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Abstract

Detrital modes are the basic type of quantitative data used in sedimentary petrology. They represent estimates of the

petrographic framework composition of sand or sandstone obtained by point counting of thin sections. At present, geological

inferences from analysis of these numerical data are semi-quantitative only, because many of the data-processing methods

employed in sedimentary petrology lack a firm theoretical basis. A review of existing methods reveals a number of fundamental

statistical problems associated with the use of univariate statistics and the construction of so-called hexagonal fields of

compositional variation. It is shown that these problems can be overcome by using multivariate methods that honour the non-

negativity and unit-sum constraints on compositional data, and incorporate the covariance structure. Spread in compositional

data can be modelled on two levels: (1) by regarding the grain as unit of observation, and the total point count as a sample from

a multinomial distribution; (2) by regarding the total count as unit of observation, and a set of counts as a sample from an

additive logistic normal distribution. Numerical methods are presented for constructing statistically rigorous confidence regions

in ternary diagrams by inversion of significance tests for these two distributions. Statistical analyses of the framework

composition and heavy-mineral assemblages of modern beach and river sands illustrate their use. The case histories are

followed by a brief overview of popular multivariate methods for reconstructing sediment provenance. D 2002 Elsevier Science

B.V. All rights reserved.
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‘‘First shalt thou take out the holy pin Then shalt

thou count to three — No more, no less Three

shall be the number thou shalt count, And the

number of the counting shall be three Four shalt

thou not count, neither shalt thou count two,

Excepting that thou then proceed to three’’

The Book of Armaments (Monty Python and the

Holy Grail, 1975)

1. Introduction

Quantitative estimation of detrital modes of sand

and sandstone is traditionally performed by point

counting. At present, geological inferences from
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analysis of these numerical data are semi-quantitative

only, because many of the data-processing methods

employed in sedimentary petrology lack a firm theo-

retical basis. Most sands and sandstones contain many

different types of grains, indicating that their composi-

tional variation can only be properly characterised by

multivariate statistical methods. However, sedimen-

tary petrologists have traditionally limited themselves

to the analysis of ternary (sub)compositions that can

be displayed in ternary diagrams. The prime example

of the use of ternary diagrams in sedimentary petrol-

ogy is the inference of plate-tectonic setting of sedi-

mentary basins from sandstone composition (Dickin-

son, 1985, 1988).

The introductory section of this article discusses

the procedures by which detrital modes are obtained.

The main body of this review is devoted to theory and

application of statistical analysis of ternary composi-

tions. It concludes with a brief section on the use of

multivariate methods of compositional data analysis

in sedimentary petrology.

2. Point counting in sedimentary petrography

2.1. Classification schemes

Following standard practice in sedimentary petrol-

ogy, the framework composition of sandstone is esti-

mated by counting a certain number of points in thin

section (usually between 300 and 600) according to the

Glagolev–Chayes method (Chayes, 1949, 1956; Gale-

house, 1971). Each grain beneath the crosshair is

assigned to a category within the petrographic classi-

fication system used. The petrographic modal compo-

sition of sands and sandstones may be regarded as a

mineralogical mode augmented by information about

composition and texture of polycrystalline grains. The

latter is of considerable importance for sedimentary

provenance studies, because it provides a direct link

with parent-rock assemblages in the source area.

Two schools of sedimentary petrographers have

evolved, which use different classification schemes to

quantify sandstone framework composition: the Indi-

ana method and the Gazzi–Dickinson method. The

principal difference between these methods is the way

in which coarse-crystalline (phaneritic) polymineralic

grains are classified. Relative strengths andweaknesses

of both schemes have been discussed by Ingersoll et al.

(1984, 1985a,b), Suttner and Basu (1985), Decker and

Helmold (1985) and Zuffa (1980, 1985). Classification

criteria for monocrystalline grains, fine-grained (apha-

nitic) polymineralic grains and quartz varieties are

common to both methods. Operational definitions for

these framework categories have been presented by

Gazzi (1966), Dickinson (1970), Wolf (1971), Basu et

al. (1975), Graham et al. (1976), Basu (1985), Dorsey

(1988), Johnsson (1990), Valloni (1985; in Ibbeken and

Schleyer, 1991), Garzanti (1991), and Di Giulio and

Valloni (1992). Standardised definitions of non-frame-

work categories are not yet available. A synthesis of

various schemes in current use has been published by

Mijnlieff et al. (1999).

2.2. The traditional or Indiana method

The ‘Indiana school’ regards the framework com-

position of sandstone as a function of provenance,

transport history and post-depositional modifications

(Suttner, 1974; Suttner et al., 1981). The Indiana point-

counting method is essentially based on formalisation

of traditional sedimentary–petrographic classification

criteria. Ternary framework compositions are com-

monly expressed in terms of quartz, feldspar and

rock-fragment percentages (QFR%). A rock fragment

is defined as a grain consisting of two or more phases or

crystals, fulfilling at least one of the following criteria:

� No single phase occupies more than 90% of the

total area of the grain as observed in a thin

section (commonly applicable to very fine or

fine sand grains);
� The two phases or crystals are both larger than

0.0625 mm in size (commonly applicable to

medium or coarse sand grains).

An exception to this rule is made for polycrystalline

quartz varieties, which are regarded as monomineralic

rock fragments (Suttner et al., 1981). Carbonate frag-

ments do not readily fit into this scheme.

The Indiana point-counting method has been

designed to detect changes in sandstone composition

resulting from weathering and transport. Grain-size

reduction is invariably accompanied by compositional

modification, because the operational definition of

rock fragments is sensitive to grain size. Therefore,
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a narrow size range must be selected for point count-

ing to ensure compatibility of different data sets.

The results obtained by the Indiana method may be

illustrated by considering the compositional evolution

of coarse-grained granite detritus, initially consisting

of sub-equal proportions of monocrystalline quartz,

monocrystalline feldspar and quartzo-feldspathic rock

fragments. Compositional evolution in the early stages

of weathering is governed by disaggregation of quar-

tzo-feldspathic rock fragments along crystal interfaces,

which produces Q and F grains of medium and fine-

sand size. Hence, slightly weathered granite detritus

could be classified according to the Indiana method as

ranging from lithic to arkosic, depending on the pro-

portion of R. The proportion of R is expected to vary

not only with the extent of weathering, but also across

size classes at any given time.

2.3. The Gazzi–Dickinson method

The ‘Dickinson school’ emphasises the use of petro-

graphic techniques for the reconstruction of plate-tec-

tonic settings of sedimentary basins (Dickinson, 1985,

1988). The Gazzi–Dickinson point-counting method

was developed independently by Gazzi (1966) and

Dickinson (1970) to minimise the effects of grain-size

variations on sandstone composition. Ternary frame-

work compositions are commonly expressed as quartz,

feldspar and lithic percentages (QFL%). The Gazzi–

Dickinson method differs from the Indiana method be-

cause sand-sized monomineralic grains or crystals

(phaneritic grains: crystal size exceeding 0.0625 mm)

forming part of a larger polymineralic grain are classi-

fied as phanerites instead of polymineralic grains. Only

fine-grained polymineralic fragments (aphanitic grains:

crystal size less than 0.0625 mm) are classified as li-

thics, because such grains can be recognised through-

out the sand-size range (Boggs, 1968). Again, carbo-

nate fragments do not fit easily into this scheme. In

the absence of other criteria, such grains are labelled

‘lime clasts’.

The results obtained by the Gazzi–Dickinson me-

thod may be illustrated by considering the composi-

tional evolution of granite detritus expressed in terms

of QFL instead of QFR units. If the ratio of sand-size

quartz and feldspar crystals in the phanerites is similar

to that of the monocrystalline Q and F grains, the

proportions of Q and F would not change by breakage

of coarse-grained (phaneritic) rock fragments into mo-

nomineralic grains of medium and fine-sand size. Note

that the proportion of L is expected to be very small,

due to the large crystal size of the average granite.

Hence, granite detritus would be classified as arkosic

according to the Gazzi–Dickinson method, regardless

of the extent of weathering and size class considered.

2.4. The Gazzi–Zuffa method: a synthesis

Zuffa (1980, 1985, 1987, 1991), building on the

work of Gazzi (1966), developed a classification

scheme encompassing all grain types occurring in sand

and sandstone. In addition to the non-carbonate ex-

trabasinal (NCE) grains commonly considered in pro-

venance studies, this extended classification scheme

also includes detailed subdivisions for other categories

of framework elements: carbonate extrabasinal (CE),

non-carbonate intrabasinal (NCI), and carbonate in-

trabasinal (CI) grains. The extended scheme was deve-

loped to enable analysis of spatial and temporal relations

between grains in mixed siliciclastic-carbonate sands

(e.g., Fontana et al., 1989; Garzanti, 1991). It can be

used in conjunction with both point-counting methods.

Compatibility between the Indiana and Gazzi–

Dickinson methods is achieved by subdividing each

category of phanerites into a category comprising mo-

nocrystalline grains and several categories of sand-size

crystals within larger rock fragments, as originally

proposed by Gazzi (1966). For instance, Qm may be

defined as a monocrystalline quartz grain, Qrp as a

quartz crystal within a plutonic rock fragment, and

Qrm as quartz crystal within a meta-sedimentary rock

fragment, etc.

2.5. Spread and uncertainty in point-count data

A brief note on terminology is required to facilitate

subsequent discussions. The term sample may have

different meanings, depending on the geological or sta-

tistical context, so a formal distinction is in order. A

statistical sample refers to randomly collected observa-

tions of certain properties of a population. A geological

sample is more loosely defined as a finite quantity of

rock or unconsolidated sediment, sampled (at random)

from (the accessible part of) a rock or sediment body.

The possibility of confusion between the two meanings

of the term sample is minimised by referring to a geo-
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logical sample as a specimen (Rock, 1988), so that the

term sample is used exclusively in the statistical sense.

Composition estimates obtained by point counting

are subject to uncertainty, which results from the

sampling scheme used in the field, the preparation of

thin sections and the counting procedure itself. The

uncertainty is largely determined by the following fac-

tors (for general overviews see Griffiths, 1967; Kel-

ley, 1971; Frangipane and Schmid, 1974; Neilson and

Brockman, 1977):
. Selection of sampling sites in the field. Sediments

tend to be compositionally heterogeneous on a large

(inter-specimen) scale, owing to processes such as

mixing, weathering and diagenesis. Ideally, the local-

ities where hand specimens are collected should be

selected according to a sampling scheme aimed at

capturing the spatial compositional variation in a

lithosome (e.g., Whitten, 1961; Griffiths, 1967).
. Preparation of thin sections from hand specimens.

Heterogeneity within a hand specimen contributes to

the uncertainty of the composition estimate. This

factor is negligible if the specimen is completely ho-

mogeneous, which is unlikely because sediments are

in general laminated. It is recommended to cut thin

sections perpendicular to laminae or bedding planes, in

such a way that the areal proportions of the laminae in

thin section equal the volumetric proportions in the

rock (Chayes, 1956).
. Selection of the inter-point distance (grid size) to

be used in counting. In detrital sediments, where

adjacent grains may be safely regarded as independ-

ent, the best results are obtained by selecting an inter-

point distance larger than the maximum grain size in

thin section. Smaller distances reduce the amount of

information in the analysis because adjacent observa-

tions may fall on the same grain, which inflates the

uncertainty (Van der Plas and Tobi, 1965; Manetti and

Turi, 1969; Neilson and Brockman, 1977).
. Selection of the total number of points to be

counted. Counts of individual components follow a

binomial distribution under the appropriate sampling

conditions (i.e., randomly chosen points from a homo-

geneous thin section), implying that component stand-

ard deviations are proportional inversely to the square

root of the number of points counted (Dryden, 1931;

Chayes, 1956; Van der Plas and Tobi, 1965).
. Random operator error, resulting from occasional

misidentification of components. For practical purpo-

ses, it can be regarded as a kind of sampling error that

tends to inflate the spread of the estimates.
. Systematic operator error, resulting from systema-

tic misidentification of certain components relative to a

standard classification scheme. Systematic deviations

from the ‘true’ composition arise if probabilities of

misidentification are unequal for different grain types.

