (Trueman et al. 1988). The Be
mineralization postdates Ta-Nb-Zr mineralization; both are associated with syenite
breccias in syenites and peralkaline granites of the Blachford Lake complex. The deposit
post-dates the youngest intrusion, a syenite, and is emplaced in somewhat older alkali
granite of the same complex. At Strange Lake, gadolinite, leifite and milarite form in
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lenticular zones associated with the latest stages of a Zr-Nb-Y-enriched riebeckite granite
complex. A hydrothermal overprint is clear, although it is debated whether the
enrichments are fundamentally magmatic (Miller 1996) or hydrothermal (Salvi and
Williams-Jones 1996).

Thor Lake, NWT, Canada
Alkaline Be-Y-Nb-REE-Zr-Ta

B. K

R

simplified from Davidson, 1982] from Richardson

& Birkett (1996
Blachford Lake Complex (Paleoprot.) Archean { )
Thor Lake Grace Lake ;
mineralization alkali granite D ki
i Thor Lake [E] earlier intrusive Yellowknife meta-
syenite phases morphic rocks North

C. Cross section, North T Zone FZone deposit
B D Be mineralization (phenakite-
bertrandite greisens)

D Quartz zone (quartzfiuorite
-sulfides-REE minerals)

250 m

Blachford Lake -w!JLL

Upper intermediate zone : younger
(] (quartz-polyithionite-aloite) _igneous rocks
f.?:!wer irzc;:nediate Zone } Qe miwitrec) e
+ — Thor Lake
[ (quartz-chiorite-teldspar) plrocrt / faults
Wall zone (aplites; a|bFTITE§I Grace Lake diabase
l:l K-Ieldspar-quarlz-magﬂelﬂe} alkali granite dikes

Figure 16. Geology of the Thor Lake area and rare metal deposits, Northwest Territories,
Canada. (A) The Thor Lake deposits are associated with the Thor Lake syenite, the
youngest member of the alkaline Early Proterozoic (2.1 Ga) Blachford Lake Complex
(Davidson 1982). (B) Be mineralization occurs in the T-zone deposits near the NW margin
of the Thor Lake syenite. Phenakite(-bertrandite-gadolinite)-rich hydrothermal quartz-
fluorite-polylithionite pegmatitic “greisens” are superimposed on a complex set of albite,
microcline, and magnetite-rich rocks (Trueman et al. 1988).

The volcanic equivalent of magmatic Be-enriched alkaline granites may be
represented by the F-Nb-Zr-Ta-Y-REE-rich trachytic rocks of the Brockman deposit,
Western Australia (Ramsden et al. 1993; Taylor et al. 1995a). At Brockman, the
hydrothermally altered “Niobium Tuff” averages several hundred ppm Be, which is
present (redistributed into?) in quartz-carbonate-bertrandite veins that are restricted to
this rare-element enriched stratum. Magmatic concentrations of Be up to 180 ppm occur
in the hypabyssal cryolite-bearing, Nb- peralkaline to peraluminous rhyolites of the Sierra
Blanca district Texas (Price et al. 1990), which have associated Be-F replacement
deposits (see below). Although some rocks from both of these areas are chemically
peraluminous, their geological associations, trace-element patterns and associated
minerals clearly link them to the peralkaline family.

Beryllium enrichments are also common in the late magmatic phases in
undersaturated rocks including examples from the Kola Peninsula, Greenland, and the
southwestern United States (Appendix A; Serensen 1997). Lujavrites (eudialyte-acmite
nepheline syenites) from Ilimaussaq, Greenland average 60 ppm Be, while contents up to
1000 ppm have been reported from pegmatitic nepheline syenite at Wind Mountain, New
Mexico (Meeves 1966; Steenfelt 1991; Serensen 1992; Markl 2001). Large Be
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inventories have been reported (Fig. 3; Appendix A), but none of the undersaturated
alkaline systems appear to host plausible resources due to low grades and dispersion of
Be in the rock-forming silicates. Large Be enrichments in phonolites have apparently not
been recognized, although the elevated Be seen in shallow intrusive systems like
Ilimaussaq and Wind Mountain make eruption of such magmas plausible (Fig. 4). They
would be silica-undersaturated, peralkaline analogs of the Macusani rhyolites.

Post-magmatic Be enrichments are widespread in syenitic pegmatites and
hydrothermal veins in these locations and others, notably the Oslo province, the Kola
Peninsula and Mt. Saint-Hilaire (Appendix A; Beus 1966; Vlasov et al. 1966; Engell et
al. 1971; Horvath and Gault 1990; Men'shikov et al. 1999; see below). These under-
saturated, typically feldspathoid- or zeolite-bearing rocks contain a distinctive suite of Be
minerals, notably the Al-poor, Na-Ca-Be silicates (e.g., epidydimite, leifite, leucophanite,
chkalovite) plus others such as gadolinite, phenakite, bertrandite, genthelvite and
bromellite.

Magmatic vs. metasomatic albite-rich granitoids. Albite-rich granitoids (and some
albite-rich syenites) can have either magmatic or metasomatic origins. Both types
commonly have Be enrichments but they can be difficult to distinguish from one another.
Magmatic varieties have F-enrichments and carry considerable concentrations of rare
metals such as Ta, the specific suite corresponding to the overall genetic family
(Kovalenko and Yarmolyuk 1995; Pollard 1995a). Such granitoids are extreme
differentiates of F-rich magmas (Manning 1982). Fluorine-rich metasomatic albitization
is also common in granitic systems and can carry contain broadly similar element
enrichments (Charoy and Pollard 1989; Laurs et al. 1996; Haapala 1997). Distinguishing
between the two requires textural or geochemical observations (sharp versus gradational
geologic contacts; petrographic evidence for replacement, dissolution of earlier minerals
such as quartz; high versus low variance assemblages, uniformity of phase proportions).
Beryl concentrates in both settings (e.g., Beus 1966; Charoy 1999).

HYDROTHERMAL OCCURRENCES ASSOCIATED
WITH FELSIC MAGMATISM

Hydrothermal Be deposits generated by felsic magmas are numerous and diverse
(Table 2, Figs. 2, 4). Depositional environments, particularly the composition of the host
rocks, exert the most prominent control on the styles of mineralization regardless of
magmatic compositions. Igneous compositions strongly influence mineralogy, element
enrichments and zoning. Magmatic Be enrichment can be important in some cases, but
overall is apparently subordinate to other factors. We group systems by igneous
compositions and foremost, by the degree of alumina saturation because this is predictive
of mineral associations (Fig. 12) and correlates broadly with other intensive variables and
geologic setting. Boundaries between groups can be arbitrary as there is clearly a
continuum among these groups and many igneous centers possess a range of
compositions.

Vein, greisen and volcanic (fumarolic) deposits occur in felsic igneous and
siliciclastic sedimentary host rocks. These deposits commonly have abundant F.
Muscovite-rich alteration, quartz veins and variable amounts of W, Mo, Bi, and Sn typify
the beryl-dominated mineralization that forms in strongly peraluminous systems. Li(-Fe)
micas and alkali-feldspar alteration become characteristic with decreasing aai,0,, as metal
assemblages gain Zr-REE-Nb and lose W. Fenites and quartz-absent hydrothermal veins
form in silica-undersaturated systems. At low temperatures (<300°C) bertrandite-bearing
quartz veins can form commonly with K-feldspar+carbonatetsericite+fluorite, in some
cases with Mn-rich, base-metal sulfide-rich associations.



624 Chapter 14: Barton & Young

Skarn, greisen and replacement deposits form in carbonate-bearing host rocks where
they generally contain abundant fluorite. They comprise the economically most important
deposits including the fluorite-rich replacement deposits in the carbonate-lithic-rich tuff
of Spor Mountain. All silica-saturated magma types can produce garnet, pyroxene and
vesuvianite-rich Be-bearing skarns where mineral ratios and compositions tend to reflect
the redox state of the related granites (cf. Einaudi et al. 1981). Aluminum-rich
metasomatism—which produces muscovite, other micas and diaspore (cf. “apocarbonate
greisen” of Shcherba 1970)—characterizes the BASH mineral-bearing deposits that form
near peraluminous granites. Less aluminous magmas generate skarns and K-feldspar-
bearing or Al-poor fluorite-rich replacement deposits. Typical minerals include
phenakite, bertrandite, and the helvite group with less common bavenite, leucophanite,
gadolinite, milarite and others. A distinctive texture found in many carbonate-hosted
systems is thythmically banded replacement containing alternating light and dark layers
with combinations of fluorite, Be minerals (helvite-danalite is typical) and other minerals
including silicates and magnetite (“ribbon rock” Jahns 1944b; “wrigglite” Kwak 1987,
see photos in Fig. 18C and Fig. 22, below).

Mafic and ultramafic host rocks are relatively uncommon, but they can be important
in that they host most emerald deposits, which form where beryl-bearing pegmatites or
veins gain Cr and lose silica during original emplacement or subsequent metamorphism.
Most such systems are peraluminous. Biotite-producing metasomatism is ubiquitous.
This group is treated separately below.

Peraluminous magma-related systems

Hydrothermal Be mineralization occurs with many strongly peraluminous
muscovite- or cordierite-bearing granites as well as with weakly peraluminous biotite
granites (“pG” in Appendix A). This suite contains some of the more important non-
pegmatitic Be deposits, including large sub-economic resources in the Seward Peninsula,
Alaska, eastern Nevada and central Kazakhstan. It is also notable for emerald and
aquamarine deposits associated with ultramafic and greisen host rocks, respectively (e.g.,
Reft River, Ural Mtns; Sherlova Gora, Transbaikalia). The salient characteristics of the
peraluminous group are aluminum-rich hydrothermal alteration and predominance of
BASH minerals.

The peraluminous family can be cast into two groups (cf. Fig. 4A): (1) specialized
strongly peraluminous granites, commonly with exceptionally high Li-Cs-Ta (LCT) and
other lithophile elements, locally with associated greisen Sn mineralization, and (2a) less
specialized but strongly peraluminous granites with or without W-Mo(-Sn)
mineralization, or (2b) weakly peraluminous Sn-W(-Mo) systems with elevated rare
metal contents. The last group commonly has late muscovite-bearing leucogranites.
Although this group can be considered to form a continuum with metaluminous systems,
it generally has highly aluminous alteration assemblages in various rock types that are
lacking in the latter. Most of hydrothermal systems formed at <5 km depth, but some,
particularly those associated with strongly peraluminous muscovite-biotite granites,
formed in the 5-10 km range. Geochemical data and geological associations point to a
metasedimentary, perhaps dominantly pelitic, source for the magmas of group (1), a
mixed crustal source for the magmas of group (2), and a hybrid crust and mantle source
for the magmas of group (3) (cf. Cerny 1991b; Newberry 1998).

It is unusual to find hydrothermal Be mineralization associated with the more
evolved Li-Cs-Ta-type magmas even though many have substantial magmatic Be
contents (Fig. 5; e.g., Macusani, Beauvoir, Richemont). For example, most specialized
granites of the European Hercynian lack hydrothermal Be occurrences (Stussi 1989;
Manning and Hill 1990). In the Cornubian Sn-W district Be minerals occur in greisens,
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veins and skarns that are related to the biotite(-muscovite) granites but do not form with
the highly specialized topaz granites (Appendix A; Jackson et al. 1989; Manning and Hill
1990). Where Be minerals are mentioned with Li-Cs-Ta-type magmas they form in early
assemblages, for example in the Erzgebirge where beryl and herderite are minor
constituents of proximal quartz-topaz greisens at Ehrenfriedersdorf and elsewhere
(Baumann 1994). Similar relationships are apparent in the Geiju district, Yunnan, China
where Be-W mineralization occurs at the apex of greisenized rare-metal granites and
zones outward into Sn and sulfide mineralization (Kwak 1987). The lack of hydrothermal
accumulations in many of these systems may reflect their low solidus temperatures, their
low water contents and limited ability to exsolve water, and the relatively low partition
coefficients for Be into coexisting aqueous fluid (London et al. 1988; Raimbault and
Burnol 1998). In contrast to the Li-Cs-Ta-group, the less compositionally extreme
peraluminous magmas are associated with many occurrences.

Feldspathic host rock: These rocks host three common styles of fracture-controlled
Be mineralization: beryl in quartz-K-feldspar(-mica) veins, beryl in albitized rocks, beryl
and other Be minerals in muscovite-topaz-fluorite-dominated greisens. The latter are by
far the most important. Many areas contain all three styles in a progression from early,
proximal and typically deeper K-feldspar-stable assemblages through albitization to late,
commonly distal greisen associations. Occurrences are widespread, notable examples
found with biotitexmuscovite granites occur in China, central Asia, the North American
cordillera, and western Europe (Appendix A).

Small, coarse-grained quartz-K—feldspar(-muscovite-biotite) veins containing acces-
sory beryl, molybdenite and wolframite occur with some peraluminous pegmatites and
W-Mo(-Sn) affiliated granitoids (e.g., in the Canadian cordillera and maritime provinces,
Mulligan 1968). These veins typically lack fluorite and paragenetically later Be-rich
veins are rare. Geological context indicates that they formed at considerable depth; they
could represent root zones of other deposit types. One variant on this theme is illustrated
by the large Verknee Qairaqty and Koktenkol stockwork W(-Mo) deposits in Kazakhstan
where minor beryl occurs only in early, 300-400°C quartz-K—feldspar-molybdenite-
scheelite veins (Mazurov 1996; Russkikh and Shatov 1996). Beryllium is distributed
throughout the paragenesis at Dajishan, Jiangxi, China where quartz-feldspar-beryl veins
change with time and distance into helvite-bearing fluorite-muscovite-quartz veins with
wolframite, scheelite and molybenite (Raimbault and Bilal 1993). Another variant may
be represented by the relatively F-poor Sn-W deposits of SE Asia where Be mainly
occurs as beryl in pegmatitic bodies (Suwimonprecha et al. 1995; Linnen 1998).
Feldspar-dominated veins are of little economic interest and consequently are thinly
documented. Conversely, alkali feldspars are present in many F-rich greisen and albitic
assemblages associated with major Be deposits.