Systematic operator error may thus be thought of as

the application of different classification schemes to

the same (suite of) specimens. Posterior adjustment of

composition estimates is possible in the unlikely event

that probabilities of misidentification can be estimated

(Demirmen, 1972). In practice, the magnitude of ope-

rator error depends on the type of rock and the degree

of training of the analyst, so that it can only be assessed

successfully by replicate analyses involving multiple

operators. Careful evaluation of operator error is re-

quired in cases where data produced by multiple ana-

lysts have been lumped to generate large data sets for

statistical analysis.

2.6. Thin-section grain-size analysis

Point counting has also been applied in sedimen-

tary petrography to estimate grain-size distributions

of consolidated sediments from measurements of ap-

parent grain size in thin section. Conversion from

number-frequency distribution of apparent diameters

into weight-frequency distribution of ‘true’ diameters

is a difficult problem. Theoretical conversion equa-

tions have been designed for idealised particles, such

as spheres, spheroids, or ellipsoids following specific

spatial distribution functions (Ripley, 1981). Their

applicability to sands and sandstones appears to be

limited. Moreover, the uncertainties associated with

the thin-section measurements should also be taken

into account in the estimation procedure. Many re-

searchers have attempted to bypass these problems

by developing empirical conversion equations (Rose-

nfeld et al., 1953; Friedman, 1958, 1962, 1996; Grif-

fiths and Ondrick, 1969; Adams, 1977; Harrell and

Eriksson, 1979; Johnson, 1994, 1996). The theoret-

ical conversion problem belongs to the field of

geometric probability theory known as stereology.

As an exhaustive discussion of this subject is far

beyond the scope of this review, the interested reader

is referred to Ripley (1981). Textoris (1971), Kel-

lerhals et al. (1975) and Johnson (1994) discuss
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thin-section grain-size analysis of sandstones in

some detail.

2.7. Conversion between modes and norms

Detrital modes of sands and sandstones are usually

regarded as the most informative compositional des-

cription for a wide range of sedimentary–petrologic

applications. However, it may be required to convert a

detrital mode into a chemical composition, or it may be

desirable to cast the results of chemical analyses in

mineralogical terms. The latter conversion is known as

normative analysis and has a long history in petrology,

starting with the classic work of Cross et al. (1902).

Most efforts in this field have concentrated on norma-

tive partitioning of chemical elements between (hypo-

thetical) minerals (Rock, 1988; Weltje, 1997). While

this approach has been successful in igneous and me-

tamorphic petrology, where mineral assemblages can

be assumed to be in equilibrium with specific physico-

chemical conditions, it has been far more difficult to

develop a useful normative partitioning approach to

detrital sediments. Two obvious reasons for the lack of

success are that a considerable proportion of sand-size

grains is of polymineralic composition, and the con-

cept of an equilibrium assemblage cannot be applied.

Reed and Condie (1987) discussed the problem of re-

constructing original detrital composition of gray-

wacke from chemical analysis of the pseudo-matrix.

Bangs Rooney and Basu (1994) proposed integration

of optical and X-ray techniques to infer detrital pre-

cursors of clay-size materials in sandstone, in order to

reconstruct mineralogical modes of muddy sandstones.

Recent advances in normative partitioning have re-

sulted in the development of general-purpose compu-

ter codes (De Caritat et al., 1994). Friedman (1960),

Root (1978) and Usdansky (1985) have presented

methods to predict chemical composition from minera-

logical modes obtained by point counting of igneous

and metamorphic rocks.

3. Analysis of ternary compositions: a brief history

3.1. Compositional data

Compositions are the principal data used in sedi-

mentary petrology. Such data are commonly expressed

as proportions, percentages, or parts per million, and

thus sum to a constant value C (equal to 1, 100, or 106,

respectively):

Xk
i¼1

xi ¼ C, where xiz0 ð1Þ

Because all component abundances xi are non-negative

by definition, the value of the k-th component in a

composition of k parts is automatically fixed by the

sum of the other k� 1 values. This inevitable physical

limitation implies that compositional data are con-

strained in the sense that they are not free to take on

any value or to vary independently. Consequently, they

are not amenable to analysis by common statistical

methods designed for use with unconstrained data

(Chayes, 1960; Aitchison, 1986).

The difficulty of interpreting compositional data is

well illustrated by the following trivial example:

‘. . . If one analyses the contents of a jar half-filled

with sand and finds, by a random sample, that it

contained (by volume) about 20% quartz, 30% feld-

spar, 40% rock fragments, and 10% miscellaneous

constituents, then, if the volume of the jar were

doubled by addition of grains of pure quartz, a second

random sample would reveal that the jar contains

60% quartz, 15% feldspar, 20% rock fragments, and

5% miscellaneous. Feldspar, rock fragments, and

miscellaneous constituents appear pair-wise posi-

tively correlated and all three appear negatively

correlated with the quartz abundance. Also, all four

components have shifted mean values despite the fact

that only the quartz content of the jar changed. . .’
(Woronow, 1991).

Although the interdependency of compositional

variables has been recognised for over a century

(Pearson, 1897), appropriate statistical methods for

analysing such data have been extremely slow to

emerge. Researchers who recognised the problems

associated with statistical analysis of compositions

were unable to provide feasible solutions (e.g., Chayes,

1960; Butler, 1979). Many scientists therefore decided

to abandon statistical analysis of compositions alto-

gether. Others wished away or ignored the awkward

constraints on compositions to justify the use of stand-

ard statistical methods for compositional data analysis

(Aitchison, 1986).
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3.2. Ternary diagrams

Ternary diagrams have been used widely in the

earth sciences to visualise numerical data that can be

expressed in terms of ratios of three components

(ternary percentages or proportions). The first of these

diagrams appeared in the geological literature around

the end of the nineteenth century (Becke, 1897).

Examples of the use of ternary diagrams can be found

in geochemistry, sedimentology and palaeontology,

but they have been especially popular in various bran-

ches of petrology. The following discussion largely

concentrates on sedimentary petrology, but many of

the concepts are equally relevant to other disciplines

in which use is made of ternary diagrams.

Ternary compositions play a central role in clas-

sification schemes and provenance models of sand

and sandstone. A typical sedimentary provenance

analysis proceeds as follows: Raw point-count data

or subsets thereof, are amalgamated to form three

groups, whose totals are normalised to yield ternary

percentages or proportions. The data points or their

arithmetic means may then be displayed in a ternary

diagram, at which stage most petrographic analyses

are considered complete. Dissatisfaction with this

purely descriptive approach has led many petrogra-

phers to take one further step by constructing so-called

fields of compositional variation. The objective of

these fields is to capture the scatter of data points in

ternary diagrams using summary statistics like the

sample means and standard deviations of the data.

Ongoing discussion about the preferred method of

construction and statistical interpretation of such

fields (Philip et al., 1987; Howard, 1993, 1994) may

be due to the fact that their theoretical basis has not

been fully examined.

The ideal field of variation corresponds to a statisti-

cally rigorous confidence region or predictive region

that adequately captures the distribution of data points

in a ternary diagram. A fundamental property of such

regions is that they define an area in which the true

values of the population parameters are located with

some fixed probability. This implies that their boun-

daries must be defined by equal probability contours.

The probability associated with a confidence region is

termed the confidence level or simply the content,

usually expressed as (1� a) or 100(1� a)%, where a
is defined as the significance level. Such regions could

be used to predict the range of variation of the entire

population, or the range of variation of the population

mean.

The capability to construct predictive regions of

compositional variation is essential to quantitative se-

dimentary petrography, because it enables one to

assess the significance of compositional differences

between (sets of) rock specimens in an objective and

reproducible way. It also allows quantitative predic-

tions to be made based on observations, which should

increase the usefulness of petrographic techniques in

provenance studies, hydrocarbon exploration and sed-

imentological reservoir characterisation, because it

opens the way to stochastic simulation of sediment

composition across a basin (Woronow, 1993). Mov-

ing from the current, largely descriptive methods to-

wards a statistically rigorous approach is a prerequi-

site for elevating the status of sedimentary petrology

to that of a widely applicable quantitative tool for ba-

sin analysis.

The fundamental problems associated with the

various methods put forward thus far are discussed

below to provide a starting point for alternative

approaches. Two well-established multivariate statis-

tical models will be adapted to the task of visualising

the range of variation in a series of ternary composi-

tion estimates, and the uncertainty associated with a

single composition estimate from point-count data.

The statistical theory and numerical implementation

of the methods will be exposed in some detail,

followed by a few applications to practical problems.

3.3. Non-statistical approaches

The simplest method for capturing patterns of

compositional variation in ternary diagrams is to trace

the outline of a cluster of data points by a smooth

hand-drawn line (e.g., Dickinson and Rich, 1972;

Fontana et al., 1989; Valloni in Ibbeken and Schleyer,

1991). A variation on this theme is ‘eyeball fitting’ of

regular geometric shapes, usually ellipses, to clusters

of data points. The mere intention of these methods is

to facilitate qualitative assessments of the data. A

quantitative non-statistical approach to characterise

compositional variation in ternary diagrams was pro-

posed by Philip and Watson (1988) and Watson and

Philip (1989). The essence of their method is local-

density estimation and contouring on the basis of a
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tessellation of ternary compositional space. This com-

putationally intensive method does not allow any

straightforward inference such as statistical testing

of compositional homogeneity of multiple samples.

Moreover, the validity of the assumptions underlying

this method has been strongly debated (Aitchison,

1990, 1991a,b, 1992; Watson, 1990, 1991).

3.4. Univariate normal approximation for multiple

compositions

The most popular statistical model in the sedimen-

tary–petrologic literature has been the univariate

normal or Gaussian distribution. The conventional

approach to statistical analysis in sedimentary petro-

graphy may be introduced by considering a typical

data set consisting of ternary composition estimates.

The data are assumed to have been obtained from

point counting a series of thin sections, each derived

from a different specimen. The sample size n is thus

equal to the number of specimens. This data set is

usually processed by calculating the arithmetic sam-

ple mean:

mx ¼
1

n

Xn
i¼1

xi ð2Þ

and the sample standard deviation:

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðxi � mxÞ2

n� 1

vuuut
ð3Þ

of each component separately, under the implicit

assumption that component proportions follow a uni-

variate normal distribution. In the ‘Dickinsonian’

approach to provenance analysis, each sample stand-

ard deviation must be divided by the square root of

the sample size to obtain the standard error of the

mean:

ex ¼
sxffiffiffi
n

p ð4Þ

The next step is to convert the measures of spread

(Eqs. (3) and (4)) to confidence limits. Proper appli-

cation of the univariate normal distribution requires

that each of the standard deviations (or standard errors)

be multiplied by a value of Student’s t with df = n� 1

degrees of freedom, corresponding to a desired sig-

nificance level a. The (1� a) confidence limits of x in

the population of interest are defined as:

CLd ¼ mx F sxtðd f ;a=2Þ ð5Þ

In addition, the (1� a) confidence limits of the pop-

ulation mean m are defined as:

CLm ¼ mx F extðdf ;a=2Þ ð6Þ

The results of the univariate statistical analysis are

summarised in statements such as: The (mean) quartz

content of this type of sandstone is Q%FDQ%, the

(mean) feldspar content is F%FDF%, and the

(mean) lithic content is L%FDL%, at a confidence

level (1� a).

3.5. Univariate normal approximation for a single

composition

A similar approach was adopted in igneous and

metamorphic petrology (Chayes, 1949, 1956; Chayes

and Fairbairn, 1951; Van der Plas and Tobi, 1965), to

quantify the uncertainty in estimates of mineral com-

position obtained by point counting. In this field of

petrology, the univariate normal distribution plays a

central role as a large-sample approximation to the

binomial distribution. A typical application involves

the counts obtained from a single thin section (spe-

cimen). Note that the term sample in this context re-

fers to the count length N. The number of points

falling on the i-th component is defined as ni and the

observed component proportions p̂i are obtained from

the relation:

p̂i ¼ ni=N ð7Þ

According to statistical theory, the observed compo-

nent proportions p̂i are the best estimate of the corre-

sponding population values pi, allowing use of the

population standard deviation of the binomial distri-

bution to estimate the standard deviation of the

observed proportions. The normal approximation to
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the binomial standard deviation of the estimated pro-

portion is defined as:

sp̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ið1� p̂iÞ

N

r
ð8Þ

The confidence limits for the estimated proportions are

defined analogously to those above:

CLp̂ ¼ p̂i F sp̂tðdf ;a=2Þ ð9Þ

where df =N� 1 and a is the desired significance level.
Van der Plas and Tobi (1965) used a similar

method for constructing their widely used nomogram.

The same large-sample approximation was proposed

earlier in sedimentary petrology for assessing the

uncertainty associated with counting of heavy miner-

als in slides (Dryden, 1931). It leads to statements

about compositional variability similar to the one

given above.

3.6. Validity of univariate normal approximations

The above methods are valid only in cases where

the proportions of each component can be reasonably

well approximated by a normal distribution. In addi-

tion, the univariate approach carries the implicit

assumption that the proportions of each component

are independent of those of the other components. Let

us examine if these assumptions are reasonable in the

simplest of cases, i.e., a single thin section cut from a

specimen made up of two components only. The

binomial distribution is appropriate for characterising

the uncertainty associated with counting a finite num-

ber of points which may fall into one of two classes (a

classic example is the number of heads or tails in a

coin-tossing experiment). The counts follow a bino-

mial distribution if we make the additional assumption

that successive observations (points) are independent

and the rock is homogeneous on the scale of the thin

section.

Fig. 1 shows the normal approximation (Eq. (9)) of

the 90%, 95% and 99% confidence limits on three

proportions (0.5, 0.2 and 0.05). If the proportions of

the two minerals in the rock are sub-equal, i.e. each

close to 0.5 (Fig. 1A), their binomial distributions are

symmetric and can be well approximated by a normal

distribution. However, for small samples (N < 12), the

normal approximation to the 99% confidence limits

predicts values less than zero and greater than unity, for

which there can be no physical explanation. One

should realise that even a predicted value of exactly

zero is impossible, because it implies that the observed

Fig. 1. Univariate normal approximations to binomial confidence

limits of proportions ( p) as a function of count length (N ). (A)

p= 0.5; (B) p= 0.2; (C) p= 0.05. Confidence limits are 90%, 95%

and 99%. Predictions extending into the realm of negative pro-

portions indicate that the statistical model is not valid across the

full range of p and N.
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component is not represented in the population under

consideration, so that it could never have been ob-

served (similar logic applies to a predicted value of

exactly unity). The validity of the normal approxima-

tion is questionable for proportions that deviate con-

siderably from 0.5 (Fig. 1B and C), because the

binomial distributions of such rare components are

markedly skewed. The inadequacy of the normal

approximation is apparent for lower confidence limits,

which predict negative proportions even for large

sample sizes (99% lower confidence limits are neg-

ative for N < 40 and N < 150, respectively). The sym-

metry of lower and upper confidence limits about the

observed proportions indicates that the same applies to

predicted upper confidence limits on dominant com-

ponents (0.8 and 0.95, the exact mirror images of Fig.

1B and C), which may exceed unity.

Extension of this discussion to a rock with three (or

more) components leads to similar conclusions about

the validity of the normal approximation. It gives

reasonable results for large samples of component

distributions near the centre of the ternary diagram

(1/3,1/3,1/3), but fails for small samples and propor-

tions close to the edges because there is no guarantee

that predicted component ranges fall within the interval

h0;1i. The reason for this undesirable result is that the

normal distribution is a rather poor model for composi-

tional data, because it can produce any value between

[�l; +l] and often fails to yield good approxima-

tions. Van der Plas and Tobi (1965) correctly stated that

their nomogram, which is based on the above approx-

imation, should not be used for rare components.

It is clear that the second (implicit) assumption of

independence of proportions is fundamentally incor-

rect. The lack of independence between proportions is

an intrinsic property of compositional data, which

arises from the non-negativity and constant-sum con-

straints listed above. We know that in the case of a

two-component rock, the sum of the two proportions

equals unity by definition, implying that one propor-

tion fully defines a binary composition. The two

components thus show a perfect negative correlation

(Pearson’s correlation coefficient r =� 1.0). In this

particular case, the univariate description of one

component happens to provide an exhaustive descrip-

tion of the rock’s composition, because there are only

two components. However, the univariate description

exemplified by the statement given above does not

honour this constraint, as shown by a simple stoch-

astic simulation experiment. One cannot select at

random two values from the permissible ranges of

uncertainty specified for each of the two components

(cf. Eq. (9)) without violating the constant-sum con-

straint. Instead, one should choose a value from the

permissible range of uncertainty of one component

and deduce the value of the second from the relation

p2 = 1� p1. This still does not eliminate the problem

of spurious negative proportions resulting from the

normal approximation.

In rocks made up of more than two components, it is

no longer possible to uniquely define compositional

variability by means of univariate statistics. Again, the

simplest way to check this is to use the conventional

summaries of compositional variability in ternary sys-

tems as a basis for conducting stochastic simulations.

One cannot select three arbitrary values from the

permissible ranges of uncertainty in each component

(cf. Eq. (9)) without violating the constant-sum con-

straint, owing to the lack of independence of compo-

nent proportions. The only way to obtain a physically

meaningful composition would be to select at random

two out of three values, and impose p3 = 1� p1� p2.

Randomly selecting two out of three proportions im-

plies that two out of three proportions are statistically

independent. This arbitrary decision forces the third

proportion to be negatively correlated with the other

two (Chayes, 1960). Which of the three proportions (if

any) should fulfil this role is not clear, again indicating

that information is missing from the univariate descrip-

tion. If we add to this the possibility of obtaining

negative values, as discussed above, we are compelled

to conclude that conventional univariate statements do

not allow a valid characterisation of compositional

variation in systems of three or more components.

3.7. Other univariate approaches

The binomial and univariate normal distributions

are by no means the only statistical models applied to

point-count data. More sophisticated univariate models

have been developed by several workers in igneous,

metamorphic and sedimentary petrology to deal with

specific sampling schemes and scales of compositional

heterogeneity. The interested reader is referred to

Chayes (1949, 1956), Griffiths and Rosenfeld (1954),

Shaw and Harrison (1955), Bayly (1960a,b, 1965),
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Griffiths (1960, 1962, 1967), Hasofer (1963), Solomon

(1963), Chatterjee (1965), Schryver (1968), Manetti

and Turi (1969), Guasparri and Sabatini (1970), Demir-

men (1971, 1972), Frangipane and Schmid (1974),

Neilson and Brockman (1977) and Bardsley (1983).

Without exception, the methods proposed by these

authors aim at establishing suitable frequency distribu-

tions of proportions of individual minerals. Although

some of the above models will undoubtedly be more

appropriate in specific cases than the binomial or

normal distributions, they do not eliminate the funda-

mental problems of a univariate approach. In view of

the unit-sum constraint on proportions, univariate

methods are at most capable of characterising compo-

sitional variability in a two-component system. They

cannot be used as a general tool for characterising

compositional variation of sediments comprising more

than two components.

3.8. Hexagonal fields of variation

The well-known hexagonal fields of compositional

variation in ternary diagrams were introduced inde-

pendently in various fields of the earth sciences (e.g.,

Stevens et al., 1956) as a logical extension of the use of

univariate normal approximations. The papers byGuas-

parri and Sabatini (1970) and Ingersoll (1978) provide

early examples of their use in igneous and sedimentary

petrology, respectively. A hexagonal field of variation

is usually constructed by plotting each measure of

spread, calculated by means of normal approximation

(Eqs. (2)–(6)), as a pair of lines about the arithmetic

sample mean (Philip et al., 1987; Howard, 1994). The

orientation of each pair of lines is parallel to the side of

the diagram that is opposite to the component’s vertex.

The desired hexagon corresponds to the area of inter-

section of the three bands that define each component’s

range. The procedure is illustrated by labelling the

predicted lower and upper confidence limits of each

component (Eqs. (5) and (6))with subscripts L andU, to

give the following range of possible values for the

component proportions in a ternary QFR system:

QL VQVQU

FL V F V FU

RL V RV RU ð10Þ

From these limits, a set of six ternary compositions is

constructed to define the hexagon:

C � FL � RU FL RU

QL C � QL � RU RU

QL FU C � QL � FU

C � FU � RL FU RL

QU C � QU � RL RL

QU FL C � QU � FL

2
6666664

3
7777775
,

ð11Þ

where C is the constant-sum value defined in Eq. (1).

At first glance, the hexagonal fields of variation

appear to be a straightforward graphic translation of

the statement about compositional variability in the

QFR system given above. However, closer examina-

tion reveals three important differences.

The first difference may be illustrated by consider-

ing a bivariate normal population with zero covariance.

We expect the correlation coefficient of a random sam-

ple from this distribution to be close to zero, indicating

near independence of the two variables (Fig. 2A). Ap-

plication of the conventional univariate statistical me-

thods (Eqs. (5) and (6)) allows one to calculate the

confidence ranges of each of the variables separately.

It is well known from statistical theory that the equal

probability contours of a bivariate normal distribution

are elliptical (Morrison, 1976; Davis, 1986; Press et al.,

1994). Fig. 2A shows the 90%, 95% and 99% con-

fidence ellipses (equal probability contours) for the

sample, calculated according to the method given in

Appendix B.2. The meaning of equal probability con-

tours is most easily understood in terms of sampling

from the bivariate normal distribution. Specimens

sampled at random from this distribution have a prob-

ability equal to (1� a) of being enclosed by a (1� a)
ellipse, and therefore a probability equal to a of falling

outside this region. It is clear that data points with both

(x,y) values equal to the lower and/or upper limit of

each variable’s range are considerably less likely to be

observed, because such data points fall outside the

ellipse. In other words, there is no statistically mean-

ingful way to construct a ‘confidence box’ or ‘rectan-

gular field of variation’ around the data points by

means of univariate statistics, even in cases where

two variables are uncorrelated. Boundaries of hexago-

nal fields in ternary diagrams are constructed according
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to the same principle: They enclose the area of inter-

section of three independently calculated univariate

ranges, and therefore are the ternary equivalent of the

‘rectangular field of variation.’ It follows that the out-

line of the hexagon cannot possibly represent an equal

probability contour.

The other two differences between the numerical

and graphic representations are related to the method

of constructing the hexagon, which enforces the two

fundamental constraints on compositional data. The

unit-sum constraint is automatically implemented

because all points in the ternary diagram are located

on the constant-sum plane passing through the points

(C,0,0), (0,C,0) and (0,0,C ), as shown in Eq. (11).

Simply deleting those parts of the hexagon extending

beyond the triangular boundaries of the diagram

ensures non-negativity. The fundamental flaws of the

univariate normal approximation are thus hidden from

view.