Albitized rocks are widespread in Be-rich peraluminous systems where they grade
into mica-dominated greisen assemblages. Typically, albite+tmuscovite+fluoritetchlorite
replace igneous feldspars and micas; modal quartz also commonly decreases. These form
pipes, veins, vein envelopes (commonly around mica-rich greisen veins), and pervasive
zones particularly near the tops of intrusions. Accessory beryl with albitic assemblages is
reported in many systems (Beus 1966; Dyachkov and Mairorova 1996). A well described
example at Triberg, Germany (Markl and Schumacher 1996, 1997) formed from biotite-
muscovite leucogranites that have late beryl-bearing miarolitic pegmatites. Hydrothermal
beryl-albite-muscovite-fluorite alteration ultimately grades into beryl(-bertrandite-
phenakite)-bearing quartz-muscovite-topaz greisen veins. Like many other beryl-rich
two-mica systems, the mineralizing fluids contained <10 wt % NaCl equivalent (NaCl,)
and Sn and W were only weakly concentrated. Rogers (1990) describes similar
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relationships in muscovite-bearing biotite granite in the Sheeprock Mountains, Utah.

Quartz-rich greisens with abundant accessory muscovite, topaz, fluorite and
siderophyllite contain most Be minerals (beryl > phenakite, bertrandite, euclase) found in
peraluminous-related deposits. Beryl can be either in the vein fill with quartz and other
minerals or it can concentrate at the outer margins of the greisen envelopes against
feldspar-stable assemblages (generally albite; Beus 1966). Overall Be distribution varies
in greisens; it is typically distal or late within the intrusions and may or may not extend
into surrounding veins or skarns. Hematite-bearing alteration and helvite group minerals
are rare with the peraluminous group in contrast to greisens associated with
fundamentally metaluminous biotite granites.

Many examples from around the world illustrate these patterns (Appendix A). In the
Great Basin, reduced (low Fe™/Fe™) Cretaceous muscovite-biotite granites and their
clastic host rocks contain minor beryl in muscovite-fluorite-quartz-pyritetwolframite
greisen veins. Paragenetically earlier quartz-K—feldspar veins and albitization typically
lack beryl. This is compatible with the paucity of Be in the correlative pre-greisen stages
of associated skarns. These systems contain large quantities of F, Be and Zn, with minor
Mo (proximal), W and Sn (distal). Associated fluids had moderate CO, contents and
salinities (5-10 wt % NaCleq) and were of magmatic derivation. In the northern
Cordillera, sparse beryl occurs in proximal muscovite- or topaz-bearing alteration in W-
Mo (e.g., Logtung, Yukon) and Sn-W (e.g., Lost River, Alaska) systems. Similar
relationships hold along the western margin of the Pacific in southeastern China (e.g.,
Wangfengshan, Guangdong) and eastern Australia (e.g., Mole Granite, New South
Wales)

Many Be-bearing W-Mo(-Sn) greisens occur in central and eastern Kazakhstan
where they are associated with mainly Late Paleozoic biotitermuscovite leucogranites
(Appendix A; Burshtein 1996; Serykh 1996; Ermolov 2000). Beryllium occurs in several
modes: as beryl in muscovite-topaz-quartz greisens (e.g., Agshatau; Fig. 17), as
bertranditethelvite (after beryl) in late fluorite-rhodochrosite-sulfide veins (e.g., East
Qonyrat), and as chrysoberyl and other minerals in F-rich skarns (e.g., Qatpar).

Among peraluminous-related deposits greisen deposits are the more common than
other types and the only variety from which Be has been produced. The largest reported
resource is the Agshatau district in Kazakhstan (Fig. 17; Appendix A; Beskin et al. 1996)
where beryl has been produced from W(-Mo-Bi) greisen veins. Beryl formed in the distal
parts of the quartz-topaz-muscovite-wolframite greisen veins where BeO contents can
exceed 0.1% (Fig. 17B). These veins exhibit zoning centered on a multi-phase
muscovite-biotite leucogranite complex that appears to be the fluid source. Extensive
study demonstrates that saline (>30 wt % NaCl.q) magmatic fluids account for most of
the mineralization with fluid pressures fluctuating near lithostatic values. These fluids
were followed by an influx of dilute, meteoric waters under hydrostatic conditions that
formed late quartz-sulfide-carbonate assemblages.

The noted aquamarine locality at Sherlova Gora, Siberia (Sinkankas 1981) has
extensive beryl-bearing quartz veins (with BeO > 0.02%) with topaz, siderophyllite,
fluorite and muscovite greisens (Beus 1966). These occur in the outer portion of a
variably miarolitic and porphyritic biotitetmuscovite granite pluton. Within the pluton,
beryl is late and tends to be distal in the greisen veins. Beryllium as well as alkalis are
removed from intensely greisenized rocks. In the system as whole, beryl and minor Mo-
W=£Sn mineralization form proximally whereas Sn-polymetallic mineralization extends
well away from the intrusions (Troshin and Segalevich 1977). This district, although
emplaced at shallower levels than those in the Great Basin, is also characterized by both
muscovite-bearing granites and relatively low Sn-W-Mo contents.
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Figure 17. Geology of the Agshatau (Akchatau) greisen W-Mo-Bi-Be district, central Kazakhstan.
(A) Geology map showing the distribution of granitoids and hydrothermal features in the central
part of the district. Older, Carboniferous granodiorites and granites of the Qaldyrma complex are cut
by cupolas of the ore-related Permian biotite-bearing leucogranites of the Agshatau complex. Note
lateral zoning of W-Mo-Be mineralization away from the latter. (B) Zoning of WO;, Mo and BeO
(values in %) along the 146 vein (see A for location). [A,B redrawn from Beskin et al. 1996.]

Although greisen-type alteration hosts most Be minerals in peraluminous granitoids,
Be minerals are commonly sparse when compared to the amounts present in adjacent
carbonate hosted-mineralization. With only a handful of exceptions worldwide
(Agshatau, Sherlova Gora), the peraluminous granite-hosted deposits have not been a
significant source of either Be metal or gems. This is well illustrated by Phanerozoic Be-
rich magmatic-hydrothermal systems around the circum-Pacific (e.g., Cretaceous
Cordillera, Tasman system, SE China; see Appendix A).

Carbonate host rock In carbonate rocks, Be deposits related to strongly
peraluminous granitoids are characterized by exceptionally high F and Al contents and
elevated contents of many other elements including Li, Sn, and W. Beryllium occurs both
in skarns and in superimposed or distal apocarbonate greisen or replacement deposits. In
skarns, Be is reported to isomorphically substitute in vesuvianite and other silicates (e.g.,
Beus, 1966), whereas in the greisen or replacement deposits Be clearly forms discrete
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phases. Fluorite, F-rich silicates, micas (muscovite, Li-micas, phlogopite), topaz, albite,
K-feldspar and quartz can all be abundant. Typical Be minerals include chrysoberyl,
phenakite, beryl, bertrandite, euclase and bertrandite. Rarely present are bavenite and
Mg-bearing aluminates of the taaffeite group (Table 1). Quartz is typically sparse in
carbonate-hosted greisen-style alteration. Iron and base metal contents vary considerably.
Pressure (depth of emplacement) appears to be an important factor in quartz and sulfide
abundances: higher salinity fluids, more extensive metal transport and silica-under-
saturated assemblages occur at <1-1.5 kbar, whereas more siliceous assemblages (due to
higher silica mobility) and less concentrated metals (linked to lower fluid salinities) are
more common at higher pressures (cf. Fig. 11A).

Figure 18. Textures of carbonate-hosted Be mineralization associated with strongly peraluminous
granites showing characteristic F- and Al-rich veins and replacements. (A)-(C) Mica-fluorite-beryl
(-quartz) veins from the deep W(-Mo) systems at McCullough Butte, Nevada (Appendix A).
(A) Trench face with typical muscovite-fluorite(-beryl-pyrite-scheelite-sphalerite-bertrandite-quartz)
veins and fluorite-phlogopite envelopes in brecciated dolostone. This exposure averages about 25%
CaF, and 0.25% BeO. (B) Quartz-aquamarine-dolomite(+muscovite) vein cutting muscovite-
fluorite-beryl(white) veins with inner fluorite to outer fluorite+phlogopite envelopes. (C) Rhythmi-
cally banded fluorite-phlogopite skarn envelope on muscovite-fluorite-beryl-pyrite vein.
(D) Mottled chrysoberyl-rich replacement from the shallow Lost River Sn(-W) district, Alaska.
Very fine-grained chrysoberyl+diaspore vein cuts mottled white mica (Li, Be-bearing)+tourma-
line+diaspore+chrysoberyl replacement of limestone. (E)-(F) Phenakite-bertrandite-fluorite vein and
replacement mineralization Mount Wheeler Mine, Nevada (Appendix A) which typical of distal
fluorite-rich mineralization in carbonate rocks associated with many magma types (cf. Zabolotnaya
1977). (E) Phenakite(-bertrandite)-fluorite-muscovite-adularia vein-cutting fluorite-adularia-man-
ganosiderite-phenakite replacement of limestone. Fluorite is dark and comprises more than half of
these zones. (F) Micrograph of central vein from (F) showing phenakite-fluorite-adularia (Kfs) vein
with muscovite border. All photos by M.D. Barton (except for A—modified from Sainsbury 1969).
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High-grade Be mineralization in carbonate rocks typically consists of paragenetically
complex fine- to coarse-grained fluoritetmica, K-feldspar, diaspore or tourmaline-rich
open-space and replacement veins (Fig. 18; Ginzburg et al. 1979). These veins typically
comprise stockwork systems that can extend up to several kilometers from known
sources and proximal skarns (e.g., McCullough Butte, Nevada; Lost River, Alaska; Fig.
19). Rhythmic layering is common as it is in other Be-bearing systems (Fig. 18C). The
ore minerals range from very fine-grained—"“curdy” chrysoberyl is common and
represents a metallurgical challenge for economic recovery (Fig. 18D; Apollonov
1967)—to quite coarse-grained, which is common with phenakite-bertrandite-fluorite
replacements (Fig. 18E; Ginzburg et al. 1979). Chrysoberyl occurs principally in the
lower pressure, better metallized districts.

Associated anhydrous calcic skarns range from reduced types with hedenbergitic
pyroxene > aluminous garnett+vesuvianite to oxidized types with andraditic garnet+
vesuvianitetmagnetite > diopsidic pyroxene (cf. Newberry 1998). The latter are more
common with shallow, Sn(-W) systems, like those associated with biotite granites in
western Alaska or Tasmania, whereas the former are more common with W(-Mo-Sn)
skarns associated with biotitemuscovite granites from southeastern China and the
western USA (Fig. 4). Magnesian skarns of both types differ in having more abundant
humite-group minerals, other Mg-silicates, sellaite, spinel and magnetite (cf. Einaudi et
al. 1981; Kwak 1987).

One of the best-documented districts is at Lost River on the Seward Peninsula,
western Alaska (Appendix A; Fig. 19). This area contains the second largest U.S. Be
resource after the tuff-hosted ores at Spor Mountain, Utah. Biotite granites and late
muscovite-bearing leucogranites in the Seward Peninsula are all peraluminous, but they
differ from strongly peraluminous granitic suites in that they are commonly more
oxidized (higher Fe 3/Fe*?) and they mostly lack Al-saturating phases such as muscovite
or cordierite (Sainsbury 1969; Swanson et al. 1990). The Be deposits occur as fine-
grained, commonly laminated chrysoberyl-diaspore-mica-fluorite veins and replacement
bodies in limestones and dolomites (Fig. 18D). Also present are minor phenakite, beryl
and euclase. These bodies are developed along faults and adjacent to dikes and extend
kilometers from the Sn-rich greisenized granites and skarns. There is a strong vertical
control on the distribution of hydrothermal alteration that reflects level of exposure in the
systems. The Be-F-Al replacements are mainly distal and structurally high. Proximal
iron-rich skarns can contain helvite with fluorite and magnetite, but more commonly are
dominated by andraditic garnet, vesuvianite, magnetite, fluorite, scapolite and minor
pyroxene overprinted by hydrous skarn with hornblende, biotite, fluorite, cassiterite and
sulfides (Dobson 1982; Swanson et al. 1990). The skarns abut topaz-tourmaline-
muscovite greisenized fine-grained biotitetmuscovite granites (Fig. 19 inset). Carbonate-
hosted greisen veins both predate and postdate the skarns and thus indicate multiple fluid
release events (Dobson 1982).

Systems similar to Lost River occur elsewhere in Alaska and, notably, down the
eastern side of Asia from Siberia into southern China (Fig. 2; Appendix A). Systems in
southeastern China are associated with middle to late Mesozoic biotitetmuscovite
granites, typically with greisen mineralization within the intrusions. Unlike in North
America, several of these complex polymetallic districts are economically important for
other commodities. The Shizhuyuan, Hunan W(-Sn-Mo) district contains the world’s
premier W deposit and has Be-rich Mo-W-B-Sn+Cu+Pb skarns, greisens and
replacement bodies (Mao et al. 1996b). At Xianghualing, Hunan, late chrysoberyl-
fluorite-phlogopite ribbon rock and later fluoborite-chrysoberyl (-taaffeite group mineral)
mica veins with spinel envelopes and minor sulfides overprint garnet-vesuvianite skarns
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and ribbon magnetite skarns. These magnesian skarns contain chondrodite, vesuvianite,
diopside, amphibole, tourmaline and formed in dolomitic host rocks adjacent to beryl-
bearing albitized and greisenized biotite granite and (Lin et al. 1995a, p. 238-242).
Similar Be-F-rich mica-dominated veins overprint and are distal to complex polymetallic
Sn skarns in the Geiju Sn district (Kwak 1987).

In districts with less compositionally evolved magmas, Be tends to be dispersed
either in rock-forming silicates or as minor beryl. High Be concentrations occur only in
particularly favorable traps. For example, many large hydrothermal systems are
associated with Cretaceous two-mica granites in the Great Basin of the western United
States (Appendix A). At McCullough Butte, Nevada two-mica granite contains 6-12 ppm
Be and 0.03-0.2% F (Barton, unpubl. data), whereas contemporaneous two-mica
granitoids emplaced at 20+ km depths in the Ruby Mountains have 0.5-4 ppm Be (Calvin
Barnes, written comm., 2000). Around and above the shallower plutons (emplaced at
5-10 km depth), muscovite-phlogopite-fluorite-quartz-bearing veins and replacement
zones overprint or are peripheral to reduced W(-Mo-Sn)-bearing pyroxene>garnet skarns
(Fig. 18A-C). Some of these hydrothermal systems contain much Be (e.g., McCullough
Butte, Fig. 3), but high concentrations (>0.1% BeO) only formed in distal locations
where fluids traversed unreactive quartzites prior to encountering carbonate rocks. This is
illustrated by McCullough Butte (see Fig. 18A) and, most extensively, around the Mount
Wheeler mine, Mt. Washington district, Nevada (Fig. 20). In the Mt. Washington district,
a substantial Be(-W-F) resource (Fig. 3) occurs in laterally extensive phenakite-
bertrandite-beryl-scheelite-fluorite replacement bodies that formed in the basal carbonate
unit above a thick clastic section overlying an unexposed granite (Fig. 20B). In place of
skarn minerals, early mineral assemblages in this distal, cool hydrothermal system
contain Fe-Mn carbonates and quartz, and were followed by deposition of progressively
Al-, F-, and Be-enriched assemblages that culminate in muscovite-fluorite-beryl-quartz
veins.