3.9. The missing covariance structure

In many sedimentary–petrologic applications, the

objective is to model the spread of ternary composition

estimates from a series of genetically related speci-

mens. The univariate approach is even less appropriate

if compositional variation reflects specific geological

processes, instead of some random sampling error.

Examples of geological processes that generate char-

acteristic patterns of compositional variation in sedi-

ments are (Weltje, 1995, 1998; Weltje et al., 1998):

� Mixing of different sediment populations

(feeder systems);
� Selective depletion/enrichment of components

due to weathering and/or diagenesis;
� Selective entrainment, transport and deposition

related to variations in size, shape and density

of grains.

Each of these processes is likely to be associated with

a characteristic covariance structure of component

proportions. The pattern of compositional variability

obtained by random sampling of grains from a fixed

population is expected to differ from patterns in

natural sediments, because the population is fixed

and the underlying process is non-selective. Because

complete independence of component proportions is

impossible owing to the unit-sum constraint, the

covariance structure of composition estimates associ-

Fig. 2. (A) Bivariate normal distribution with zero correlation between attributes, showing univariate ranges at 90%, 95% and 99% confidence

levels in the form of horizontal and vertical bars. Each confidence region is represented by an ellipse with principal axes subparallel to X- and Y-

axes. Also shown is a ‘rectangular field of compositional variation’ constructed from univariate ranges. (B) Bivariate normal distribution with

univariate summary statistics identical to (A), but displaying strong positive correlation between attributes. Each confidence region is re-

presented by an elongated ellipse with principal axes oblique to X- and Y-axes. Also shown is a ‘rectangular field of compositional variation’

constructed from univariate ranges. Note the lack of fit due to nonzero correlation.
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ated with random counting errors provides the closest

possible analogue of the familiar concept of uncorre-

lated random errors in unconstrained variables.

A sample from a bivariate normal distribution with

means and standard deviations identical to the sample

shown in Fig. 2A is depicted in Fig. 2B. The ‘rec-

tangular field of variation’ or ‘confidence box’ con-

structed from univariate summary statistics of this

sample is therefore identical to the one in Fig. 2A.

However, the two variables in our second sample from

a bivariate normal distribution display a strong pos-

itive correlation. This is reflected in the elongated

90%, 95% and 99% confidence ellipses shown in Fig.

2B. The shortcomings of the univariate approach are

even more conspicuous in the presence of inter-

component correlation, as the rectangle completely

fails to capture the shape of the cloud of data points.

Use of the ‘rectangular field of variation’ thus leads to

extremely poor predictions. The similarities and dif-

ferences between Fig. 2A and B clearly illustrate the

incompleteness of a univariate description that pro-

vides no information about the covariance structure of

the data.

Similar problems with the univariate approach can

be shown to exist in the ternary case. Fig. 3 shows

hexagonal fields of variation of a synthetic data set

listed in Table 1. The data can be thought of as a series

of specimens obtained from different depths of a

weathering profile, which covers the full range of com-

positional modification from a saprolith to a mature

soil. They illustrate the compositional trend expected

from mechanical and chemical weathering of sand-

sized granite detritus (Nesbitt et al., 1997), if detrital

modes are obtained by the Indiana point-counting

Fig. 3. Hexagonal fields of variation constructed from univariate

summary statistics of the data in Table 1. Solid line: confidence

regions of the population mean; dashed line: confidence regions of

the entire population. Confidence limits are 90%, 95% and 99%.

The curved pattern of compositional variation resulting from

selective compositional modification cannot be captured by a

hexagon, resulting in a clear lack of fit. Also note the predictions

extending beyond the limits of compositional space.

Table 1

Synthetic point-count data (Indiana method) constructed to emulate

a pattern of compositional variation attributable to selective

modification (mechanical and chemical weathering of granitic

detritus)

Label Qt F R

G-01 102 164 234

G-02 119 172 209

G-03 143 199 158

G-04 147 189 164

G-05 183 207 110

G-06 183 199 118

G-07 192 222 86

G-08 203 190 107

G-09 230 186 84

G-10 232 188 80

G-11 234 222 44

G-12 235 193 72

G-13 236 217 47

G-14 240 223 37

G-15 247 200 53

G-16 269 189 42

G-17 276 201 23

G-18 276 169 55

G-19 290 177 33

G-20 306 168 26

G-21 307 173 20

G-22 315 154 31

G-23 331 157 12

G-24 337 139 24

G-25 345 136 19

G-26 355 137 8

G-27 361 132 7

G-28 362 130 8

G-29 364 131 5

G-30 375 120 5

Qt = total quartz, F = feldspar, R = rock fragments. Sample size

n= 30.
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method (Weltje, 1995, 1998; Weltje et al., 1998). The

main effect of mechanical weathering, the dominant

process in the initial stages of compositional modifica-

tion, is to produce monocrystalline Q and F from

disaggregation of R. The effect of chemical weathering,

which becomes the dominant process after most of R

has been removed, results in the depletion of F relative

to Q. The combined effect of these weathering trends is

expressed as a curved pattern in ternary QFR space.

The mismatch between the predicted range of variation

(the hexagons) and the data indicates that such patterns

of compositional variation cannot be captured by a set

of univariate normal approximations, as observed by

several authors (Philip et al., 1987; Philip and Watson,

1988; Aitchison, 1989).

3.10. Concluding remarks

The fundamental problems associated with the use

of univariate statistics and the construction of ‘hexag-

onal fields of variation’ can be summarised as follows:
. The assumption that the distribution of component

proportions can be adequately approximated by a

normal distribution is not generally valid, especially

in cases of small samples and/or (average) proportions

close to zero or unity, because it leads to predictions

extending beyond h0;1i, the physical limits on pro-

portions.
. Hexagonal fields of variation that have been

calculated from univariate summary statistics show

a distinct lack of fit to the data in cases where the pat-

tern of compositional variability results from selective

modification. All information about the covariance

structure of the data is lost if a univariate method is

applied. The implicit assumption that component pro-

portions are independent, which is necessary for justi-

fying a univariate approach to compositional data, is

incorrect.
. Hexagonal boundaries in ternary diagrams do not

represent equal probability contours, but actually con-

sist of the area of intersection of three independently

calculated univariate ranges. The points raised above

indicate that hexagonal fields of variation must be

regarded as mere graphic constructs that are not sup-

ported by a viable statistical model, and thus cannot be

used as predictive tools. It is also clear that any

appropriate method for constructing statistically rig-

orous confidence regions in ternary diagrams should

honour the two fundamental constraints on composi-

tional data (Eq. (1)). This automatically leads to the use

of multivariate methods that treat the composition as a

whole and enable one to take into account the cova-

riance structure of the data. Two multivariate statistical

models applicable to a wide range of practical prob-

lems encountered by sedimentary petrologists are dis-

cussed below.

4. Statistical models: concepts and definitions

4.1. Introduction

The uncertainties of composition estimates based

on point counts can be described on two levels:

� Model A: The point (grain) is regarded as the

basic unit of observation, and the count (com-

position) as a sample.
� Model B: The count (composition) is regarded

as the basic unit of observation, and a series of

counts as a sample.

4.2. Model A: the grain as unit of observation

During point counting, each point or observation is

classified into one of a number of mutually exclusive

categories. All categories together should represent an

exhaustive description of the rock. This is usually

accomplished by introducing a class of points labelled

‘other’ or ‘rest’ to ensure that all observed points can

indeed be classified.

The uncertainty associated with such composition

estimates obtained by point counting of a single thin

section under ideal conditions can be predicted from

statistical theory. The following conditions define this

so-called Bernouilli sampling process:

� Homogeneity: the probability of observing a

grain of a given type is a fixed quantity

throughout the thin section;
� Independence: the probability of observing a

grain of a given type is independent of the

result of the previous observation.

Loosely speaking, the first assumption is justifiable if a

thin section is visually homogeneous, implying that
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components are randomly distributed throughout the

thin section. Sediments that are laminated on a scale

smaller than the dimensions of a thin section cannot be

considered as homogeneous. The condition of in-

dependence of successive observations is fulfilled if

sampling points are chosen at random (Chayes, 1956;

Demirmen, 1971; Neilson and Brockman, 1977; Bard-

sley, 1983). This condition is difficult to reconcile with

the use of a rectangular sampling grid, because all

points are fixed after the first grid point has been

chosen. However, stochastic independence of obser-

vations can be safely assumed if the grid size (point

distance) is greater than the maximum grain size, be-

cause adjacent observations do not fall on the same

grain (Van der Plas and Tobi, 1965; Manetti and Turi,

1969; Galehouse, 1971), and adjacent framework

grains in detrital sediments are independent by defi-

nition.

Under the above conditions, the proportions of

each component follow a binomial distribution. The

composition of the specimen as a whole, i.e., the joint

distribution of component proportions, can be des-

cribed by a multivariate generalisation of the binomial

called the multinomial distribution. Eisenhart

(1935a,b) implicitly referred to the multinomial by

advocating the use of a v2 test to quantify the degree

of compositional similarity between heavy-mineral

counts. Griffiths (1960, 1967) was the first to explic-

itly mention the multinomial distribution as a suitable

statistical model for sedimentary–petrologic data.

Kelley (1971) should be credited for providing the

first examples of its application, and for discussing the

problem of spurious correlations between proportions

induced by the unit-sum and non-negativity con-

straints (Eq. (1)).

According to this model, each point represents

an independent observation. A composition estimate

obtained by counting a series of N points in thin

section is thus regarded as a statistical sample of size

N. Composition estimates are usually regarded as

representative samples of thin sections, which in turn

are assumed to be representative of the hand speci-

mens from which they were cut. Statistical inferences

about the population of interest thus refer to the

specimens. The condition of homogeneity implies that

component proportions in the population are fixed

quantities. The only source of variation pertains to a

random sampling error associated with the finite

number of points counted, with a precision propor-

tional to the square root of sample size N. This model

allows one to describe the uncertainty in the estimated

composition of a rock as a whole by calculation of

(1� a) confidence regions of the population compo-

sition. Hence, multinomial confidence regions calcu-

lated from point-counted thin sections that were cut

from different specimens may be used to determine if

the rock unit from which these specimens were

derived is compositionally homogeneous. Sources of

compositional variation other than a random sampling

error must be present if the point counts differ sig-

nificantly, indicating that the sediment is not of uni-

form composition. Because the population concept in

this model is tied to a random sampling error only, the

conclusion in the latter case should be that the point

counts are unlikely to represent samples from a single

population. The multinomial can also be applied to

analysis of operator error, by comparing composition

estimates obtained from the same thin section by

different analysts.

Model A cannot be applied if assumptions of

independence or homogeneity do not hold. Manetti

and Turi (1969) and Demirmen (1971) experimen-

tally showed the effects of violating the independence

assumption. A lack of independence is obvious if the

size of the counting grid approaches the grain size of

sediments. The multinomial distribution is also inad-

equate in cases where stochastic independence of

adjacent observations cannot be safely assumed, as

in many crystalline rocks (Whitten and Dacey, 1975;

Neilson and Brockman, 1977; Vistelius and Har-

baugh, 1980). The problems associated with violation

of the homogeneity assumption have been addressed

mainly in the context of quantifying the composition

of strongly foliated metamorphic rocks (Shaw and

Harrison, 1955; Chayes, 1956). Griffiths (1960,

1967) pointed out that they are equally relevant to

the analysis of laminated sediments. A practical

solution to the problem of estimating the uncertainty

of point-count data in such cases is to perform a

series of replicate analyses, as advocated by Chayes

(1949, 1956), Griffiths (1960, 1967), Demirmen

(1971), Neilson and Brockman (1977) and Bardsley

(1983). Essentially the same approach may be used to

investigate the effects of operator error. Statistical

analysis of such replicates may be performed with

Model B.
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4.3. Model B: the composition as unit of observation

An alternative view is that a series of points

counted in thin section forms a single multivariate

observation (Imbrie and Van Andel, 1964; Aitchison,

1986, 1989; Aitchison and Shen, 1984; Weltje, 1995,

1997, 1998). A series of n composition estimates thus

constitutes a sample of size n. The population concept

employed in Model B is much more flexible than the

fixed population employed in Model A. Composition

estimates obtained by point counting are considered

replicates, whose pattern of variation reflects the

covariance of component proportions in the popula-

tion. The operational definition of the population of

interest depends on the experimental layout. If the thin

sections were cut from specimens derived from a

single rock unit, the population is that unit. It is also

conceivable that the thin sections were derived from

specimens belonging to different rock units within a

basin, in which case the entire basin fill may be

considered as the population of interest.