Metaluminous magma-related systems

Notable non-pegmatitic deposits of Be occur throughout the world with
metaluminous or weakly peraluminous magmatism (“G” in Appendix A, Fig. 2). The
preeminent region comprises Spor Mountain and other deposits associated with mid-
Tertiary felsic magmatism in southwestern North America. In contrast to strongly
peraluminous-related systems where Be can be economically concentrated in pegmatites
and igneous-hosted vein deposits, metaluminous suites lack major intrusion-hosted
deposits even though phenakite, beryl, helvite group and gadolinite occurrences are
widespread. Instead, carbonate and volcanic rocks host the important deposits which
mostly are fluorite-rich, bertrandite-, phenakite- or helvite-bearing veins and replace-
ments. Beryl is normally subordinate to the other Be minerals or is completely absent.

Genetically related igneous rocks are highly felsic—typically biotite-bearing
leucogranites and high-silica rhyolites (Fig. 5A,B). Coeval syenites and hornblende-
bearing calc-alkaline granites are commonly present, whereas muscovite-bearing variants
are scarce. They may occur in bimodal suites with mildly alkaline mafic rocks. Typical
associated metals include Mo, Sn(>W), Ta, Nb and Zn. Most, but not all, of these
systems are F-rich and many are sulfur-poor as evidenced mineralogically by widespread
genthelvite-danalite solid solutions (Fig. 9) and other indicators of relatively low S such
as Pb-enriched feldspar (amazonite). Another common feature of metaluminous-related
systems, shared to some degree with other types, is an association with distal Mn-rich
replacement or vein mineralization. In some areas, for example south-central New
Mexico, helvite-bearing base-metal sulfide replacements formed near skarn and volcanic-
hosted Be mineralization. A link to proximal Be-enrichments is not evident in other
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Figure 20. Geological relationships in the Mount Wheeler Mine area, Mount Washington district,
Nevada. Beryllium mineralization here is associated with non-specialized strongly peraluminous
granites. This district contains the most extensive and highest grade Be mineralization of the >20
occurrences associated with Late Cretaceous two-mica granites in the Great Basin (Barton 1987,
Barton and Trim 1991). (A) Cross section through the district showing lateral extent of
hydrothermal system. High-grade Be(-W-F) mineralization is laterally extensive but vertically
restricted to carbonate rocks in the Pioche Shale, the lowest reactive beds in the sedimentary
sequence. Only sparse granite porphyry dikes are exposed at the surface, but large two-mica granite
bodies are exposed nearby in the southern Snake Range (Barton, unpubl.). (B) Sketch map showing
the localization of high-grade (ca. 1% BeO & WO;; 20% CaF,) low-temperature (<300°C)
replacement bodies that form where sheeted quartz veins intersect the basal carbonate rocks. See
Figure 18E,F.

examples, including helvite in the epithermal Mn-rich mineralization at Silverton,
Colorado and in the distal polymetallic Mn-mineralization at Butte, Montana district
(Warner et al. 1959). These occurrences share features with distal rhodochrosite-
bertrandite and Mn-silicate/carbonate occurrences in many districts in central and east
Asia (e.g., East Qoynrat, Kazakhstan; Shizhuyuan, China).

Felsic host rock in non-volcanic settings: In intrusive environments pegmatitic,
miarolitic, albitized and greisenized bodies contain gadolinite, beryl, bazzite, phenakite,
bertrandite, bavenite, and helvite group minerals. Although many features overlap with
peraluminous systems, mineral assemblages are typically less acid (higher molar
(K+Na/)Al). Cavity filling and alteration mineral associations are dominated by alkali
feldspars, quartz and trioctahedral micas (siderophyllite, zinnwaldite, etc.). Muscovite is
common in some greisens, but is generally less abundant than in strongly peraluminous
examples. Beryl and (rare) euclase are largely restricted to muscovite-bearing greisens. In
a number of regions, porphyry Mo style mineralization is associated with the Be-bearing
intrusive complexes (e.g., in Norway, southwestern US, central Asia; cf. Geyti and
Schenwandt 1979; Burt et al. 1982; Burt and Sheridan 1986). Although few of these
areas have detailed petrologic documentation, most appear to have formed at no more
than 5 km depth from moderate salinity magmatic fluids. None of the granite-hosted
deposits have been major sources of Be.

Biotite granites and monzonites with accessory Be minerals in miarolitic cavities and
pegmatitic veins are well known in the southern Alps, Oslo Rift, Colorado (Pikes Peak
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batholith; Mt. Antero), and the Younger Granites Province of Nigeria (Appendix A).
These occurrences are small and mainly of mineralogical interest. For instance, sparse
gadolinite, bazzite, and bavenite are present in pegmatitic quartz-feldspar(xberyl)
assemblages in biotite granite plutons in northern Italy and in miarolitic cavities in the
peralkaline to metaluminous Oslo Rift intrusions. Mid-Tertiary calc-alkaline batholiths in
Colorado (Mount Antero area, Mt. Princeton batholith) and Idaho (Sawtooth batholith)
have biotite granites with miarolitic cavities and pegmatitic quartz veins that are noted for
their aquamarine and other specimen material. At Mt. Antero, beryl, phenakite and
bertrandite form sequentially in miarolitic cavities, pegmatites and muscovite-bearing
quartz-molybdenite veins all associated with the apex of a small chemically specialized
biotite leucogranite (Adams 1953; Jacobson 1993b). Geologic relationships and fluid
inclusion data from Mt. Antero indicate that associated fluids were magmatic in origin
had fairly low salinities (0.5-8 wt % NaCl.q) and spanned a wide temperature range (~600
to 200°C; Kar 1991).

In metaluminous-related Be-rich hydrothermal systems, paragenetically early
metasomatic K-feldspar+K-Fe mica assemblages are commonly mentioned; however,
these assemblages are not well-described and they apparently lack Be minerals. This is a
bit surprising given the common co-occurrence with beryl and other minerals in
miarolitic cavities. Similarly, albitization with quartz loss and Li-Fe-Al mica growth in
metaluminous systems mostly lacks Be minerals (e.g., Beus 1966; Charoy and Pollard
1989). An exception is at Sucuri, Brazil where helvite-group minerals occur with iron and
base metal sulfides (Raimbault and Bilal 1993). Albitization of uncertain origin—
magmatic or hydrothermal—is widely reported. Haapala (1997) argued that much of the
albite is magmatic or due to local post-magmatic redistribution of components without
significant sodium metasomatism. Albitization is widely reported in the Nigerian alkaline
complexes in the same areas that contain Be-bearing greisens. According to Bowden et
al. (1987) the albite has “snowball texture” (albite laths and zinnwaldite enclosed in large
microcline and quartz crystals)—a texture that plausibly seems magmatic (e.g., Lin et al.
1995b, but cf. Kempe et al. 1999). Given the focus placed on albite-rich rocks as either an
evolved magmatic source or a leached metasomatic source for Be this topic remains a
fertile one for additional work.

In felsic host rocks hydrothermal Be mainly occurs in small greisen veins and pipes
with or without associated albite-rich assemblages. Well-known regions are commonly
Sn-rich and include Karelia, Brazil, Nigeria, Colorado and central Asia (Fig. 2, Appendix
A). Hydrothermal quartz, Li-Fe-Al sheet silicates, and fluorite are ubiquitous. Topaz,
cassiterite, wolframite and Mo-Zn(-Pb-As-Cu) sulfides are common. Cryolite can be
present in fluid inclusions or as a separate phase. Sheet silicates include chlorite, Li-
muscovite, siderophyllite and Li-Fe micas with chlorite being most common in the outer
part of vein envelopes. Although muscovite is prominent in some deposits, greisens in
many areas contain only trioctahedral micas (e.g., in Nigeria, Bowden and Jones 1978).
Beryl is the most widely reported Be mineral and bertrandite, genthelvite and phenakite
are common. These bodies typically zone from central quartz-rich bodies with topaz
through inner mica-quartz envelopes to outer chlorite-mica-K-feldspar envelopes. A
characteristic reddening of vein envelopes due to dispersed hematite is widely reported
(e.g., Nigeria, Karelia). Beryllium minerals typically occur in the central part of greisen
bodies along with other ore minerals. Petrological studies of several systems in Nigeria,
Karelia and Mongolia show that mineralizing fluids are of magmatic origin and saline (10
to >40 wt % NaCly,), can have moderate CO, contents, commonly show evidence of
phase separation, and were trapped at temperatures from 200 to 500°C (Haapala 1977a;
Imeokparia 1992; Akande and Kinnaird 1993; Graupner et al. 1999).
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Figure 21. Geology of the greisen Be deposits associated with the Redskin biotite granite,
Tarryall Mountains, Colorado (Hawley 1969). The Redskin granite is late, highly evolved
phase of the 1 Ga Pikes Peak batholith (Desborough et al. 1980). Like some other
fundamentally metaluminous systems, it has late muscovite-bearing phases which are
associated with the Be-rich muscovite-quartz-fluorite-topaz greisens (inset). Miarolitic and
other pegmatitic Be mineral occurrences occur widely in nearby parts of the Pikes Peak
batholith (Eckel 1997). The distribution of rock types, hydrothermal features, and structures
make it seem likely that the complex is tilted at moderate angles to the southwest giving an
oblique section.

A well studied example of greisen-type mineralization is that associated with late
units of the Redskin biotite granite in Colorado (Fig. 21; Hawley 1969). The Redskin
granite is an evolved late phase of the variably alkaline 1.0 Ga Pikes Peak batholith,
Colorado (Desborough et al. 1980). As a whole the batholith is known for Nb-Y-F-type
miarolitic pegmatites that contain genthelvite, phenakite, bertrandite, gadolinite but lack
beryl (Levasseur 1997; see next section). Quartz-lithian muscovite-topaz-fluorite
(xwolframite-cassiterite-sulfide) greisens form small (1-20 m) pipes and veins developed
within and above variably muscovite-bearing porphyritic and aplitic biotite granites.
These occur along the southern and western phases of the intrusion which likely was the
upper part of the now tilted intrusive system. Beryllium minerals (beryl+bertrandite£rare
euclase) were quite localized within the greisen bodies and in places formed unusually
high grade deposits (>5% BeO; Hawley 1969). The deposit at the Boomer Mine produced
the first non-pegmatitic Be ores in the United States, operating between 1956 and 1965
(Meeves 1966; Hawley 1969).

Carbonate host rock As in the case of peraluminous-related systems, limestone
and dolostone make excellent hosts for F- and Be-rich skarn and replacement deposits.
These commonly accompany skarn, replacement and greisen Sn, W and base-metal
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mineralization. In some regions only carbonate-hosted mineralization comprises ore (e.g,
Karelia, Haapala 1977b). Styles share some common features with strongly peraluminous
systems, notably that anhydrous skarns with little Be are overprinted by hydrous,
typically F-rich assemblages with higher Be contents. They differ in that the
metaluminous-related skarns tend to be more oxidized (garnet/vesuvianite > pyroxene; cf.
Einaudi et al. 1981) and have replacement assemblages that are typified by fluorite plus
iron sulfides, oxides and silicates. Topaz- and muscovite-bearing assemblages can occur
in greisenized areas, but they are minor compared to the abundant aluminous
assemblages (micas+fluoritetplagioclase+diasporettopaz) found with peraluminous
granites. Tourmaline and other boron minerals can be abundant. Typical Be minerals are
phenakite, bertrandite, danalite and helvite. Beryl and chrysoberyl are rare, but
considerable Be can be bound in vesuvianite and other silicates (up to ~1% BeO, Beus
1966).

Notable examples of carbonate-hosted deposits include Pitkéranta, Russia, Iron
Mountain, New Mexico, and a number of Sn skarn-greisen-replacement deposits in
Tasmania and elsewhere in eastern Australia (e.g., Mt. Garnet, Queensland; see Appendix
A and Fig. 2). This Sn-rich group has been thoroughly reviewed by Kwak (1987) and
Newberry (1998). In comparison, a distinct group of Mo-W-bearing andraditic skarns
contain only minor helvite (e.g., Oslo Rift, southeastern Arizona). In Tasmania, Be
minerals occur in hydrous silicate assemblages that are developed after earlier calcic or
magnesian skarns and they occur in iron sulfide/iron oxide-fluorite replacement bodies.
Phenakite and bertrandite replace danalite in greisenized areas (Kwak and Jackson 1986).
Kwak (1987) summarizes fluid inclusion data for the Tasmanian deposits which formed
from high salinity (>30 wt % NaCly) fluids and spanned a large temperature range.
Lower temperature variants on these deposits are best expressed in volcanic-associated
Be deposits, however Bulnayev (1996) links some moderate temperature (140-350°C)
carbonate-hosted fluorite-bertrandite-phenakite deposits to subalkaline granitoids.

At Iron Mountain, New Mexico, 29 Ma porphyritic alkali granites intruded Paleozoic
sedimentary rocks and formed oxidized Sn-, W-bearing andradite-magnetite skarns which
are overprinted by helvite-bearing fluorite-rich assemblages (Fig. 22; Jahns 1944a).
Skarns formed during several intrusive events (Robertson 1986) and the intrusive rocks
contain abundant small veins consisting of quartz-K-feldspar, quartz-biotite-fluorite, or
biotite. The Be ores form small bodies in skarn or marble and consist of rhythmically
banded fluorite containing variable amounts of helvite, magnetite, vesuvianite, chlorite,
and scheelite (Fig. 23). In his original description Jahns (1944b) coined the term “ribbon
rock” for this texture while citing earlier descriptions at Lost River, Alaska and
Pitkdranta, Karelia, Russia (formerly Finland). In New Mexico, contemporaneous
volcanic rocks in adjacent fault blocks contain higher level bertrandite-rich
mineralization (Meeves 1966), a few red beryl occurrences (Kimbler and Haynes 1980),
and many volcanogenic cassiterite (wood tin) deposits (Rye et al. 1990). Southern New
Mexico also hosts numerous other Be occurrences including helvite-bearing sulfide-
carbonate replacement bodies at the Grandview Mine within 30 km of Iron Mountain
(Warner et al. 1959).