This conceptual model is formalised by use of the

multivariate additive logistic normal distribution

(Aitchison, 1986). Stattegger and Morton (1992),

Prins and Weltje (1999a) and Garzanti et al. (2000)

have used ternary confidence regions for petrographic

data based on this model. Application of the logistic

normal distribution allows the calculation of two types

of (1� a) confidence regions for a series of n com-

positions:

� Confidence regions of the entire population,

which may be used to predict the range of

variation in observations;
� Confidence regions of the population mean,

which are useful for deciding if samples differ

significantly from one another.

Confidence regions calculated with this model show

the combined effects of all sources of variation,

including the sampling error as defined above. The

number of points counted to arrive at each composi-

tion estimate is not taken into account in Model B.

The uncertainty associated with sampling of a few

hundred points (cf. Model A) is typically small

relative to the spread of the entire population, because

sediments tend to be heterogeneous on a large (inter-

specimen) scale. Hence, individual composition esti-

mates within a sample are expected to differ signifi-

cantly from each other according to Model A if the

spatial extent of the population of interest exceeds the

scale of a thin section.

5. Construction of confidence regions

5.1. General properties

The construction of confidence regions for popula-

tion parameters is complementary to common signifi-

cance tests. The purpose of such tests is to determine

if parameter values estimated from a sample are

consistent with known population parameters. A well-

known univariate test of this type is the one-sample

Student’s t-test (e.g., Davis, 1986; Rock, 1988; Press

et al., 1994). Student’s t, the test statistic, provides a

measure of discrepancy between population and sam-

ple means that can be interpreted in probabilistic

terms by comparing its value to a ‘critical’ value of

t corresponding to a given a. The sample mean is

considered consistent with a population mean if the

calculated t is less than or equal to the ‘critical’ t. This

procedure may be inverted to calculate ‘critical’

population means from a sample mean and a ‘critical’

t. The result is a (1� a) confidence interval of the

population mean (Eq. (6)). Multivariate extensions of

the above approach result in confidence regions

instead of confidence intervals.

A confidence region associated with a multivariate

sample contains all combinations of population pa-

rameters that are consistent with the corresponding

parameter values estimated from the sample. The

boundary of the confidence region represents the set

of population parameters corresponding to the critical

value of the test statistic at the desired significance

level a. The confidence region thus contains all sets of

population parameters for which the significance test

gives levels equal to or greater than a for the sample

under consideration.

Three commonly adopted significance levels a for

constructing confidence regions are 0.10, 0.05 and

0.01. The corresponding (1� a) confidence levels

0.90, 0.95 and 0.99 can be thought of as representing

the probability of covering the true values of the set

of parameters, or simply as the content of the region.

In other words, if we could take an infinitely large

G.J. Weltje / Earth-Science Reviews 57 (2002) 211–253 225



number of independent samples from a given multi-

variate distribution and we would calculate a (1� a)
confidence region from each sample, we would

expect a proportion of (1� a) confidence regions to

contain the true population parameters. For instance,

a 90% confidence region about the multivariate

sample mean has an associated 0.90 probability of

containing the population mean. A 95% confidence

region of the same set of parameters must cover a

larger portion of the parameter space. The 95%

confidence region thus fully encloses the 90% con-

fidence region, and the 99% confidence region enc-

loses both the 95% and 90% regions. The canonical

90%, 95% and 99% confidence levels are also

considered reasonable in most geological applica-

tions. Confidence levels below 90% have little prac-

tical use, because the associated probability of attri-

buting statistical significance to chance variations is

greater than 0.10, which is hardly a sound basis for

geological inferences. Confidence levels exceeding

99% are unlikely to be useful in practice, given the

relatively small number of observations available in

most petrographic studies.

5.2. Treatment of zeros

A composition estimate based on point-count data

may contain several zero values. Faced with such

compositions, one may argue that the presence of zero

values indicates the absence of certain components in

the specimen under study. However, it is quite plau-

sible that one or more components are present in trace

amounts only and have not been encountered during

point counting. In the latter case, the absence of

components in a sample of finite size is attributable

to sampling error. The fundamental difference bet-

ween these two interpretations of zero values can be

illustrated with the help of a ternary diagram.

The vertices of a ternary QFL diagram com-

monly used in sedimentary petrology can be thought

of as representing hypothetical end-member sands

consisting of pure quartz (Q), feldspar (F) and lithic

fragments (L). The three edges of the diagram

represent binary mixtures of these three end mem-

bers, and the area inside the diagram covers the set

of all possible ternary mixtures. Thus, if k is defined

as the number of components present in the pop-

ulations under consideration, k = 1 for the vertices,

k = 2 for the edges, and k = 3 for the inside of the

diagram. These three fixed end members and their

four associated mixing spaces (three binary spaces

and one ternary space) have different dimensions,

k� 1. Consequently, if one or more components are

regarded as truly absent in the populations from

which the samples were drawn, then these popula-

tions belong to different spaces and cannot be com-

pared directly.

This leads to the conclusion that the ternary com-

positional space of the populations under considera-

tion does not include the edges and vertices of the

ternary diagram. We could use an appropriate signifi-

cance test to calculate the parameter values of samples

from any given ternary population associated with a

fixed confidence level (1�a). Some of these param-

eter values could be equal to zero, especially if one or

more components are present in small amounts.

Hence, sampling from such ternary populations will

occasionally give rise to observations located on the

edges and vertices of the diagram.

The problem facing us when we attempt to use

significance tests in inverse mode is that the range of

‘critical’ population parameters must fully enclose the

parameter values estimated from a sample. The

unknowns, i.e., the ‘critical’ values of the ternary

population parameters are constrained to the interval

h0,1i, and cannot be equal to zero or unity. A po-

pulation parameter equal to zero implies that the

corresponding component cannot possibly be ob-

served, indicating that k < 3. A ternary population

parameter equal to one implies that the other two

parameters must be equal to zero (indicating that

k = 1). This population, located at one of the vertices

of the ternary diagram cannot be a composition, as it

consists of one component only and does not repre-

sent a multivariate entity. It follows that any sample

with one or more estimated parameter values equal to

zero cannot possibly be enclosed within a ternary

confidence region for compositional data. A mean-

ingful comparison between ternary compositions thus

requires that all observed zero values are attributed to

sampling error, i.e., they are assumed to reflect the

low probability of encountering certain rare compo-

nents in a sample of finite size. Therefore, the stat-

istical methods discussed below require that observed

zero values are replaced by statistically acceptable

positive values.
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Techniques for eliminating zeros in a matrix of

compositions are, in increasing order of sophistication:

� Formation of subcompositions by deletion of

rows (observations) or columns (components),

followed by recalculation to unit sum;
� Amalgamation of columns (components) as-

sumed to have the same genetic significance;
� Replacement of zeros by (statistically accept-

able) small positive values, followed by recal-

culation to unit sum.

The first two techniques are self-explanatory. The

third has been applied chiefly in geochemistry, where

components present in small amounts may not be

recorded if their concentration approaches the lower

detection limit of the measurement device. The usual

practice is to replace zeros by a positive value cor-

responding to the detection limit, the maximum

round-off error, or the data precision (Aitchison,

1986). A straightforward method for point-count data

is to replace all recorded zeros with 0.5 point (max-

imum round-off error) or 1.0 point (detection limit),

after which the constant-sum constraint may be im-

posed on the counts or any ternary subset thereof.

5.3. Interpolation of discrete numerical solutions

An immediate consequence of the constrained

nature of ternary compositions is that the sum of two

components provides full knowledge of the third. Two

co-ordinates thus uniquely define each point in a

ternary diagram. The construction of a ternary confi-

dence region may thus be reduced to a bivariate

problem, whose numerical solution consists of a series

of boundary points (b1,b2). The confidence regions

described below generally possess smooth, convex

boundaries in two-parameter space. Approximation of

such continuous boundaries by cubic spline interpola-

tion (Davis, 1986; Press et al., 1994) of at least 40

points gives good results, provided that the points are

approximately equally spaced along the perimeter of

the confidence region. The points must of course be in

the correct order for interpolation, and the first point

must be identical to the last to allow closure of the

boundary. Interpolation of the discrete solution is

preceded by transformation from bivariate boundary

points to ternary co-ordinates if the boundaries of

confidence regions must be displayed in a ternary

diagram. The discrete solution may thus be defined as

a set of 41 boundary points in ternary co-ordinates,

collected in the array B. This array is submitted to a

graphics software package with a cubic spline interpo-

lation option. The following sections discuss the meth-

ods for obtaining discrete numerical solutions for

various types of confidence regions.

6. A confidence region for a single composition

6.1. A goodness-of-fit measure for the multinomial

distribution

A classical goodness-of-fit measure for data that are

assumed to follow a multinomial distribution is Pear-

son’s chi-squared statistic (PXS). This measure of

discrepancy between data and model is a member of

the class of so-called power-divergence statistics,which

encompasses all commonly used goodness-of-fit sta-

tistics for categorical data. The behaviour of all power-

divergence statistics has been shown to converge to that

of the PXS statistic in the case of large samples (Cressie

and Read, 1984; Read and Cressie, 1988; Medak and

Cressie, 1991). The PXS statistic is defined as:

PXS ¼
Xk
i¼1

ðni � NpiÞ2

Npi
ð12Þ

where pi > 0, Sk
i¼1 pi ¼ 1 and Sk

i¼1 ni ¼ N

The total number of petrographic classes is defined

as k and the total number of points counted in k

classes (i.e., the sample size) as N. The number of

points falling on the i-th component is defined as ni
and the component proportions in the population are

defined as pi. The estimated component proportions p̂i
are obtained from Eq. (7).

The PXS statistic is approximately distributed as v2

with df = k� 1 under the null hypothesis. A composi-

tional difference between a specified population and

an estimated composition is considered significant at a

level a if:

PXS z v2ð1�a;k�1Þ ð13Þ

The boundary of the (1� a) confidence region of an

estimated composition may be calculated by inversion
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of this test, i.e., by solving for the range of permissible

population parameters pi (Watson and Nguyen, 1985;

Watson, 1987; Medak and Cressie, 1991). The equa-

tion to be solved is obtained by substituting the

estimated proportions for the observed number of

points (Eq. (7)) and the critical value of v2 for PXS

(Eq. (13)), giving:Xk
i¼1

ðp̂i � piÞ2

pi
¼

v2ð1�a;k�1Þ
N

ð14Þ

The numerical solution of this equation for binary and

ternary compositions is given in Appendix A. The

binary case will not be discussed in detail, as the main

topic of this paper is analysis of ternary compositions.

The confidence limits obtained by using the PXS

approximation to component proportions of binary

compositions are shown in Fig. 4, which may be

directly compared with Fig. 1. The superiority of the

PXS approximation is obvious in cases where pi is

close to zero or unity and N relatively small. The

marked asymmetry of the lower and upper confidence

limits on proportions deviating considerably from 0.5

is a consequence of the fact that estimates are con-

strained to the interval h0,1i.

7. Confidence regions for multiple compositions

7.1. The additive logistic normal model

Many patterns of compositional variation can be

described by additive logistic normal distributions

(Aitchison, 1986). This class of statistical models is

based on the logratio transformation, which removes

the non-negativity and constant-sum constraints on

compositional variables (Eq. (1)). Let xi represent the

relative abundances of components in a composition

made up of k constituents (1V iV k). The k-th com-

ponent xk, whose value is fully specified by the sum of

the other k� 1 values, is used as a common denom-

inator to form a series of k� 1 ratios of component

abundances. The logarithms of these ratios are defined

as the set of logratios yi:

yi ¼ log
xi

xk


 �
¼ log xi � log xk ,

where i ¼ 1,2, . . . ,k � 1 ð15Þ

Logratios are amenable to rigorous statistical analysis,

unlike the constrained compositional variables. They

are unconstrained in the sense that they can take on

any value between [�l; +l], and their values can

be modified without automatically forcing a response

Fig. 4. Pearson’s v2 approximations to binomial confidence limits of

proportions ( p) as a function of count length (N ). (A) p= 0.5; (B)

p= 0.2; (C) p= 0.05. Confidence limits are 90%, 95% and 99%.

Predictions stay within the physical limits on proportions, resulting

in asymmetric confidence limits (compare to Fig. 1).
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of the other logratios formed from the same compo-

sition. Moreover, the outcomes of logratio statistical

analysis are permutation invariant, i.e., unaffected by

the choice of common denominator. The logratio

transformation thus provides a unique specification

of the covariance structure of compositional data

(Aitchison, 1986).

By definition, compositional data follow an addi-

tive logistic normal distribution if their logratios are

multivariate normally distributed. The requirement of

additive logistic normality appears to be fulfilled by

many types of compositional data. A well-known

example is the approximately lognormal distribution

of many trace elements in rocks, which has been

empirically established in geochemistry. If we con-

sider the rock as a binary system, made up of a trace

element t and the rest, comprising (1� t) of the total

mass, we can write for the distribution of t:

N log
t

1� t

� �n o
¼ NflogðtÞ � logð1� tÞg

� NflogðtÞ � 0g ¼ NflogðtÞg ¼ Lftg,

where N and L are defined as normal and lognormal

distributions. In other words, t is lognormally distrib-

uted because (1� t) is close to one, implying that its

logarithm is practically equal to zero.

Statistical models for ternary compositions (x1, x2,

x3) are thus preferentially constructed under the

assumption of a bivariate normal distribution of the

corresponding set of logratios ( y1, y2). The results of

logratio statistical analysis may be mapped back onto

the compositional plane for display in a ternary

diagram. Mapping is accomplished by the inverse

logratio transformation, which comprises the follow-

ing steps. The logistic transformation reimposes the

non-negativity constraint:

zi ¼
e yi for i ¼ 1,2, . . . ,k � 1

1 for i ¼ k

�
ð16Þ

After which the constant sum C is restored:

xi ¼
CziXk

i¼1

zi

ð17Þ

For example, the arithmetic mean of a set of com-

positions in logratio space corresponds to the geo-

metric mean of the raw data, if both are recalculated

to unit sum (cf. Eqs. (16) and (17)). The geometric

mean is a much more flexible measure of central

tendency than the traditional arithmetic mean calcu-

lated from untransformed data. The latter may be

very atypical of data sets that display curved patterns

in ternary diagrams (Philip and Watson, 1988; Aitch-

ison, 1989).

The logratio transformation is a powerful tool that

enables the use of standard multivariate statistical

methods based on the assumption of multivariate

normality. Actually testing this assumption is beyond

the scope of this article (for an overview of tests of

multivariate normality, see Aitchison, 1986). A power-

ful bivariate normality test applicable to logratio-trans-

formed ternary compositional data is given by Press et

al. (1994). Other data transformations, in conjunction

with methods of outlier detection, should be used in

cases where data do not fit this model (see Barceló et

al., 1996).

Until now, applications of the logratio transforma-

tion to petrographic data have been relatively scarce.

Butler and Woronow (1986) analysed the data set of

Dickinson and Suczek (1979) for the presence of spu-

rious correlations induced by the constant-sum con-

straint. Their results suggest that the compositional

trend within the ‘magmatic arc’ field of Dickinson

and Suczek (1979) can also be produced by imposing

the constant-sum constraint on a set of independent

variables, which may indicate that it has no geological

meaning.

A fundamental problem of compositional data ana-

lysis that cannot be resolved by mathematical manip-

ulations, is the fact that the behaviour of a single

variable cannot be studied in ‘isolation’. Techniques

have been developed, based on the methodology of

Aitchison (op. cit.) to identify the source of composi-

tional shifts across data suites (Woronow, 1990;

Woronow and Love, 1990). Systematic comparison

of all logratios that can be formed from two sets of

compositions allows the identification of logratios

whose means display identical trends, i.e., increase,

equality or decrease from one data set to another. A

similar two-sample test was used by Weltje et al.

(1996) to investigate shifts in sandstone composition

associated with variations in the rate of sediment

supply in an Eocene fan-delta system in the Spanish

Pyrenees.
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7.2. A goodness-of-fit measure for the multivariate

normal distribution

Confidence regions of the multivariate normal

distribution are obtained by inverting the multivariate

equivalent of the familiar one-sample Student’s t-test.

This test may be used to quantify the probability that a

random sample has been drawn from a univariate

normal population with specified mean and unknown

variance. The appropriate test statistic for the multi-

variate case is Hotelling’s T 2, which is defined as

(Morrison, 1976; Davis, 1986):

T 2 ¼ n½Y � Y
TS�1½Y � Y
 ð18Þ

Where n is the sample size, Y is a column vector of

sample means, Y is the specified column vector of

population means, and S is the sample covariance

matrix (superscripts T and � 1 denote transpose and

inverse, respectively).

A difference between the multivariate sample mean

and a specified multivariate population mean is con-

sidered significant at a level a if:

T 2z
mðn� 1Þ
n� m

Fð1�a;df1;df2Þ ð19Þ

The above formula shows how the calculated values

of Hotelling’s T 2 may be compared to critical values

of the F-statistic for a (1� a) confidence level. The

number of degrees of freedom are equal to df1 =m and

df2 = n�m, where m is defined as the number of

variables (two in case of logratio-transformed ternary

compositions). The boundary of the confidence region

for the population mean may be calculated by inver-

sion of this test, i.e., by solving:

½Y � Y
TS�1½Y � Y
 ¼ mðn� 1Þ
nðn� mÞ Fð1�a;df1;df2Þ ð20Þ

for the range of permissible population parameters Y.

The solution is represented by an m-axial ellipsoid

centred about the sample mean Y , with a set of

principal axes whose orientation and relative lengths

are determined by the properties of S (Morrison,

1976; Aitchison and Shen, 1984). The sample size

and choice of confidence levels determine the abso-

lute lengths of the principal axes.

A similar ellipsoidal region may be constructed to

show the range of compositional variation of a given

proportion (1� a) of the population, which may be

used to predict the range of variation of individual

observations (specimens). Such a region is termed a

predictive region of content (1� a) (Aitchison, 1986).
The equation for the boundary of this region ex-

pressed in terms of the F-statistic is identical to the

above equation, apart from the multiplication factor

(n + 1) on the right-hand side:

½Y � Y
TS�1½Y � Y


¼ mðn� 1Þðnþ 1Þ
nðn� mÞ Fð1�a;df1;df2Þ ð21Þ

The numerical solution of Eqs. (20) and (21) is out-

lined in Appendix B.2.

7.3. Additional comments on bivariate normal con-

fidence regions

Fig. 5 shows additive logistic normal confidence

regions of the synthetic data listed in Table 1. The

elliptic boundaries calculated in bivariate y-space (Fig.

5A) map onto a far less regular region in ternary x-

space, that need not be convex (Fig. 5B). However, the

essential properties of the regions are preserved. In

both spaces, a series of six concentric ‘confidence

shells’ is encountered when moving outward from

the sample mean, which corresponds to the centre of

the distribution. The first three are 90%, 95% and 99%

confidence regions of the population mean. These are

followed by 90%, 95% and 99% confidence regions of

the entire population, i.e., regions expected to contain

90%, 95%, and 99% of the observations drawn from

the population of interest. The size of the confidence

region of the mean is a factor
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
smaller than the

size of the region of the entire population. Note that the

additive logistic normal confidence regions, which do

not extend beyond the boundaries of the ternary dia-

gram, adequately capture the curved pattern of com-

positional variation. The difference between Figs. 3

and 5 highlights the superiority of the additive logistic

normal regions over the hexagonal fields of variation

calculated from the same data.

The sizes of the two types of elliptical regions as a

function of the sample size are illustrated in Fig. 6,

which shows a plot of
ffiffiffiffiffi
hk

p
(a measure of the size of the

confidence region, defined in Eq. (B-3), Appendix
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B.2) vs. n for the three confidence levels used in this

article. For very small samples (3V nV 5), both types

of regions are similar in size. The size of predictive

regions of the entire distribution decreases rapidly with

increasing sample size up to n 24 30, but it is nearly

independent of sample size for n>30. At n = 30,

confidence regions of the population mean are almost

one order of magnitude smaller than the regions of the

entire distribution (Fig. 5A). Further increase of the

sample size is accompanied by an exponential decrease

in size of the confidence region for the population

mean, shown in Fig. 6 as a linear decrease on the

logarithmic scales. The size of this region is inversely

proportional to the resolution of the statistical model,

i.e., the precision with which the population mean can

be estimated.

A point that is often missed is that two or more

samples differ significantly if the confidence regions of

the population means (corresponding to a common

significance level) do not overlap one another, regard-

less of the extent of overlap of the population con-

fidence regions. Fig. 6 shows that the capability to

detect subtle differences between partly overlapping

populations increases with sample size, which is intui-

tively obvious. In general, samples of size n = 30

should suffice for discriminating between overlapping

populations, unless the differences in means are

extremely small relative to the population standard

deviations. Detecting more subtle differences by

means of point counting is generally not feasible in

view of the limited amount of data available in most

studies.

The conventional test for differences in means of

multivariate data is based on the assumption that the

variation within a series of samples can be represented

by a common covariance matrix (Morrison, 1976;

Davis, 1986). Tests for significant differences among

multivariate means should therefore be preceded by

tests for significant differences among sample cova-

riance matrices (Morrison, 1976; Davis, 1986). If at

least one of the covariance matrices differs signifi-

cantly from the rest, the results of the means test

cannot be trusted. The ‘graphic significance test for

multivariate means’ formed by examining the degree

Fig. 5. Additive logistic normal confidence regions constructed from bivariate logratio distributions of the data in Table 1. Solid line: confidence

regions of the population mean; dashed line: confidence regions of the entire population. Confidence limits are 90%, 95% and 99%. (A) Elliptic

confidence regions in logratio space reflect the shape of the bivariate normal distribution. (B) The non-linear inverse logratio transformation

produces a crescent-shaped region in ternary compositional space, corresponding to an additive logistic normal distribution. Curved pattern

associated with selective compositional modification is adequately captured (compare to Fig. 3).
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of overlap between confidence regions of population

means in a ternary diagram does not suffer from this

problem, because confidence regions are calculated

from the mean vector and covariance matrix of each

sample separately.