Volcanic associated deposits: Shallow low-temperature (150-250°C) replacement
and vein deposits of Be are linked to volcanic and hypabyssal high-silica rhyolites and
granite porphyries. These “epithermal” deposits are the main source of non-pegmatitic Be
ore (Spor Mountain, Utah) and the sole source of gem red beryl (Fig. 2; Appendix A).
Although best known in the Basin and Range Province of the western United States,
similar deposits are reported from a number of areas in Asia (Zabolotnaya 1977,
Kovalenko and Yarmolyuk 1995). Genetically related volcanic and hypabyssal biotite-
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bearing topaz rhyolites (ongonites) are weakly peraluminous to metaluminous and are
particularly rich in F, Be, and Li (Fig. 5C,D; Kovalenko et al. 1979; Burt et al. 1982;
Christiansen et al. 1983). In the western United States they formed in an extensional
tectonic setting and they belong to a compositionally expanded magmatic pattern that is
bimodal in character and has felsic rocks that range from peraluminous to peralkaline.

Iron Mountain Key
5 1 Igocene nydrothermal system
New Mexico, USA g 4

2 fluorite-magnetite-helvite-
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porphyritic rhyolite
maonzonite

Cretaceous & Pennsylvanian
I:] sandstone, shale

Pennsylvanian Magdelena group [ (6. ¥ [ _

limestone, variably shaley, P

I:‘ marble & hornfels near Rl \
intrusions e :

D basal clastic rocks /) / //’>> J:‘I] I{" m‘,‘&\{(\\ ‘L\

Figure 22. Geology of the Iron Mountain area, New Mexico (modified from Jahns 1946).
(A) Simplified district geology showing extent of Fe-rich skarn and replacement deposits in Paleozoic
carbonate rocks adjacent to Oligocene intrusions. The system is tilted about 30° to the east.
(B) Detail of the central part of the district showing distribution of banded helvite-fluorite-iron oxide
skarns at the marble contact or superimposed on earlier Sn-bearing andradite and W-bearing magnetite
skarns. Be-F mineralization is related to the younger fine-grained granite (Robertson 1986).

Figure 23. Rhythmically banded helvite-rich replacement
from Iron Mountain, New Mexico. Magnetitethematite
(dark bands) alternating with fluorite-helvite-vesuvianite
(light bands; photo modified from Jahns 1944a,b).

Fine-grained bertrandite and, rarely, beryl or behoite are associated with hydro-
thermal silica (quartz, chalcedony, opal), calcite; fluorite, carbonate, K-feldspar and Li
clays in tuffs and breccias. Fluorite, although abundant in some of the better mineralized
deposits, is not always present. Although sulfides are absent, Zn, Mo, Li and other metals
can be concentrated in Mn oxides and clays (Lindsey 1975). BeO concentrations range
from a few hundred parts per million to a few percent.
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Fluorite-absent quartz/chalcedony veins with bertrandite-adularia-calcite+clays are
described in Utah (Rodenhouse Wash, Griffitts 1965) and the former Soviet Union
(Rozanov and Ontoeva 1987). Bertrandite-bearing (up to 2.5% BeO) clay-altered rhyolite
tuff at Warm Springs, New Mexico also lacks fluorite (Hillard 1969). Most occurrences
contain abundant fluorite in addition to silica minerals, bertrandite, calcite, K-feldspar
and various clays. Zabolotnaya (1977) describes a quartz-fluorite-bertrandite+adularia
stockwork with epithermal textures in subvolcanic Paleogene rhyolites. Similar deposits
are present in Mongolia (Kovalenko and Yarmolyuk 1995).
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Figure 24. Generalized geological relationships and mineralization in the Spor Mountain
and Thomas Range area, Utah, locus of the world’s principal Be supply. (A) Geologic
map of the district showing distribution of Be deposits in Miocene lithic tuff and
regionally associated hydrothermal alteration (K-feldspar, fluorite and argillic types;
adapted from Lindsey 1975). (B) Cross sections from the Roadside deposit (see A)
showing types and distribution of hydrothermal alteration in early Miocene lithic tuffs
and distribution of bertrandite mineralization in carbonate-clast-rich lithic tuff. The tuff is
also enriched in Li, Zn and other elements. (Alteration from Lindsey et al. 1973. Be
content from Griffitts and Rader 1963.)
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The volcanic-hosted bertrandite-fluorite-silica ores of the Spor Mountain district are
only one of several dozen Be occurrences in the region (Appendix A; Meeves 1966;
Shawe 1966). At Spor Mountain and in the adjacent Thomas Range voluminous
Cenozoic volcanic rocks overlie a carbonate-dominated Paleozoic sedimentary section
(Fig. 24). Volcanism began with 39-38 Ma latites and andesites, followed by 30-32 Ma

rhyolitic ash-flow tuffs. It culminated
with early and late Miocene topaz
rthyolite flows—the 21 Ma Spor Moun-
tain Rhyolite, and the 6-7 Ma Topaz
Mountain Rhyolite (Lindsey 1977).
Interestingly, this bimodal distribution of
topaz rhyolites occurs throughout western
Utah. The topaz rhyolites have been
intensively studied (e.g., Christiansen et
al. 1984) and rocks of each episode have
high concentrations of Be, F, Li and other
lithophile elements (Fig. 5D). Uranium-
lead dating of uraniferous silica yields an
estimated oldest age of 20.8 Ma for Be
mineralization but that younger thermal
events were also likely (Ludwig et al.
1980).

Beryllium mineralization is local-
ized in stratified tuff breccia immediately
beneath rhyolite flows of Spor Mountain
Formation (Figs. 24B and 25A). The tuff
is extensively altered with a progression
from regional diagenetic clays and K-
feldspar (Lindsey 1975) to intense K-
feldspathization with secondary sericite
and smectite in the immediate vicinity of
Spor Mountain (Lindsey et al. 1973).
Dolostone clasts in the tuff breccia show
corresponding alteration from original
dolomite to calcite to silica to fluorite
(Fig. 25B,C). Figures 24B and 25B,C
show how Be grade increases with
intensity of alteration in the tuff matrix
and in carbonate nodules within the tuff.
The source of the Be-bearing fluids is
uncertain. Hydrogen and oxygen isotopic
data (Johnson and Ripley 1998) are
consistent with involvement of surface
waters. Fluorite-rich, Be-poor (<20 ppm)
breccia pipes cut the Paleozoic carbonate
rocks beneath the older rhyolites. These
pipes lie along structures that also appear
to control the Be orebodies. Lindsey et al.
(1973) speculated that a connection to
deeper Be mineralization exists; how-
ever, the deposits could reflect shallow

Figure 25. Photos of spot Mountain mineral-
Ization. (A) Open pit with ore body at the bottom

beneath unmineralized tuff (photo by Steve
Young). (B) and (C) Two mineralized carbonate
clasts from lithic tuff in the Roadside deposit illu-
strating the progression in alteration and BeO
contents (cf. Fig.7 in Lindsey et al. 1973). Mineral-
ogy is labeled (qz = quartz, op = opal, fl = fluorite,
ca = calcite), as are appromimate BeO contents,
(B) Partially replaced carbonate nodule from deeper
part of the tuff with calcite core and quartz to opal
outer zones with minor fluorite and bertrandite.
(C) Carbonate clast fully replaced by fluorite-silica-
bertrandite from the upper part of the tuff.
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degassing of a magma without deeper mineralization, or they might have formed by
leaching of the Be-rich Spor Mountain Rhyolite (cf. Wood 1992).

In the same region and of considerable gemological interest are occurrences of
strongly colored, Mn-rich red beryl. These are restricted in occurrence to topaz rhyolites
and were first described from the Thomas Range, Utah (Hillebrand 1905). In that area,
small (<1 cm) red beryl occurs in gas-phase cavities along with topaz, bixbyite and quartz
in 6-7 Ma rhyolites that overlie the Early Miocene rhyolites related to the Spor Mountain
deposits. South of the Thomas Range, in the Wah Wah Mountains gem red beryl has
been commercially produced from 22-23 Ma topaz rhyolite (Keith et al. 1994;
Christiansen et al. 1997). In the Wah Wah Mountains, crystals exceeding 2 cm in length
occur in cooling joints near the flow tops. Early bixbyite, topaz and silica polymorphs are
followed by red beryl and ultimately kaolin plus mixed layer clays. The beryl is post-
magmatic and is interpreted by Keith and coworkers to form by reaction of Be fluoride
complexes released from the devitrifying rhyolite and subsequently react with feldspar
and bixbyite along the joints. Red beryl also occurs the Sn-bearing rhyolites of the Black
Range, New Mexico (Kimbler and Haynes 1980) which are close in time and space to the
hypabyssal felsic intrusions that are associated with the Iron Mountain skarns and nearby
volcanic-hosted bertrandite deposits (Meeves 1966). Given the small amounts of beryl
present, it appears that these occurrences require no more than local redistribution of Be
from the host topaz rhyolites.

Peralkaline magma-related systems

Sodic amphibole and sodic pyroxene-bearing granites, quartz syenites and nepheline
syenites are associated with several large Be deposits and a number of mineralogically
interesting occurrences (Appendix A). These are uncommon compared to deposits
associated peraluminous and metaluminous igneous systems, likely reflecting the relative
rarity of peralkaline magmas. This diverse group shares styles that range from magmatic
pegmatitic assemblages to low-temperature (<200°C) hydrothermal systems hosted by a
variety of rocks (Table 2; Fig. 4). As such they provide a useful mineralogical
counterpoint to those deposits generated by more aluminous magmas. Consistent with the
overall alkaline compositions, characteristic Be minerals include Na-Ca silicates
(epididymite, chkalovite, leucophanite, milarite, leifite), gadolinite, and the Zn-Mn
members of the helvite group (Table 1). Alteration assemblages in felsic rocks are
dominated by Na(xK)-rich framework and chain silicates commonly with Li micas with
or without quartz. Many of these assemblages can be termed fenites given that the key
alteration minerals are K-feldspar or albite plus sodic pyroxenes and amphiboles. The
local dissolution of quartz, the peralkaline silicates, and the rarity of acid assemblages
provide a striking contrast with analogous post-magmatic metasomatism in peraluminous
and most metaluminous systems (recall that Li-micas are not acid minerals; Eqn. 10).
Carbonate-hosted systems differ less from the metaluminous environment. Fluorite-rich
replacement bodies with or without skarns develop in carbonate rocks with characteristic
Be minerals being phenakite, bertrandite, leucophanite and milarite among others.

In many regions, notably extension-linked alkaline felsic provinces like Nigeria,
Norway and southwestern North America, metaluminous to weakly peraluminous biotite
granites form concurrently with peralkaline aegirine- or riebeckite-bearing granites and
syenites (Fig. 2). Where they coexist in the same igneous centers both peralkaline and
metaluminous rocks may have rare element enrichments. Within the same intrusive suite,
hydrothermal Be deposits more commonly form with the biotite granites, for example as
in Nigeria, the Pikes Peak batholith, west Texas and nearby areas, and Norway (see
Appendix A for references). Nevertheless, magmatic systems that are largely or entirely
peralkaline do host major Be mineralization as described next.
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Peralkline granites. Beryllium mineralization generated by peralkaline granites
ranges from pegmatitic to low temperature hydrothermal, paralleling the spectrum found
in more aluminous systems. The hydrothermal systems have abundant K-feldspar and
albite-rich alteration typically with quartz veining. Sodic amphibole, pyroxene and
fluorides can be present as can be late hematitization and mica-rich greisens. Beryllium
minerals tend to be late and are commonly distal. Zabolotnaya (1977) groups such
deposits into helvite-group or leucophanite-bearing types with feldspathic metasomatism.
Unfortunately, very few deposits are well described.

Feldspathic host rock At the high-temperature end of the spectrum, Nb-Y-F-type
pegmatites and miarolitic cavities are common. For example, pegmatites in the locally
peralkaline granites and quartz syenites from Pikes Peak batholith, Colorado have
phenakite, bertrandite, genthelvite, barylite, and gadolinite in pegmatites containing
quartz, albite, amazonite, and Li-mica (Levasseur 1997; Kile and Foord 1998; cf. Russian
localities: Bazarov et al. 1972; Nedashkovskii 1983). More acid associations containing
muscovite and beryl are relegated to greisen zones in the metaluminous Redskin biotite
granite (last section). In the pegmatitic Strange Lake deposit, Labrador, the original Zr-
Nb-Y-Be concentrations are likely magmatic (Miller 1996). Nonetheless, high-
temperature sodic pyroxene hydrothermal assemblages and moderate-temperature calcic
hydrothermal alteration culminate in hematite-fluorite-Be mineral (leifite, gadolinite,
milarite) assemblages (Salvi and Williams-Jones 1996). This paragenesis parallels the
shifts to calcic assemblages that occur in undoubted hydrothermal systems (see Novikova
1983 and carbonate-hosted systems below).

Even though proximal mineralized pegmatites are common, the best developed Be
concentrations in most of these systems are hydrothermal, late, and distal. Permian-age
fluorite-phenakite-helvite(-gadolinite-milarite-barylite-bertrandite) mineralization occurs
on the outer fringes of a hydrothermal system that is associated with variably porphyritic
riebeckite granites in the Verknee Espee district in Kazakhstan (Belov and Ermolov
1996). These granites have pegmatitic facies and are feldspathically altered adjacent to
proximal Nb-Ta-Zr-REE mineralization. The latter is hosted by K-feldspar-riebeckite-
aegirine-fluoritetquartz veins with albite-riebeckite-aegirine-biotite envelopes in clastic
rocks and tuffs. Hingganite-rich quartz-fluorite-albite-aegirine stockworks with up to
0.15% BeO occur in apical portions of aegirine-riebeckite granites at Baerzhe, Inner
Mongolia (Wu et al. 1996). Analogous albite, fluorite and hematite-bearing styles of
hydrothermal alteration formed with the Be-enriched magmas at the Khaldzan-Buregtey
Zr-Nb-REE deposit in Mongolia (Kovalenko et al. 1995b).

Variations on this style occur in the northern Ukrainian shield, where genthelvite-
and phenakite-bearing Be-Ta-Sn deposits are associated with cryolite-bearing biotite and
riebeckite granites of the Mesoproterozoic Perga complex (Appendix A; Esipchuk et al.
1993; Kremenetsky et al. 2000a). Quartz-K—feldspar metasomatic rocks are common but
greisen-type alteration with late sulfides, siderite and cryolite is also present (Vynar and
Razumeeva 1972). Muscovite-bearing greisens and other acid assemblages in these
systems are rare. Zabolotnaya and Novikova (1983) describe a possible example of more
acid alteration from an wunnamed Mesozoic occurrence in Siberia where
dickitetbertrandite occurs with alkaline granites and quartz syenites in a hydrothermal
system that is otherwise characterized by alteration to typical K-feldspar, albite, hematite,
and fluorite-rich facies.