8. Example 1: modern beach sands (Italy)

8.1. Data

Compositional data acquired in the course of a

systematic sampling programme of modern beach

sands (Aiello et al., 1978) will be used to illustrate

the above techniques. Two sets of specimens were col-

lected from sections dug on the berms of Tyrrhenian

beaches near the Cecina River mouth (about 30 km

south of Livorno, Italy). Sections X and Y are located

7.5 km north and 1.0 km south of the river mouth,

respectively. Four specimens were sampled in each

section at different depths below the surface. All speci-

mens were split into halves. One set of ‘subspecimens’

of each section was mixed, homogenised and again

split to obtain four replicates. Statistical analysis of this

set of so-called ‘mixture replicates’ thus permits an

assessment of compositional variation attributable to

analytical procedures alone. In contrast, compositional

variation between the original specimens within a

single section reflects the combination of local sedi-

mentary processes (selective sorting according to size,

shape, and density of grains) and analytical procedures.

Each of the original specimens and mixture repli-

cates was sieved into three size fractions (fine: u=

{4,2}; medium: u={2,0}; coarse: u={0,� 2}). The

fine fractions were subdivided into light and heavy

minerals by means of gravimetric separation. The

Fig. 6. Sizes of additive logistic normal regions as a function of sample size (n).
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framework composition was estimated by counting

350 (coarse fraction) to 500 (fine and medium frac-

tion) grains by the Indiana method. The composition

of the heavy-mineral assemblage was estimated by

counting 300 grains. The relation between the original

counts and the compositional classes used in this

exercise is defined in Table 2. Ternary framework

compositions were defined as {Qt, F, Rns}. Sedimen-

tary rock fragments, bioclasts, micas, and chlorites

were excluded from the analysis (the group labelled

‘rest’). Ternary heavy-mineral compositions were pro-

duced by amalgamation of pyroxenes, epidote, and

zoisite into a single class of transparent heavy miner-

als, and by excluding micas, chlorites, and carbonates.

Composition estimates in these ternary systems are

based on approximately 225 framework grains and

250 heavy-mineral grains. A part of this data set,

including the framework composition of the medium-

sized fractions and the composition of the heavy-

mineral assemblages is presented in Table 3.

8.2. Multinomial regions

Confidence regions for each estimated composition

in the data set may be constructed with the multi-

nomial model. Differences among the estimated com-

positions are not statistically significant if these

regions overlap one another, as would be expected

in cases where random sampling error is the only

source of compositional differences among point

counts. In geological terms, such a lack of significant

differences strongly suggests that the sections are

compositionally homogeneous.

The multinomial confidence regions of the heavy-

mineral assemblages of sections X and Y are shown in

Figs. 7 and 8. One specimen from section X differs

significantly from the other three at a 95% confidence

level (Fig. 7A). In section Y, one specimen differs

significantly from the other three at a level exceeding

99% (Fig. 8A). The other specimens of sections X and

Y cluster together, indicating a general lack of sig-

nificant compositional variation within the sections.

The mixture replicates from both sections are of

virtually identical composition (Figs. 7B and 8B), as

demonstrated by the nearly complete overlap of their

Table 2

Relation between the compositional classes of published data and

the classes used in this study. Numbers in brackets indicate that the

categories were not reported separately

Grain types ABP (1978) RJ (1997)

Qm Mono-x quartz + (1) +

Qp Poly-x quartz + +

Qc Chert + (1) �
Fk K-feldspar + (2) +

Fp Plagioclase + (2) +

Rm Metasedimentary RF + +

Ri Igneous RF + �
Rs Siliciclastic RF + (3) +

Rc Carbonate RF + (3) +

Ro Other RF � +

Bi Bioclasts + (3) +

A Alterites � +

M Micas and Chlorite + �
Qt Qm+Qp+Qc

F Fk +Fp

Rns Rm+Ri +Ro

Rnc Rns +Rs

Opq Opaque HM + �
Alt Alterite HM + �
Px Pyroxene + �
EZ Epidote and Zoisite + �
MC Micas and Chlorite + �
C Carbonate + �
Trn Px +EZ

ABP (1978) =Aiello et al. (1978); RJ (1997) =Robinson and

Johnsson (1997).

Table 3

Compositional data of modern beach sands from Tuscany, Italy

(Aiello et al., 1978)

Numbers in the table are the actual numbers of points/grains

counted. See Table 2 for additional explanation.

Label Qt F Rns Rest Label Opq Alt Trn Rest

X-A-1-m 13 19 148 320 X-A-1-h 148 37 46 69

X-A-2-m 5 18 218 259 X-A-2-h 110 68 87 35

X-A-3-m 47 39 110 304 X-A-3-h 139 40 69 52

X-A-4-m 67 15 224 194 X-A-4-h 150 51 58 41

X-B-1-m 16 32 180 272 X-B-1-h 155 46 43 56

X-B-2-m 24 35 150 291 X-B-2-h 157 51 38 54

X-B-3-m 47 18 139 296 X-B-3-h 170 51 32 47

X-B-4-m 32 18 146 304 X-B-4-h 168 43 35 54

Y-A-1-m 71 7 70 352 Y-A-1-h 203 32 37 28

Y-A-2-m 44 45 157 254 Y-A-2-h 180 37 56 27

Y-A-3-m 81 8 96 315 Y-A-3-h 163 55 53 29

Y-A-4-m 62 13 194 231 Y-A-4-h 89 90 25 96

Y-B-1-m 25 17 149 309 Y-B-1-h 175 52 48 25

Y-B-2-m 116 9 115 260 Y-B-2-h 165 49 54 32

Y-B-3-m 99 5 58 338 Y-B-3-h 174 48 45 33

Y-B-4-m 97 7 105 291 Y-B-4-h 169 49 45 37

Specimen labels are coded as follows: section ID (X or Y),

subspecimen set (A or B), number (1 to 4), fraction (m= framework

components, medium sand size; h = heavy minerals, fine sand size).

G.J. Weltje / Earth-Science Reviews 57 (2002) 211–253 233



confidence regions. Compositional variation among

the original specimens thus exclusively reflects trans-

port-related selection in the beach environment. The

mixing-and-splitting strategy is an effective method

for reducing the small-scale compositional variation

of heavy-mineral assemblages, because compositional

variation cannot be attributed to the analytical proce-

dures used.

The multinomial confidence regions of the frame-

work components are shown in Figs. 9 and 10.

Compositional variation of framework components

in sections X and Y is more conspicuous than that

Fig. 7. Multinomial confidence regions of heavy-mineral compositions from section X. Confidence limits are 90%, 95% and 99%. (A) Original

specimens; (B) mixture replicates. See Table 2 for additional explanation.

Fig. 8. Multinomial confidence regions of heavy-mineral compositions from section Y. Confidence limits are 90%, 95% and 99%. (A) Original

specimens; (B) mixture replicates. See Table 2 for additional explanation.
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of the heavy minerals. In fact, only two out of four

specimens from each section show a lack of signifi-

cant compositional differences (Figs. 9A and 10A).

Reduction of the compositional variation by the mix-

ing-and-splitting strategy appears to have been mod-

erately successful in case of the specimens from

section X (Fig. 9B), but it failed completely for

section Y (Fig. 10B). The overall similarity in spread

of original specimens and mixture replicates indicates

that the recorded variation of framework composition

is largely attributable to analytical procedures. The

information presented by Aiello et al. (1978) does not

Fig. 9. Multinomial confidence regions of framework compositions from section X. Confidence limits are 90%, 95% and 99%. (A) Original

specimens; (B) mixture replicates. See Table 2 for additional explanation.

Fig. 10. Multinomial confidence regions of framework compositions from section Y. Confidence limits are 90%, 95% and 99%. (A) Original

specimens; (B) mixture replicates. See Table 2 for additional explanation.
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suggest any particular reason for the unusually wide

scatter of framework compositions. Two possible

explanations for the apparent compositional variation

between mixture replicates are:
. The assemblage of framework grains is highly

sensitive to selection, implying that many of the

original specimens and mixture replicates are in fact

of significantly different composition. This suggests

that mechanical selection took place during splitting

of the specimens.
. The original specimens and mixture replicates

are in fact of identical composition. In that case, the

Fig. 11. Additive logistic normal regions of the heavy-mineral association in section X. Confidence limits are 90%, 95% and 99%. (A)

Predictive regions of the data points; (B) confidence regions of the population mean. See Table 2 for additional explanation.

Fig. 12. Additive logistic normal regions of the heavy-mineral association in section Y. Confidence limits are 90%, 95% and 99%. (A) Predictive

regions of the data points; (B) confidence regions of the population mean. See Table 2 for additional explanation.
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formation of replicates would have been successful,

but the compositional variation would have been

fabricated during counting of the grain mounts. This

suggests a significant influence of random operator

error.

8.3. Logistic normal regions

A more flexible population concept is desirable in

many geological applications, for instance in the

present case where we would like to define the ‘local

Fig. 13. Additive logistic normal regions of the framework association in section X. Confidence limits are 90%, 95% and 99%. (A) Predictive

regions of the data points; (B) confidence regions of the population mean. See Table 2 for additional explanation.

Fig. 14. Additive logistic normal regions of the framework association in section Y. Confidence limits are 90%, 95% and 99%. (A) predictive

regions of the data points; (B) confidence regions of the population mean. See Table 2 for additional explanation.
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beach sand’ as the population of interest. Invoking the

second model allows a quantitative characterisation of

this population. In this model, the point counts are

treated as replicates, i.e., a series of random realisa-

tions whose spread reflects the properties of the

population. The shape of the population of interest

can be inferred from the covariance structure of the

data because it is assumed that an appropriate class of

distribution functions has been specified. Predictive

regions of the populations and confidence regions of

the population means are shown to illustrate the

characterisation of compositional variation with this

model.

Confidence regions based on the additive logistic

normal distribution are shown in Figs. 11–14. For the

purpose of this exercise, sample sizes were artificially

increased by regarding all eight specimens from each

section as a single sample. Although incorrect from a

methodological point of view, it was considered nec-

essary because the statistical uncertainty associated

with the small samples would have inflated the regions

to such an extent that few geological inferences could

have been made otherwise (see Fig. 6). This negation

of the careful sampling design of Aiello et al. (1978)

results in an underestimation of the compositional

variability of the heavy-mineral assemblages, because

the spread of the mixture replicates is significantly

smaller than that of the original specimens. However, it

is unlikely to affect the inferences from statistical

analysis of the framework components, because the

patterns of compositional variation displayed by the

original specimens and mixture replicates are similar.

Confidence regions of the entire distribution may

be used to predict the range of compositional variation

of specimens from the same locality. The shapes of

these regions (Figs. 11A–14A) accurately capture the

sample distributions, suggesting that the assumption

of additive logistic normality is reasonable. The con-

fidence regions of the population means may be used

to decide if two samples are likely to have been drawn

from the same population. The considerable overlap

in confidence regions of the heavy-mineral population

means (Figs. 11B and 12B) provides no reason to

assume that the two samples are derived from differ-

ent populations. In fact, the sizes of the confidence

regions have been underestimated by treating the four

original observations and the four mixture replicates

as a single sample. The confidence regions of the

framework population means (Figs. 13B and 14B)

also overlap one another, but the considerable differ-

ence in location of the regions suggests that two

framework populations could have been distinguished

if the samples would have been twice as large (see

Fig. 6).

9. Example 2: modern fluvial sands (Alaska)

9.1. Data

Point-count data of sands from the Sagavanirktok

river, Alaska (Robinson and Johnsson, 1997) will be

used to illustrate the flexibility of the additive logistic

normal distribution (Model B) for characterising com-

positional variability in a system dominated by chem-

ical and mechanical weathering. The results obtained

by applyingModel B to the data will be compared to the

use of hexagons constructed from univariate normal

approximations. The data consist of 19 specimens of

medium-sized sand, whose compositions were quanti-

Table 4

Point-count data of medium-sized sands from the Sagavanirktok

river basin, North Slope, Alaska (Robinson and Johnsson, 1997).