Carbonate host rock Beryllium-bearing replacement bodies associated with
peralkaline magmatic systems are fluorite-rich. Skarn alteration can be abundant or there
may only be small amounts of calc-silicate minerals present. The calc-silicate-poor
fluorite-bertrandite replacement bodies at Sierra Blanca, Texas and Aguachile, Coahuila
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belong to a continuum with this group because they formed in peralkaline intrusive
centers, even though the most closely associated intrusions are not themselves
peralkaline. Calcic-sodic Be silicates such as leucophanite, meliphanite and milarite are
common in some deposits where they either post-date phenakite or bertrandite or are the
main Be phase (e.g., Novikova 1984).

Ermakovskoe Be-F(-Zn-Pb-Mo), western Transbaikalia, Russia
modified from Kremenetsky et al. (2000a) &
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Figure 26. Cross section through the aegirine-riebeckite granite-related hydrothermal system in the
Ermakovskoe district, western Transbaikal, Russia. Fluorite-bertrandite-phenakite-leucophane
mineralization is distal to and superimposed on garnet-pyroxene-vesuvianite skarns surrounding
Mo-mineralized feldspathically altered alkali granites and granite porphyries (modified from figures
based on the work of V. Gal’chenko presented in Zabolotnaya 1977 and Kremenetsky et al.
2000a).This deposit produced Be in the past (Kremenetsky et al. 2000a).

The best-described skarn-related example is the Ermakovskoe deposit in
Transbaikalia, Russia (Appendix A; Zabolotnaya 1977; Lykhin et al. 2001). This deposit
produced Be ore for the Soviet Union (Kremenetsky et al. 2000a). At Ermakovskoe,
proximal skarns and skarn-overprinting to distal Be-F replacement bodies formed around
and over a Triassic aegirine granite and related syenitic and granitic dikes (Fig. 26). The
intrusion is variably albitized and potassically altered and it contains minor quartz-
feldspar-molybdenite mineralization in its upper portions. REE and Zr are also
metasomatically enriched. Early metasomatism in the sedimentary and igneous host rocks
created K-feldspar-rich assemblages in the aluminous rocks and vesuvianite(beryllian)-
garnet-pyroxene skarns in the carbonate rocks. Beryllium occurs mainly as phenakite
(deep) and bertrandite (shallow) in late dark fluorite-adularia-calcite-ankerite replacement
zones (Novikova et al. 1994). Subsequently, more calcic phases of alteration overprint
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the system to form leucophanite, meliphanite, helvite, milarite and bavenite along with
carbonates and sodic silicates. Fluid inclusion studies document a complex set of high-
salinity, carbonate- and sulfate-rich fluids with Be contents approaching 1000 ppm (Reyf
and Ishkov 1999). Kosals et al. (1974) report additional homogenization data from an
unnamed deposit that closely resembles Ermakovskoe.

In another undisclosed Siberian location, leucophanite-fluorite-K—feldspar-albite
veins and replacements occur in limestones along skarn-bearing contacts with a
riebeckite granite (Kosals and Dmitriyeva 1973). Overprinting these is subordinate
association containing fluorite, Li-mica, danalite, milarite, phenakite and bertrandite.
Alteration in the granites and adjacent clastic rocks is dominated by riebeckite-albite-
quartz and riebeckite-microcline-albite assemblages with Ta-Zr mineralization.
Gadolinite joins leucophanite where rare fluorite veins cut the granite. The fluid
inclusions studied by Kosals and Dmitriyeva (1973) indicate the leucophanite
mineralization occurred between 380 and 490°C from variably saline fluids. In yet
another unnamed deposit related to a aegirine-riebeckite granite, phenakite mineralization
occurs in aegirine-alkali feldspar fenites and later fracture-controlled quartz-hematite-
phenakite mineralization (Nedashkovskii 1970).

Fluorite in these systems is commonly dark in color and REE-rich (Hiigi and Roéwe
1970). Textures can be rhythmically banded or sieve-like with Be minerals and feldspars
(Kosals et al. 1974; cf. Fig. 20).

Silica-saturated peralkline volcanic settings. Deposits with peralkaline volcanic
rocks are apparently rare. The best candidate is the Early Proterozoic Brockman Nb-Zr-
Ta deposit, Western Australia (Appendix A) where Be is remobilized into bertrandite-
quartz-carbonate veins in a weakly metamorphosed rare-metal rich volcanic tuff. Other
possible examples include some of the volcanic-hosted bertrandite-fluorite occurrences in
Mongolia (Kovalenko and Yarmolyuk 1995) and the helvite-bearing Shixi occurrence in
China which is associated with hypabyssal dikes of Na-altered Nb-Ta-Zr-F-rich sodic
rhyolite (Lin 1985; Appendix A).

Nepheline sgnites and carbonatites. Hydrothermal Be enrichments may be more
common with undersaturated igneous rocks than is generally appreciated. This is because
the minerals are commonly dispersed in late igneous units or thin veins, they are easily
weathered, and they are typically subtle in appearance. Chemically evolved units in
nepheline syenite complexes commonly contain elevated Be in associated pegmatites,
miarolitic cavities, hydrothermal veins and feldspathized rocks (Ilimaussaq, Mt. Saint-
Hilaire, Lovozero, Khibiny, Oslo graben; Appendix A; Serensen 1997). Where present
(e.g., Mt. Saint-Hilaire, Lovozero), pegmatites can have complex internal structures and
are dominated by albite, natrolite, sodalite with accessory chkalovite, leucophanite, and
epidydimite. In addition, nearly all described systems contain multiple types of quartz-
free metasomatic assemblages that contain albite, aegerine, analcime and other sodic
minerals in both veins and wall rock alteration. Li micas are common whereas muscovite
is absent. The absence of quartz and the scarcity of K-feldspar contrasts with the
hydrothermal features associated with peralkaline granites. Genthelvite, bertrandite,
epididymite, chkalovite, leucophanite are the more common of the large number of
hydrothermal Be minerals present. Beryl forms only where quartz-bearing peraluminous
rocks are cut by Be-bearing veins (Mt. Saint-Hilaire, Horvath and Gault 1990) and
chrysoberyl has been reported in quartz-absent, aluminous(?) xenoliths and veins from
the Khibiny massif (Men'shikov et al. 1999); euclase not reported. These mineral
associations are consistent with the phase relationships presented in Figures 11 and 12.

Geological relationships are well defined in only a few areas. Engell et al. (1971)
describe Be distribution in the Ilimaussaq nepheline syenite complex. Hydrothermal
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enrichments up to 0.1% BeO occur in zones with abundant veins. At Ilimaussaq more
than a half dozen vein types contain combinations of aegirine, arfvedsonite, analcime,
albite, natrolite, sodalite, Li mica, ussingite and other phases. These veins and associated
albite-aegirine-arfvedsonite-natrolite fenites formed above late differentiates (lujavrites:
eudialyte-acmite nepheline syenites) in the intrusion. The latter contain 10-30 ppm Be
(30-80 ppm BeO). Hydrothermal Be minerals include chkalovite, tugtupite, bertrandite,
beryllite among others (Engell et al. 1971; Serensen et al. 1981; Markl 2001). Similar
occurrences are known in the Lovozero and Khibiny complexes of the Kola Peninsula.
Epididymite, leucophanite, chkalovite and many other Be minerals occur in hydrothermal
albite-natrolite-polylithionite-bearing assemblages in pegmatites and veins (Men'shikov
et al. 1999). As at Ilimaussaq, these are preferentially associated with late-crystallizing
lujavrites. At Letitia Lake, Labrador (Appendix A; Fig. 2), epididymite and barylite
constitute up to a few percent of zones with Nb-REE-Zn-bearing alkali-feldspar-rich
veins and fenites in shallow syenitic and trachytic rocks. These hydrothermal zones
contain about 0.4% BeO. In the Khibiny-Lovozero Complex, Kola, isotopic evidence
points to involvement of meteoric waters in the later veins in these otherwise magmatic-
fluid dominated systems (Borshchevskii et al. 1987). The atypical abundance of
hydrothermal quartz in the syenite-related deposit at Thor Lake, Canada (Fig. 16;
described with magmatic deposits) may reflect the local granite host or a hidden quartz-
bearing intrusion or simply the cooling of magmatic fluids to low temperatures.

Hydrothermal occurrences in carbonate host rocks are apparently rare. A plausible
candidate is at Hicks Dome in southern Illinois where Paleozoic carbonate rocks host
bertrandite-bearing fluorite mineralization (Baxter and Bradbury 1980; Kogut et al.
1997). The latter centers on breccias are linked to alkaline magmatism, possibly a
carbonatite. Mineralization is interpreted as due to mixing of F-rich magmatic fluids with
basinal brines (Plumlee et al. 1995).

Overall, relatively few reported Be enrichments occur with carbonatite complexes,
even those with fluorite mineralization. At Muambe, Mozambique massive Y-LREE
bearing fluorite with up to 1% BeO replaces the marginal parts of a carbonatite complex
adjacent to K,O-rich fenitized shallow breccias (Appendix A). In the Magnet Cove,
Arkansas, carbonatite complex, Erickson et al. (1963) found Be enrichments in late,
thaumasite-bearing hydrothermal veins. At several other localities, Be enrichments occur
in carbonatite-bearing alkaline complexes, but are most likely related to associated
peralkaline syenites or granites. Barylite occurs in REE-Zr-Th-bearing fenitized rocks
adjacent to nepheline syenites and carbonatites at Vishnevogorskii in the southern Urals
(Zhabin and Kazakova 1960; Zhabin et al. 1960; Kogarko et al. 1995). Up to 0.6% BeO
is reported with Zr-Y-Th-U-HREE breccia bodies associated with carbonatite dikes in the
Coldwell alkalic complex, Canada, but are inferred by Smyk et al. (1993) on the basis of
REE and rare metal enrichments to be derived from nearby felsic rocks.

Igneous-related emerald deposits

Although amagmatic origins for emeralds are clearly established in some deposits
(e.g., see Giuliani et al. 1997, Franz and Morteani, this volume), most investigators link
the majority of emerald deposits to metasomatism driven by granitic magmatism (Fig. 27,
Appendix A; Kazmi and Snee 1989a; Sinkankas 1989). In the latter group, emerald forms
where berylliferous granitic pegmatites or granite-derived quartz-mica-feldspar veins
intersect Cr(+V) bearing host rocks. Most such host rocks are ultramafic or mafic in
composition. The emerald-bearing veins and dikes typically have complex contact-
parallel quartz-poor metasomatic zones which are dominated by biotite(-phlogopite),
other Mg(-Ca) sheet silicates, amphiboles, and plagioclase (Figs. 28, 29). Phenakite and
chrysoberyl can accompany emerald mineralization in ultramafic rocks (Fig. 14).
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Figure 27. Global distribution of emerald and vanadian beryl deposits by geologic type. Compiled
from Kazmi and Snee (1989a) and other sources. See text for discussion of and uncertainties in
classification.

Mineralogically, these emerald-bearing systems have many parallels with apocarbonate
greisens reflecting formation in analogous silica-poor, Mg-Ca rich hosts. In contrast to
the ultramafic and mafic-hosted Cr-rich types, vanadian green beryls (V > Cr) typically
form in pelitic rocks which have higher V/Cr than most mafic and ultramafic rock (Fig.
27). As many workers have pointed out, the rarity of emerald stems from the infrequent
pairing of a beryl-forming environment with rocks that contain significant Cr. That said,
many areas have this juxtaposition, yet lack reported emeralds and thus should be
prospective for them.

Few emeralds form with metaluminous granitoids. Perhaps the only significant
examples are the greisen-affiliated deposits related to the Nigerian Younger Granites
(Abaa 1991; Schwarz et al. 1996). Syenitic occurrences are virtually non-existent because
beryl does not form in these systems except where pelitic host rocks become involved
(e.g., V-bearing “emerald” at Eidsvoll, Norway; ordinary beryl in hornfels at Mt. Saint-
Hilaire, Quebec). Most deposits arise from peraluminous biotite and biotite-muscovite
granites; this connection likely reflects the elevated Al,Os activities that are required to
make beryl (Fig. 12). Within this last group, emerald occurs with multiple magma and
vein types. Genetically related granites and pegmatites can be chemically specialized as
indicated by associated Li, Ta or Sn minerals (e.g., Hiddenite, North Carolina; Poona,
Australia; some Brazilian and Egyptian deposits), however many of the better
documented examples are associated with mineralogically simple granites and related
veins (Reft River, Russia; Khaltaro, Pakistan; Egypt; Carnaiba and Socoto, Brazil;
Crabtree, North Carolina; cf. Giuliani et al. 1990).

Figure 28 (opposite page). Zoning in igneous-affiliated emerald deposits showing the diversity of
source units (quartz veins, aplitic and pegmatitic dikes. felsic schist) and host rocks (silica-rich and
silica-poor ultramafic and mafic compositions). For several of these occurrences metamorphic
origins that long post-date magmatism have been proposed (Habachtal, Gravelotte, Franqueira,
Sekeit; also see discussion under metamorphic occurrences). Compiled from sources listed on the
figure.
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In both ultramafic and mafic rocks, emerald crystals form both within hybridized
veins and dikes and in their biotite-rich envelopes (Fig. 28). Veins typically show
evidence of reaction with the country rock and can be dominantly quartz or mica
(phlogopite or muscovite) or plagioclase with a wide-variety of additional minerals
including K-feldspar, tourmaline, fluorite, molybdenite, and scheelite. Pegmatitic dikes
are variably metasomatically modified (“desilicated”), typically expressed by lack of K-
feldspar, abundance of plagioclase and diminished amounts of quartz. This process may
take place concurrently with emplacement or during later metamorphism, as can
generation of the common (though not universal) mineral foliations. Where intense
chemical exchange between the host and incoming fluids has affected the entire mass it
may be impossible to tell if the causative fluids were magmatic or hydrothermal.
Aquamarine and common beryl may be present in the less reacted interiors of pegmatites
and veins, whereas emerald is most common in enveloping zones of metasomatic
biotitetplagioclase+quartz.

In peridotites or serpentinites, outer metasomatic zones consist of chlorite, talc,
actinolite plus other amphiboles and they commonly contain minor chrysoberyl
and phenakite. These “blackwall” assemblages are similar to those found worldwide at

Reft River emerald-bearing veins & desilicated pegmatites, Ural Mtns, Russia
modified from Fersman (1929) as reproduced in Sinkankas (1981)
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Figure 29. Geology of the Reft River, Urals, Russia emerald deposits. (A) Regional
geology showing distibution of emerald deposits in mafic to ultramafic metamorphic
rocks adjacent to two-mica granite plutons. The deposits themselves are localized by
dikes and veins from the granites. (B) Cross-section of an exposure with emerald and
common beryl occurring adjacent to desilicated pegmatites. These form an apparent
continuum with emerald-bearing quartz and/or albite veins (Beus 1966, p. 236-244). Both
A and B redrawn after figures from Fersman (1929) as illustrated in Sinkankas (1981).
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contacts between felsic and ultramafic rocks (e.g., Coleman 1966). Outer zones in
ultramafic hosts may be relatively siliceous, for example with talc-bearing assemblages
(Gravelotte), however serpentine or olivine bearing silica-undersaturated assemblages are
more common. These silica-poor rocks have the best-developed chrysoberyl and
phenakite which form in the intermediate to outer metasomatic zones (Beus, 1966) and
may in turn be overgrown by emerald (e.g., Martin-Izard et al. 1995; Fig. 28). Desilicated
units can also contain rare Be minerals including bromellite (Klement'eva 1970), bavenite
(Kutukova 1946), and epididymite and milarite (Cerny 1963). Surinamite, which replaces
chrysoberyl+talc at high-pressure (Holscher et al. 1986), may represent the high pressure
or metamorphosed equivalent of lower-pressure blackwall assemblages.

One of the better-studied ultramafic-hosted districts is along the Reft River in the
Ural Mountains in Russia where pegmatites and veins derived from Devonian two-mica
granites cut Paleozoic serpentinites (Fig. 29A). Emeralds are associated with both quartz-
feldspar-mica pegmatites and mica (muscovite/phlogopite/margarite), plagioclase-mica,
and quartz-albite veins (Beus, 1966; Vlasov, 1968). The mica-rich varieties have been
termed “glimmerites.” Metasomatic zoning is typical of the class and is similar around all
varieties of veins and dikes—inner biotite to intermediate actinolite-chlorite to outer talc
zones (Fig. 29B). Emeralds are concentrated in the biotite-rich rocks whereas phenakite
and chrysoberyl are more distal. Some of the world’s finest chrysoberyl (variety
alexandrite) comes from the intermediate zone in these mines. Egyptian, Brazilian, South
African and Australian occurrences (Appendix A; Figs. 27, 28) are similar. The common
presence of fluorite and F-bearing micas suggests that the Mg-Ca-rich host rocks
triggered F precipitation, which may have led to the precipitation of Be and Al from
solution to form emerald, chrysoberyl and other minerals (e.g., Soboleva et al. 1972).

In contrast to the multiple metasomatic zones present in ultramafic host rocks, mafic
rocks commonly develop only a biotite-rich envelope between the central veins or dikes
and the host (Fig. 28). This likely reflects the higher activities of SiO, and CaO and a
lower activity of MgO in mafic rocks (Fig. 14). For example, at Khaltaro, Pakistan
emeralds formed at the contact between mafic amphibolites and young (~9 Ma)
greisenized and albitized leucogranites (Fig. 30; Laurs et al. 1996). These include
emeralds formed in the outer plagioclase-rich margins of aquamarine-bearing albite-
quartz-muscovite veins and, rarely, in and around tourmaline-bearing simple pegmatites
(Fig. 30). From whole rock analyses and modal mineralogy Laurs et al. (1996) deduced
that the addition of F, alkalis and other elements to the amphibolite drove reactions
making fluorite and biotite which in turn released the Cr and Fe needed for emerald
formation.

Although magmatic-hydrothermal origins are well established in many areas,
emerald paragenesis remains controversial in some regionally metamorphosed settings
where igneous bodies are present. The dilemma stems from the fact that many
occurrences are small bodies that could originate either (1) through local bimetasomatic
exchange by intergranular diffusion over the relatively long times available during
regional metamorphism or (2) by infiltration+diffusion metasomatism generated during
shorter lived magmatic / hydrothermal events. In many areas a regional metamorphic
overprint is absent and there is unambiguous evidence for magmatic conditions and
geochemical signatures. Oxygen isotopic data can discriminate between some igneous-
related systems and others of sedimentary or metamorphic origin (Fig. 31; Giuliani et al.
1997). These differences have been used with great success by Giuliani et al. (2000a) to
deduce global sources and trading patterns in jewelry. For example, their results show
that distinctive '*O-enriched sedimentary-sourced Colombian emeralds spread throughout
Europe within a decade of the discovery of the New World. In many cases, however, it is
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Figure 30. Khaltaro, Pakistan emerald
deposit associated quartz veins and peg-
matites from muscovite-biotite leucogranite
intruding amphibolites (Laurs et al. 1996).
(A) Sketch of relationships between quartz
and albite vein. Modified from Laurs et al.
(1996). (B) Photograph of emerald-rich
sample from the margin of a quartz vein
adjacent to the amphibolite. Note that the
high abundance of beryl (emerald) far
exceeds melt solubility and must be
hydrothermal. Photo provided by Brendan
Laurs.
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not clear if one mechanism or the other dominates or if both are involved (e.g.,
Gravelotte, Franqueira, Seikeit; Appendix A). Other tests might help resolve the mode of
origin of some deposits, for example, determining the extent of mobility of Al or accurate
dating of intrusions, metamorphism and emerald formation. Unfortunately, for many
emerald occurrences, these are not well documented and clearly merit further
investigation. In the next section we turn to those deposits where non-magmatic origins
are clearly indicated.
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NON-MAGMATIC OCCURRENCES

Non-magmatic processes are involved in many Be mineral occurrences, both in their
genesis and in their subsequent modification. Local Be enrichments are noted in a varied
group of Fe-Mn-oxide-rich rocks. Hydrothermal deposits related to sedimentary and
metamorphic fluids comprise an important group of emerald deposits, notably the basin-
related Colombian emerald deposits. Metamorphic and surficial processes redistribute Be
through local concentration, mineralogical transformations, and placer processes. Some
of these can be important gem sources—especially metamorphic emerald deposits and
placer deposits of aquamarine and other materials.

Fe-Mn(-Zn) oxide-rich occurrences

A handful of Fe-Mn(+Zn)-oxide-rich rocks contain Be minerals or moderate Be
enrichments. These occurrences clearly contrast with the obviously igneous-linked Fe /
Mn associations discussed earlier which typically have magnetite-fluorite-helvite or
sulfide-bearing helvite-Mn-carbonate/silicate+fluorite assemblages. The oxide-rich
systems occur in supercrustal rocks of both sedimentary and volcanic origin; the role of
igneous activity in their generation is problematic (Grew, this volume). The best-known
example is the metamorphosed deposit at Langban, Sweden (Moore 1970) which
contains twelve Be minerals (Introduction, this volume). Similar rocks at Franklin, New
Jersey (Palache and Bauer 1930) may have a granitic source for their Be. Miscellaneous
locations include helvite with Mn-rich jaspers in the Pyrenees Mountains (Ragu 1994b),
bergslagite and other Be enrichments with Mn-Fe oxide layers in Switzerland (Graeser
1998; Brugger and Gieré¢ 2000), and milarite with Mn oxide deposits in New South
Wales (Kawachi et al. 1994). Mn-Fe-oxide-rich hot spring deposits in Nevada (Golconda,
Sodaville) contain up to 60 ppm Be (160 ppm BeO) along with W and other metals
(Warner et al. 1959). Zasedatelev (1973) suggested that similar materials occur
elsewhere. Beyond a common oxide-rich, sulfide-poor geochemistry, it is not obvious
that they share a common genesis.

Basinal (and metamorphic?) brine-related emerald deposits

Beryl, mainly emerald with minor aquamarine, is known from several areas around
the world that share moderate temperatures of origin, saline fluids, high 8'°0, and a lack
of associated igneous rocks (Appendix A; Figs. 27, 31). Of these, the Colombian emerald
deposits are seemingly unique in their geology as they are in the size, quality and number
of emeralds produced. In all of these deposits, the concentration of beryl is low and most
authors infer that Be is derived by local concentration from the wall rocks (see also Franz
and Morteani, this volume).

Emerald deposits in Colombia are hosted by Cretaceous siltstones, sandstones and
shales and occur in two belts, one west and one east of Bogota (Fig. 32). The clastic host
rocks belong to a Mesozoic sedimentary basin that contains marine evaporites.
Mineralization in the western belt formed during Oligocene compression whereas
mineralization in the eastern belt formed in the latest Cretaceous during an extensional
episode (Cheilletz et al. 1994; Branquet et al. 1999). Beryl (mainly emerald, rarely
aquamarine; euclase occurs at Chivor) occurs in gash veins with carbonate, quartz, albite,
pyrite and other minerals in fractured, brecciated, variably albitized rocks (Fig. 33; Beus
1979; Cheilletz and Giuliani 1996). Grades are extraordinarily low (Fig. 3): probably <10
ppb gem emerald, and well under 100 ppb emerald overall even though the rocks
themselves contain 500-5000 ppb Be (Feininger 1970; Kozlowski et al. 1988).

Fluid inclusion studies show that the mineralizing fluids contained up to 40 wt %
NaCleq and were between 250 and 400°C (Kozlowski et al. 1988; Cheilletz et al. 1994;
Giuliani et al. 1995, 1999; Banks et al. 2000). Stable isotopic studies of beryl and gangue
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Figure 32. Geologic setting of the Colombian emerald districts. (A) Regional geology
showing distribution of emerald districts in thrust belts surrounding inverted Cretaceous
basin. Emerald deposits on the eastern side are latest Cretaceous in age and formed
during extensional faulting, whereas on the western side they are localized by Eocene-
Oligocene thrust and tear faults (Branquet et al. 1999). (B) Sketch of geologic
relationships in the Muzo area showing correlation with compressional structures. Both
figures redrawn from Sinkankas (1981).

Figure 33. Front view (A) and side view (B) of
emerald-rich quartz-albite-pyrite veins cutting at high
angles across albitized siltstone from Chivor(?),
Colombia. Albitization is common in the Colombian
emerald districts with concomitant redistribution of Be,
Cr and other components (Beus 1979; Cheilletz and
Giuliani 1996). Photo and specimen courtesy of Frank
Mazdab.

minerals indicate a basinal brine source with high 5'%0 (16-25%o; Fig. 31) and sulfate
reduction form sulfur to form pyrite. Hydrogen isotope ratios and fluid inclusion
compositions indicate that two fluids were involved, a basinal brine and another, perhaps
surface-derived fluid (Banks et al. 2000; Giuliani et al. 2000b). Basinal fluids are now
generally accepted as the key ingredient in order to react with the host sedimentary rocks
mobilizing the Be and Cr (£V) required to form emerald (Beus 1979; Ottaway et al.
1994; Giuliani et al. 1999) perhaps with deposition due to mixing with a second calcium-
bearing fluid (Banks et al. 2000). Local redistribution of Be by breakdown of Fe-Mn
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hydroxides (Giuliani et al. 1999) or organic matter (Ottaway et al. 1994) is plausible, but
not required.

Several other beryl occurrences have possibly analogous origins with basinal or
metamorphic brines. In Uintah region of northeastern Utah, a single emerald crystal is
reported from carbonate-rich veins that cut black shales and that have a basinal brine
signature (Keith et al. 1996; Olcott et al. 1998). Gem beryl (aquamarine and emerald)
occurs in the magnesite deposits of Brumado, Bahia, Brazil where it occurs with uvite,
dolomite and topaz in quartz veins (Bodenlos 1954; Cassedanne and Cassedanne 1978).
A Dbasinal or metamorphic origin is conceivable given the association with bedded
magnesite (which is commonly of basinal brine origin) and the lack of directly associated
granitic bodies. A third candidate for basinal origin is the Mingora and nearby emerald
deposits of the Swat district, Pakistan where beryl-carbonate-quartz veins cut ultramafic-
bearing metamorphic rocks (Kazmi et al. 1989). Oxygen isotope ratios from Mingora are
relatively high (Arif et al. 1996) and could indicate fluids either cooled from an S-type
leucogranite or from a metamorphic or sedimentary source. Fluid inclusions reveal that
temperatures ranged from 250° to 450°C and that the fluids contained <0.03 mole
fraction of CO,+CH,4 with salinities up to 20 wt % NaClq (Seal 1989). From these results
Seal (1989) inferred that fluid mixing may have contributed to beryl deposition. Some
Afghanistani deposits (e.g., Panjsher) that lie westward along the Indus suture share
many of the characteristics that are compatible with a sedimentary or metamorphic brine
origin (Kazmi et al. 1989; Giuliani et al. 1997; Fig. 31). Nwe and Morteani (1993)
interpret similar brines that occur late in the paragenesis of the Gravelotte, South Africa
emeralds to be of metamorphic origin and to be linked to the most Cr-rich crystals.

Metamorphic occurrences

A number of Be mineral localities, notably some emerald deposits and “alpine
clefts,” occur in regionally metamorphosed rocks and lack evidence for magmatic
involvement (Figs. 2, 27). Their origins are attributed to local redistribution and in some
cases by introduction of new material during metamorphism.

Shear pne or metamorphic emeralds. Based on studies in the Alps and other
regions Morteani, Grundman and coworkers have recognized that a number of emeralds
and related minerals show compelling evidence for growth during regional meta-
morphism (Morteani and Grundmann 1977; Okrusch et al. 1981; Grundmann and
Morteani 1989; Appendix A, Fig. 27). These occurrences have been termed metamorphic
or shear zone deposits (Grundmann and Morteani 1989) and in some reviews they are
combined with other non-magmatic deposits (Giuliani et al. 1998). Shear zone deposits
resemble many igneous-related emerald deposits. Both types have emerald+phenakite
+chrysoberyl in biotite-rich zones in metaultramafic and metamafic rocks. Although the
biotite-rich zones commonly form at the contact with felsic lithologies, this is not always
so. Textures show that beryl overgrows other metamorphic minerals, in some cases with
curving inclusion trails clearly demonstrating synkinematic growth (Morteani and
Grundmann 1977; Grundmann and Morteani 1989). As described above, these emeralds
contain more Fe and Mg than most other types (Fig. 6).

At Habachtal, Austria emerald formed at the contact of metaperidotites and felsic
gneisses. Pegmatites and quartz veins are absent, but the felsic gneisses contain ample Be
to form the emeralds (Okrusch et al. 1981; Grundmann and Morteani 1989). There and
elsewhere in the Tauern Window Mg-Fe-Na-rich beryl grew relatively late in the
metamorphic history, commonly on preexisting phenakite (Franz et al. 1986). Fluid
inclusions have moderate salinities and CO, contents consistent with a metamorphic fluid
(Nwe and Grundmann 1990). Similar deposits that lack closely associated igneous rocks
occur in Afganistan, Pakistan and Brazil (Kazmi and Snee 1989a; Giuliani et al. 1990).
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These systems commonly have CO,-bearing inclusions and non-magmatic oxygen
isotopic values that are consistent with metamorphic origins (Giuliani et al. 1997, 1998;
Fig. 31).

More controversial are deposits associated with pegmatites, veins and granites where
Be was likely introduced as part of an igneous event, but emerald formation may
significantly post-date magmatism. These include the deposits at Gravelotte, South Africa
and Franqueira, Spain (Appendix A; e.g., Franz et al. 1996; Martin-Izard et al. 1996).
Although textural and isotopic evidence can be compelling for metamorphic growth, the
question of origin arises because available evidence does not necessarily preclude coeval
magma emplacement. Synkinematic intrusion accompanied by progressive growth of
metasomatic zones could lead to similar beryl overgrowth of phenakite during
deformation. Conversely, metamorphism of pegmatitic or vein systems could drive
additional local metasomatic exchange and emerald growth.

Alpine clefts. Of mineralogical interest only, alpine clefts comprise metamorphic
gash veins and a variety of igneous-related cavities and veins, all of which can contain
minor accessory Be phases (Appendix A; Stadler et al. 1973; Graeser 1998). Although
the term “alpine cleft” has been widely applied to open-space mineral occurrences in
other parts of the world (cf. Cook 1998), in order for it to be petrologically useful it
should be restricted to types analogous to those seen in the Alps, especially the open-
space metamorphic gash veins. The metamorphic occurrences represent a distinct
environment for local concentration of Be where phenakite, milarite, bavenite and other
minerals accompany quartz, chlorite, adularia, and hematite in open cavities that formed
in moderate grade metamorphic rocks of felsic composition (Graeser 1998). Isotopic and
fluid inclusion evidences indicate local metamorphic sources for Alpine-type veins
(Luckscheiter and Morteani 1980; Mullis et al. 1994; Henry et al. 1996). In some ways
this is analogous to the processes inferred for the Habachtal emerald deposits (above;
Okrusch et al. 1981). In contrast to the phenakite, milarite assemblages of metamorphic
clefts, the numerous Alpine igneous-hosted localities contain beryl, bazzite, bavenite,
gadolinite and a variety of other minerals. The latter occur in aplites, miarolitic cavities,
pegmatites and granite-related quartz veins of both Hercynian and Alpine age (Hiigi and
Rowe 1970; Pezzotta et al. 1999). Even among these occurrences, some may be primarily
metamorphic in origin. The host felsic biotite granitoids that have modest Be enrichments
in their differentiated phases (Hiigi and Rowe 1970).

Weathering and placers

With the exception of some placer settings, Be minerals are typically dispersed
during weathering and sedimentary processes (Grigor'yev 1986). Local increases in soils
can occur where Be dispersed in rock-forming minerals concentrates in montmorillonite
or, more rarely, oxides and hydroxides during weathering (Sukhorukov 1989). For the
most part, however, Be concentrations are diluted except when particularly stable Be
silicates are present.

Beryllium minerals in the BASH group typically resist weathering and thus they
occur in placer deposits. Alluvial deposits, particularly in Sri Lanka and related
Gondwanan occurrences, are major sources of gem aquamarine, chrysoberyl and
taaffeite-group minerals (Menon and Santosh 1995; Dissanayake et al. 2000; Shigley et
al. 2000). These materials can be of unusually high quality because alluvial processes
preferentially remove damaged (flawed) parts of crystals (Sinkankas 1981). Even in the
world class Sri Lanka gem placers Be contents estimated to be 1 to 13 ppm comparable to
or only slightly enriched over the local crust (Rupasinghe et al. 1984; Rupasinghe and
Dissanayake 1985).
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Supergene concentration is unimportant (Grigor'yev 1986). Local concentrations in
soils, stream sediments and plants mainly represent residual accumulation and subsequent
dispersion during weathering of hypogene mineralization (Sainsbury et al. 1967,
Grigor'yev 1997). Beryl, phenakite and chrysoberyl typically do not weather; however,
several Russian studies (Ginzburg and Shatskaya 1964; Novikova 1967; Grigor'yev
1997) have shown that beryl and phenakite can break down during weathering of pyrite-
and fluorite-rich rocks. In their examples, the products are Be-enriched clay minerals and
secondary phosphates such as herderite and moraesite. The authors interpret the process
to be one of acid attack by sulfate and fluoride bearing supergene fluids. Given that the
association of sulfides, fluorite and Be minerals is common, this process should be fairly
widespread. Bacterial enhancement of weathering might also be important. Experiments
show that bacteria can increase dissolution rates of helvite, beryl and chrysoberyl by
factors of 5 or more without apparent Be toxicity to the bacteria (Mel'nikova et al. 1990).
Large supergene accumulations are not reported, but minor upgrading might be expected
where F-bearing acid groundwaters flow from Be-bearing rocks into mafic or carbonate
rocks.

In contrast to the BASH group, other Be minerals such as those in the helvite,
gadolinite and Na-Ca-silicate groups weather readily (Grigor'yev 1986). They react under
near-surface oxidizing and weakly acid conditions to produce clays, oxides and some
secondary silicates. Supergene changes are more widely reported in alkaline rocks, for
example on the Kola Peninsula where hydrothermal chkalovite, epidydimite and
eudidymite weather to produce beryllite, bertrandite and other phases (Vlasov et al.
1966). These authors report no supergene enrichment.

SYNOPSIS OF DEPOSIT CHARACTERISTICS AND ORIGINS

In contrast to pegmatitic deposits of Be, which are widely distributed in time but of
rather limited geological variability, non-pegmatitic deposits are mainly Phanerozoic in
age and are geologically diverse (Figs. 2, 4; Appendix A; cf. Rundkvist 1977;
Zabolotnaya 1977). This diversity is all the more remarkable given the ready substitution
of Be into many rock-forming minerals at crustal abundances and the overall ineffective
concentration of large amounts of Be by crustal processes. The largest districts contain no
more Be than that in a few cubic kilometers of granite or rhyolite (cf. Fig. 3) in contrast
to deposits of many other elements (e.g., Cu, Au, Mo) which require 10s to 100s of km’
of crustal source materials. This section summarizes the key patterns in deposit
characteristics at global and system scales. These patterns can readily interpreted in terms
of experimentally determined Be mineral stabilities and well-known geologic processes.
Ultimately, non-pegmatitic Be mineral occurrences form either (1) by concentration of
Be during magmatic or hydrothermal processes, or (2) by local redistribution of Be
during metamorphic or sedimentary processes.

Global-scale patterns

With geologic setting. As reviewed by others (e.g., Strong 1988), chemically
evolved felsic magmas and related mineralization form in a wide variety of
environments. Examples with prominent Be deposits (Fig. 2) include convergent margin
compressional settings (e.g., the circum-Pacific Mesozoic), collisional to post-collisional
transpressional to transtensional (e.g., the Indus suture, European Hercynian, Urals and
central Asia), to extensional environments in rift or continental extensional environments
(e.g., Norway, Niger-Nigeria, US-Mexico Cenozoic, Proterozoic alkaline systems across
Laurentia). Amagmatic deposit types—whether metamorphic, basin-related or placer—
require orogenesis to drive material transport via fluid flow (Colombian emeralds, Alpine
clefts) or local diffusion and recrystallization (shear zone type emeralds, granulite-



654 Chapter 14: Barton & Young

sourced placers). Thus, all these settings generally share the requirement of relatively
thick continental crust, which is needed for generation and differentiation of the diverse
felsic magmas required for igneous-related deposits or for the crustal thickening required
to drive regional metamorphism.

Other contributing factors to regional patterns are less well understood. For example,
felsic magmatism and lithophile element (Sn-W-Mo-F-Zn) systems are far more
widespread than documented Be mineralization. Provincial differences are striking:
Southwestern North America has many Be deposits ranging in age from Mesoproterozoic
to Cenozoic, yet is devoid of economically important Sn deposits. Conversely, the major
Bolivian and Thai-Malaysian Sn provinces lack major known Be occurrences. Could
crustal characteristics (thus inheritance) be important as may be the case for elements like
Sn? There seems little compelling reason to think so, given that ample Be is present in
most felsic igneous rocks; however, other petrogenetic factors could be key to generating
a favorable geologic environment (e.g., shallow F-rich hydrothermal systems or a
distinctive differentiation path). Of course, worldwide patterns of Be mineralization are
poorly known due to the lack of systematic Be exploration.

Over geologic time. Examination of Appendix A and Figure 2 shows that non-
pegmatitic Be deposits are mainly Phanerozoic in age (cf. Rundkvist 1977; Zabolotnaya
1977) and in this respect resembles the temporal distribution of other types of intrusion-
related and epithermal mineral deposits (Meyer 1981). Most major occurrences are
younger than 350 Ma with the prominent exception of Proterozoic alkaline-related
deposits in Canada and eastern Europe. This age distribution reflects the preservation
potential of the generally shallow crust in which Be deposits form and the typically thick
and thus elevated crust. Preservation of volcanic and subvolcanic levels is not expected
for these environments any more than it is in other epizonal terrestrial mineralization
(Meyer 1981). Thus volcanic and hypabyssal systems are most common in the late
Mesozoic and Cenozoic, whereas deeper-seated varieties make up most older systems.
The increased proportion of alkaline-related systems with age may reflect preservation by
the crustal extension that typically accompanies alkaline magmatism (cf. Barton 1996).

Principal episodes of Be mineralization are in the Proterozoic (1.6-1.0 Ga; Laurentia,
Brazil), Devonian to Carboniferous (western Europe, Ural Mountains through the
Altaides into eastern Asia; Tasman belt), the late Mesozoic (180-65 Ma; northern circum-
Pacific, east-central Asia; Nigerian rift; Colombia eastern belt), and the later part of the
Cenozoic (35-5 Ma; western Colombian emeralds, southwestern North America, Indus
suture, Alps). Other times can be regionally significant: for example, the Pan African
(Late Proterozoic to early Paleozoic; Arabian-Nubian shield, eastern Brazil). Even within
individual episodes the nature of the systems is diverse, as exemplified by the Cenozoic
examples in southwestern North America. Thus, apart from the clear influence of
preservation on the temporal distribution and the control exerted by magma types
reflecting the pulse of orogenesis, the evidence shows that Be deposits have neither a
compelling temporal progression nor a discernable global synchronicity.

System-scale patterns

Geological characteristics. As emphasized by the organization of this review, the
most distinctive features of igneous-related Be systems are their felsic, F-rich character,
and the systematic variation of mineralogical characteristics that reflect the variation in
igneous compositions from peralkaline to strongly peraluminous and from quartz-rich to
quartz-undersaturated (Table 3; Fig. 5). Non-magmatic deposits are much less common.
Many of the latter have evidence for local, wall-rock sources of Be. Consequently, very
few of them represent large mass accumulations of Be, even though some comprise major
gem deposits (e.g., Giuliani et al. 1999).
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Table 3. Synopsis of the paragenesis of Be minerals in non-pegmatitic occurrences.

Mineral associations , P
Occurrence tpe & abundance' Time-space distribution
Magmatic
Li-Cs-Ta (LCT) magmas o minor Brl (or Hrd) with Qtz, alkali e late magmatic phase
feldspar, Li micas
Muscovite(-beryl) granites  |® minor Brl e late magmatic or post-magmatic
in vugs and fractures
Nb-Y-F (NYF) miarolitic o minor Ph, Gad etc. with Li-Fe micas, e post-magmatic
pegmatites alkali feldspars
Syenites o dispersed in rock-forming minerals in late |® late magmatic phase or post-
differentiates; rare Chk, Epd, etc. in magmatic
pegmatites
Magmatic-Hgrothermal
Strongly peraluminous
Li-Cs-Ta-F-Sn (LCT o rare Brl or Hrd in Qtz-ToztMs greisens |e early, proximal
magmas) or albitization
Sn (-W) (Bt+Ms granites) o feldspathic host: (1) Brl-Ab-Ms-FI; (2)  |e (1) proximal (outer parts of
Brl(-Brt-Euc) in Qtz-Ms-Fl+Toz+Tur intrusion), relatively early; (2)
veins; (3) uncommon Brl-Qtz-feldspar intermediate position and time;
early and proximal
e carbonate host: (1) Ch-Ph / Brt in FI- ¢ both groups typically post-date
mica+Dsp veins; (2) Hlv / Dn-Fl+Mag- and can be distal to Fe-rich
silicate replacement garnet skarns; sulfides later
W-Mo (Bt+Ms granites) o feldspathic host: (1) Brl common in Qtz- |e (1) early, proximal veins with

feldspar(-mica-WI1f-Mo) veins; (2) Brl- central Brl; (2) commonly at
Ab-Ms-Fl; (3) Brl(-BrttEuc) in Qtz-Ms- intrusion margins, intermediate
Fl+Toz veins; sulfide-Brt- Fl-carbonate timing; (3) intermediate in time
veins & position, Brl commonly distal;
(4) late or distal

e carbonate host: (1) Brl-Ph or Brt in Fl- ¢ (1) intermediate to late, can

mica veins; (2) Ph-Brt-FI-Kfs-Qtz- overprint in Grt-Px-Ido skarns;
carbonate veins and replacements (2) distal may or may not be late

o ultramafic/mafic host: Brl(emerald)-Ph- |e Brl is central, other Be minerals
Ch with Bt-P1+Qtz are distal

Metaluminous-weakly peraluminous

Mo(-W-Sn) (Bt granites & |e feldspathic host: (1) Brl, Ph, Brt or Hlv in | (1) Be intermediate to late &
rhyolites) Qtz-Toz+Li-Fe mica or Kfs greisen veins;| distal; (2) late, proximal?
(2) Gnt-Brt-Qtz-Hem veins
e carbonate host: (1) Hlv or Ph with FI- ¢ (1) Be minerals late & typically
Mag-K-silicates; (2) Brt-FI+Qtz +clay distal after andradite-rich skarn;
replacement (2) distal, timing uncertain,
skarn absent
e volcanic host: (1) Brt-Fl-silica-Kfs-clay- |e (1) distal, overall timing
carbonate; (2) red Brl-Qtz-Mn-Fe oxides | uncertain; (2) intermediate
timing during cooling of flows
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Peralkaline

Nb-REE-Y-F (aegirine-Rbk
granites & rhyolites)

o feldspathic host: Gad-Ph-Hlv-alkali
feldspar -Qtz+Li mica Rbk+Mag
metasomatism

e carbonate host: (1) Ph-Brt-Lph-FI1-Kfs-
Qtz replacement; (2) Brt-Fl-clay+Kfs
replacement

¢ proximal (pegmatitic) to distal
(replacement) timing variable;
proximal Nb-Ta-REE

o (1) distal to / overprint Grt-Px
Ido skarns; (2) distal in low-T
shallow settings

Nb-REE-Y (undersaturated
syenites)

o feldspathic host: (1) Eud-Bar-alkali
feldspar-Na amphibole; (2) Epd-Lph-Chk
etc.-Ab-Anc£Sdl (3) FI-Brt replacement

o (1) position & timing unclear;
(2) intermediate to late in host
intrusion; (3) distal, timing

unknown

Non-magmatic

Fe-Mn-oxide e rare, mainly non-silicates o discrete Be minerals are late

e sparse Brl £Euc) in Qtz-carbonate-
feldspar-Py veins

Brines / basinal &
metamorphic

e with main vein-forming event,
temporal pattern uncertain

o shear zone: Brl(-Ph-Ch) with Bt(-Tlc-
Act-Chl-Pl)

e near felsic contacts; syn-or post-
Metamorphic deposits peak metamorphism; some could
be syn-magmatic

e Alpine cleft: Ph-Mil-Qtz-Chl-Kfs-Hem  |e post-peak metamorphism

o minor Brl, Ch etc. in placers with other
resistant minerals

¢ in alluvial systems downstream

Surficial deposits : "
from pegmatite/granulite sources

' Mineral abbreviations after Kretz (1983) or as in Table 1. Feldspathic hosts include granitoids and clastic
sedimentary rocks.

As shown in Figure 34, a salient feature of non-pegmatitic Be deposits is the wide
range of formation conditions and fluid compositions. Depths range from the surface to
>10 km and temperatures from magmatic conditions to surface temperatures, and
commonly exhibit a broad range within a single deposit. Fluids vary from hypersaline to
dilute; they may or may not have CO, and/or CH4 and have diverse redox states and
acidities. These fluid compositional characteristics generally correlate well with igneous
compositions and depth. Sn, W and base metal-rich systems tend to be acid, saline and
shallow. Oxidation and sulfidation states directly influence alteration and metallic
mineralogies. These variables also govern helvite group stability (Fig. 9) and the
transition metal contents of beryl. Hydrothermal alteration assemblages directly control
the identity of stable Be minerals primarily by imposing values of aan,0, and asio, (Figs.
11, 12).

The systematic progression in hydrothermal mineral associations resembles that in
many other types of magmatic-hydrothermal ore deposits (Table 3). In feldspathic rocks
early, high-temperature pegmatitic and miarolitic cavities form a geological continuum
with feldspar-micat+quartz veins and sodic or potassic feldspathization. Later mica-rich
and the latest-stage polymetallic assemblages form at somewhat lower temperatures and
tend to be more extensive. Fluorine is typically abundant as evidenced by the presence of
fluorite, topaz and/or F-bearing mica. Magmatic albite-rich rocks are common, however
even more widespread is hydrothermal albitization which is clearly significant in many
igneous-related systems and in the Colombian basin-related deposits.

Deposits hosted in carbonate-rich and ultramafic rocks have similar broad
similarities, with differences in detail with host rock and magma type. Skarns form early.
Vesuvianite, garnet and pyroxene typify calcareous hosts, whereas humite-group
minerals and other magnesian silicates occur in magnesian carbonates (e.g., Kwak 1987).
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Although there is a tendency for more reduced and pyroxene-rich skarns with increasing
aluminum saturation index in associated intrusions, these patterns are complex as has
long been recognized in other skarn systems (e.g., Einaudi et al. 1981; Newberry 1998).
Skarn mineral assemblages may contain some Be but most ends up in later F-rich veins
and replacements. As a class, low-T replacement deposits comprise the bulk of high-
grade Be mineralization, whether as fluorite-silica-bertrandite after carbonate clasts at
Spor Mountain, fluorite-diaspore-micas-chrysoberyl at Lost River, or fluorite-adularia-
phenakite at Ermakovskoe and Mount Wheeler. Replacements of carbonate or skarn by
fluorite and iron-rich oxides, sulfides and sheet silicates form another major group,
typically with Sn-bearing hydrothermal systems. Reaction between veins and dikes in
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ultramafic rocks leads to metasomatic assemblages dominated by micas, plagioclase,
other sheet silicates, and amphiboles that are broadly analogous to the skarns and
apocarbonate greisens. The lack of garnet and pyroxene in ultramafic-hosted deposits
reflects their high Mg/Ca.

Mineral associations are one of the most prominent correlations with magmatic
compositions and the phase equilibrium reasons were described at some length under
“Beryllium Mineral Stabilities” above. To summarize the key features: Micas change
from muscovite-rich in peraluminous systems to Li-bearing trioctahedral micas in more
alkaline systems. Mica-rich assemblages are not created equal—trioctahedral-mica
dominated greisens are not acid (e.g., low K'/H") assemblages (cf. Eqn.10). The latter
thus should not be equated chemically with muscovite-bearing greisens or sericitic and
related assemblages that occur in most porphyry Cu and Mo systems. BASH phases
occur with peraluminous and some metaluminous granites; helvite group, phenakite and
bertrandite with lesser beryl occur with metaluminous to peralkaline varieties and helvite
group and alkali Be silicates in silica-undersaturated alkaline rocks (see Fig. 12).
Amagmatic systems show a corresponding variation with alkalinity of the host materials:
BASH phases form in aluminous rocks (e.g., Colombian and shear zone emerald
deposits) whereas helvite group, phenakite and other Al-poor Be minerals form in Al-
poor rocks (e.g., Fe-Mn oxide group).

Time-space relationships. No single pattern captures the time-space distribution of
Be minerals in hydrothermal systems. Beryllium may be precipitated early or late,
proximally or distally (cf. pegmatites; see Cerny, this volume). Be is proximal in more F-
poor systems both in granitic pegmatites and in quartz-feldspar veins, but more
commonly it is distal and late. In volcanic-related deposits, Be minerals (bertrandite, red
beryl) are generally late and low temperature (e.g., western Utah), whereas in systems
with clear magmatic enrichments beryl (in peraluminous rocks), epidydimite (in
peralkaline rocks) or other Be minerals are prominent in early stages (e.g., Mount Antero;
Sherlova Gora, Sheeprock, Mt. Saint-Hilaire, Ilimaussaq, Lovozero), although a large
suite of later Be minerals can crystallize through much of the sequence. The classic
carbonate-hosted systems, regardless of the aluminousity of associated igneous rocks,
tend to have Be concentrated in lower temperature assemblages, typically distal parts of
the systems. Length scales can be meters to kilometers. Phenakite, bertrandite and, to a
lesser extent chrysoberyl tend to be distal to beryl-bearing assemblages. Although one
has the impression in many systems that there is a simple evolution from high-
temperature, proximal assemblages to late and overprinting lower-T assemblages,
patterns can be more complex with multiple events and reversals in sequence (Lost River,
Shizhuyuan, Birch Creek).
Origins

Ultimately, these patterns in the non-pegmatitic occurrence of Be minerals reflect
original rock compositions, controls on solubility, and magmatic evolution at the source
of fluids. Magmatic concentrations are relatively low due to the limited solubility of Be
minerals in silicate melts. Hydrothermal deposits derived from such melts would have
proximal Be and might lack significant Be in distal or low-temperature assemblages if
aqueous complexing is weak (e.g., in the F-poor quartz-feldspar vein association in Table
3). When Be is strongly complexed (e.g., by F) and is not near saturation at its source,
aqueous fluids could travel some distance before Be precipitation occurs in a favorable
physical or chemical setting. Precipitation mechanisms include cooling, mixing,
neutralization, and removal of F from the fluid. Wall-rock reaction, particularly with
carbonate or mafic mineral rich rocks, would be particularly effective for the last two
depositional mechanisms; this is abundantly illustrated by fluorite-rich deposits of many
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types (Table 3). Differences in timing and zoning may also be due to evolution of the
magma itself. Multiple magma batches, commonly of distinct origin, are well
documented in many areas (e.g., Birch Creek, Cornwall, Beauvoir, Iron Mountain,
Shizhuyuan).

The common features of Be-enriched igneous-related deposits are: (1) a magma that
does not strongly remove Be in early formed minerals, and (2) a mechanism for
generating and focusing F- and Be-bearing fluids. Melts with abundant Ca and Mg (i.e.,
most subalkaline types) will be unfavorable for magmatic enrichment because Be is
partitioned strongly into sodic plagioclase (cf. London and Evensen, this volume).
Likewise, mafic and calcic minerals sequester F in igneous systems either during
crystallization (e.g., in biotite or apatite) or by formation of fluorite and other minerals on
fluid release (cf. Barton 1987). For these reasons, igneous-related Be deposits are
restricted to felsic, alkaline (low CaO/[Na,O+K,0+CaO], cf. Fig. 5) igneous suites, but
are not restricted in terms of alkalinity or silica saturation (in the sense of a0, and
asio,). Instead, the latter factors govern hydrothermal alteration types and Be mineral
assemblages (Fig. 12), and are reflected in the suites of associated elements (Fig. 4; Table
3). Wall rocks as well as magmas may source Be in some of these systems, particularly
where sodic plagioclase is destroyed and thus releases Be to the hydrothermal system
(Beus et al. 1963). These processes deserve further investigation.

In contrast to igneous-related systems, in most non-magmatic deposits Be is only
locally redistributed, Be concentrations are low, and the occurrences are mainly of
mineralogical or gemological interest. Original enrichment in Be-bearing felsic rocks
plays a role in some emerald deposits. Elsewhere, Be deposits are inferred to originate
either by the action of aqueous fluids that release Be by mineralogical changes in the host
rocks (e.g., Colombian emeralds, Alpine clefts) or by reworking by surficial processes
(e.g., placer deposits).
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APPENDIX B: SELECTED STUDIES RELEVANT TO BERYLLIUM
MINERAL STABILITIES

(see also Franz and Morteani, pp. 561ff, this volume)

1972; Franz and Morteani 1981;
Ospanov 1983; Lebedev and
Ragozina 1984; Soboleva et al.
1984a; Barton 1986; Wang et al.
1992

1982; Topor and
Mel'chakova 1982;
Kiseleva and Shuriga
1983; Barton 1986;

Hemingway et al. 1986

Hazen and Finger
1987; Yeganeh-
Haeri and Weidner
1989; Pilati et al.
1998

Materi Synthesis and Reversal Thermodynamic Equation Theoretical &
aterial .
Experiments Data of State Natural
Fluids
Melt-mineral |Ganguli et al. 1975; Cemic et al. Bea et al. 1994
1986; London et al. 1989;
Icenhower and London 1995;
Evensen et al. 1999; Evensen
and London 2002; London and
Evensen (this volume)
Melt-aqueous |London et al. 1988
Aqueous Beus et al. 1963; Soboleva et al.  [Samchuk and Mitskevich Wood 1992
species 1977, 1984b; Samchuk and 1980; Barton 1986;
Mitskevich 1980; Barton 1986; | Renders and Anderson
Renders and Anderson 1987; 1987; Wood 1992
Koz'menko et al. 1988; Prasad
and Ghosh 1988; Clegg and
Brimblecombe 1989
BASH
Behoite Kostryukov et al. 1977;
Barton 1986
Bertrandite Bukin 1968; Klyakhin et al. 1981; [Kiseleva et al. 1985, Hazen and Au 1986 |Kosals et al. 1974;
Hsu 1983; Lebedev and 1986; Barton 1986; Burt 1978;
Ragozina 1984; Barton 1986 Hemingway et al. 1986 Kupriyanova 1982;
Wood 1992;
Odintsova 1993
Beryl Syromyatnikov et al. 1972; Franz [Barton 1986; Hemingway [Morosin 1972; Burt 1975, 1978;
and Morteani 1981; Klyakhin et | et al. 1986; Kiseleva et | Deganello 1974; Kupriyanova 1982;
al. 1981; Hsu 1983; Aines and al. 1986; Renders and Schlenker et al. Odintsova 1993;
Rossman 1984; Franz and Anderson 1987, 1977; Hazen et al. Kupriyanova and
Morteani 1984; Polupanova et al.| Gurevich et al. 1989; 1986; Haussuehl Shpanov 1997;
1985; Barton 1986; Cemic et al. | Pilati et al. 1997 1993 Markl and
1986; Renders and Anderson Schumacher 1997;
1987; Manier-Glavinaz et al. Evensen et al. 1999
1988,1989a; Wang et al. 1992;
Evensen et al. 1999
Bromellite Barton 1986 Barton 1986 Hazen and Finger
1987, Pilati et al.
1993
Chrysoberyl  [Franz and Morteani 1981; Hsu Kiseleva et al. 1985; \Au and Hazen 1987; |Burt 1978;
1983; Ospanov 1983; Barton Barton 1986; Hazen and Finger Kupriyanova 1982;
1986; Cemic et al. 1986; Hemingway et al. 1986; | 1987 Odintsova 1993;
Hoélscher et al. 1986; Wang et al. | Kiseleva et al. 1986; Kupriyanova and
1992 Hofmeister et al. 1987 Shpanov 1997
Euclase Franz and Morteani 1981; Hsu Franz and Morteani 1981; [Hazen et al. 1986 Burt 1978
1983; Ospanov 1983; Barton Kiseleva et al. 1985;
1986 Barton 1986;
Hemingway et al. 1986;
Kiseleva et al. 1986
Phenakite Bukin 1968; Syromyatnikov et al. [Matveev and Zhuravlev [Hazen and Au 1986; [Kosals et al. 1974;

Burt 1978;
Odintsova 1993;
Pilati et al. 1998
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Appendix B, continued

Be-Mg-Al-Si  [Holscher et al. 1986 Schmetzer 1981 Grew 1981; Grew,
this volume
Helvite group
Danalite Fursenko 1982 Ospanov 1983 Burt 1980, 1988
Genthelvite Fursenko 1982 Ospanov 1983; Burt 1980, 1988
Mel'chakova et al. 1991
Helvite Klyakhin et al. 1981; Fursenko ‘Werner and Plech Burt 1980, 1988
1982 1995 (also tugtupite)
Others
Chkalovite Ganguli et al. 1975 Kiseleva et al. 1984a,b  |Henderson and Taylor Markl 2001
1989
Gadolinite Ito and Hafner 1974 Demartin et al. 1993
Phosphates Klaska and Jarchow [Burt 1975
1973; Henderson and
Taylor 1984
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