Numbers in the table are the actual numbers of points counted

Label DE Qt Rnc Rc Rest

S-01 A 54 246 0 0

S-02 A 42 256 0 2

S-03 A 61 61 172 6

S-04 A 46 77 177 0

S-05 A 50 88 154 8

S-06 A 30 156 109 5

S-07 B 59 141 93 7

S-08 B 58 112 122 8

S-09 B 51 95 136 18

S-10 C 228 58 10 4

S-11 C 205 75 14 6

S-12 C 184 93 16 7

S-13 C 172 92 30 6

S-14 C 139 119 35 7

S-15 C 144 128 16 12

S-16 B 103 135 57 5

S-17 B 107 139 49 5

S-18 B 69 180 43 8

S-19 B 92 181 23 4

DE= depositional environments; DE codes: A=mountain range,

B = foothills, C = coastal plain. See Table 2 for additional explan-

ation.
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fied by counting 300 points in thin section according to

the Indiana method. Robinson and Johnsson (1997)

distinguished three subpopulations of sands on the basis

of a threefold subdivision of depositional environments

within the alluvial system. From source to basin, the

subpopulations are: mountain-range specimens (n= 6),

Fig. 15. Predictions of subpopulation means of the Sagavanirktok river sands. Subpopulations correspond to different environments within the

alluvial system. Confidence limits are 90%, 95% and 99%. (A) Hexagonal fields of variation; (B) additive logistic normal confidence regions.

See Table 2 for additional explanation.

Fig. 16. Predictions of population means and the range of variation of the entire population of the Sagavanirktok river sands. All specimens have

been treated as a single sample to characterise the overall compositional variation within the alluvial system. Confidence limits are 90%, 95%

and 99%. (A) Hexagonal fields of variation; (B) additive logistic normal confidence regions corresponding to Fig. 17A. See Table 2 for

additional explanation.
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foothill specimens (n = 7) and coastal-plain specimens

(n= 6). Because these environments are part of a single

system, the compositional variability of the population

as a whole has also been characterised. The relation

between the original point-count categories and the

ternary projections discussed in this paper are defined

in Table 2. Ternary framework compositions were

formed by {Qt, Rnc, Rc}. Other categories present in

Fig. 17. Bivariate normal confidence ellipses of the Sagavanirktok river sands in logratio space. The two anomalous specimens S-01 and S-02

are represented by triangles. (A) Model based on all data points (n= 19); (B) revised model obtained by exclusion of anomalous specimens

(n= 17). See Table 2 for additional explanation.

Fig. 18. Predictions of subpopulation means of the Sagavanirktok river sands after exclusion of specimens S-01 and S-02. Subpopulations

correspond to different environments within the alluvial system. Confidence limits are 90%, 95% and 99%. (A) Hexagonal fields of variation;

(B) additive logistic normal confidence regions. See Table 2 for additional explanation.
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small proportions were excluded from the analysis

(group labelled ‘rest’). The reconstructed counts are

shown in Table 4.

9.2. Comparison of hexagons and Model B

Fig. 15 shows the hexagonal fields of variation

(Fig. 15A) and the logistic normal confidence regions

(Fig. 15B) of the subpopulation means. The hexago-

nal fields of variation of the population mean are

plotted together with the hexagonal field predicting

the range of variation of individual specimens in Fig.

16A. The logistic normal confidence regions of the

population mean and the entire population are shown

in Fig. 16B. A comparison of the hexagonal fields

with the logistic normal fields clearly brings out the

fundamental flaws in the former. For instance, the he-

xagonal field of variation of the mean of the mountain-

range subpopulation extends beyond the boundaries of

the ternary diagram (Fig. 15A), which expresses the

belief that the subpopulation mean is expected to be

characterised by a negative proportion of either Rc or

Rnc grains. Similar predictions of negative propor-

tions, in conjunction with a severe mismatch between

the shape of the ‘data cloud’ and the shape of the

predicted population, can be observed in Fig. 16A. The

corresponding logistic normal confidence regions do

not show such mismatches, apart from the region

depicting the mean of the mountain-range subpopula-

tion (Fig. 15B).

9.3. Outlier detection and model revision

The confidence region of the mean of the moun-

tain-range subpopulation (Fig. 15B) is unusually large

and its shape does not properly mimic the distribution

of data points in the ternary diagram. The reason for

this seems to be the presence of two anomalous data

points on the left-hand side of the ternary diagram

(specimens S-01 and S-02). A similar phenomenon

can be observed in the logistic normal regions of Fig.

16B, where the same two data points are located on

the outer edge of the predicted region of the entire

population, whereas the other data points are much

closer to the centre of the region. In other words, these

two anomalous observations can only be explained by

a logistic normal distribution whose confidence region

fills almost the entire area of the ternary diagram. The

Fig. 19. Predictions of population means and the range of variation of the entire population of the Sagavanirktok river sands after exclusion of

specimens S-01 and S-02. All specimens have been treated as a single sample to characterise overall compositional variation within the alluvial

system. Confidence limits are 90%, 95% and 99%. (A) Hexagonal fields of variation; (B) additive logistic normal confidence regions

corresponding to Fig. 17B. See Table 2 for additional explanation.

G.J. Weltje / Earth-Science Reviews 57 (2002) 211–253 241



suggestion that specimens S-01 and S-02 represent

outliers is supported by Robinson and Johnsson

(1997) who state that all other specimens belonging

to the mountain-range subpopulation are rich in car-

bonate. The two anomalous specimens represent

sands derived from portions of the hinterland without

carbonate outcrops.

Examination of the distribution of data points in

bivariate logratio space highlights the atypicality of

the two specimens (Fig. 17). Fig. 17A shows the 90–

95–99% confidence regions of the entire population

that were used to construct the ternary confidence

regions of Fig. 16B. A revised estimate of the bivari-

ate normal distribution of logratios was obtained by

excluding the two specimens, giving the result shown

in Fig. 17B. This distribution is much more compact

and better fits the remaining 17 data points. Figs. 18

and 19 show the hexagonal fields and confidence

regions obtained after exclusion of the two observa-

tions from the analysis. Exclusion of the two anom-

alous specimens has some effect on the hexagonal

fields of variation of the mountain-range subpopula-

tion mean, but the prediction still extends beyond the

boundary of the ternary space (Fig. 18A). The hex-

agonal fields of the entire population and its mean

have been somewhat reduced in size (Fig. 19A).

However, the logistic normal regions of the moun-

tain-range subpopulation in Fig. 18B and the confi-

dence regions in Fig. 19B differ conspicuously from

those of Figs. 15B and 16B. The curved pattern of

data points in the ternary diagram of Fig. 19B has now

been adequately captured.

The shape of the confidence regions of the entire

population confirms the dominant controls of mechan-

ical and chemical weathering on compositional varia-

tion in the Sagavanirktok river basin inferred by

Robinson and Johnsson (1997). The curved shape

probably represents the dissolution of carbonate rock

fragments (Rc) during the initial stage of weathering,

followed by disaggregation of non-carbonate rock

fragments (Rnc) during later stages, when most of the

carbonate has been removed. This pattern of variation

is analogous to the chemical weathering trend in the

synthetic data set of Table 1 (Fig. 5). Variation in the

proportion of carbonate rock fragments (Rc) supplied

by the lower-order drainage basins is likely to have

overprinted this weathering trend. The overall pattern

in the Sagavanirktok sands may thus be interpreted as a

chemical weathering trend that is slightly overprinted

by mixing of sediments along the transport pathway

(cf.Weltje et al., 1996). Such patterns can only persist if

the rate of chemical weathering is significantly higher

than the rate of homogenisation through exchange of

bedload and sediments in temporary storage (Weltje,

1995, 1998).

10. Alternative approaches

10.1. Introduction

A basic assumption for constructing confidence

regions is that a set of observed compositions repre-

sents a sample from a single population. This may be

reasonable in many cases, but is unlikely to cover all

possible situations. For instance, sediment properties

often display systematic spatial variations caused by

mixing of detritus from multiple feeder systems, vary-

ing degrees of intrabasinal weathering, and variations

in diagenetic history across a basin. In such cases,

where the presence of several populations is suspected,

other approaches to characterisation and prediction

may be more appropriate. Many different multivariate

statistical tools are available (e.g., Morrison, 1976;

Davis, 1986; Rock, 1988). The methods most widely

used in sedimentary petrology are briefly discussed

below. They are seldom applied to ternary systems

because of their capability to handle many variables

simultaneously, allowing use to be made of all the

information in the data. This approach must be consid-

ered superior to the data reduction a priori that takes

place when multivariate data are compressed into a

three-component system before statistical analysis.

10.2. Discrete groups: empirical classification and

assignment

Classification and assignment are useful if mean-

ingful (genetic) groups can be recognised within the

data. The presence of multiple types of sand in a basin

fill may be detected by means of cluster analysis of

petrographic data (e.g., Fay, 1982; Cavazza, 1989;

Stattegger and Morton, 1992). Cluster analysis is

usually employed as an exploratory tool, because the

statistical significance of the clustering cannot be

evaluated. Many different methods are available (e.g.,
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Bezdek et al., 1984; Davis, 1986; Rock, 1988; Gordon,

1999). Because all cluster analyses are based on some

measure of similarity between specimens, the results

are also influenced by the sampling distributions of the

components (Gordon, 1999). A permutation test for

interpreting the results of cluster analysis in a statistical

sense was proposed by Jerram and Cheadle (2000). It is

based on Monte Carlo simulation of random uniform

distributions with the same range of variation as the

data. Clustering of these benchmark distributions

allows one to examine the degree of clustering attrib-

utable to random variation only.

Discriminant function analysis may be used to

assign new specimens to predefined compositional

classes. This method has enjoyed substantial use in

provenance studies (e.g., Middleton, 1962; Kelley and

Whetten, 1969; Davies and Ethridge, 1975; Pingitore

and Shotwell, 1976; Ingersoll, 1978, 1990; Potter,

1978; Pirkle et al., 1985; Gergen and Ingersoll,

1986; Packer and Ingersoll, 1986; Darby, 1990; Moli-

naroli et al., 1991; Stattegger and Morton, 1992). Most

versions of discriminant function analysis require that

the compositional variables follow a multivariate nor-

mal distribution. Because compositional data fail to

meet this requirement, the results of discriminant

function analysis should be interpreted with great

caution (Butler, 1982; Aitchison, 1986; Rock, 1988;

Barceló-Vidal et al., 1999). A practical solution, dis-

cussed above, is to apply a form of logratio trans-

formation (Aitchison, op. cit.).

10.3. Continuous variation: end-member modelling

Classification and assignment procedures are based

on the assumption that several distinct groups of

specimens are present in a data set. This assumption

may not be valid in certain cases, because transitions

from one type of sand to another are expected to occur

given the fact that the factors that control sediment

composition may vary continuously in space or time.

Methods that can cope with continuous compositional

variation as well as the presence of discrete groups are

known as ordination techniques. In sedimentary pet-

rology, principal components analysis and factor anal-

ysis have been occasionally used for this purpose

(Griffiths, 1966; Griffiths and Ondrick, 1969).

Continuous compositional variation of sediments is

often attributed to physical mixing of sediments from

multiple sources, which has been recognised as one of

the central problems in sedimentary provenance anal-

ysis. ‘‘. . . In its broadest aspect, the problem of prov-

enance can be considered as a problem of accounting–

making an inventory of the different types of grains

contributed by different source rocks. To this, one

should add the problem of the same kinds of grains

coming from different source rocks . . .’’ (Pettijohn et

al., 1987).

Various attempts have been made to predict the

mixing coefficients of known parent-rock types from

detrital modes, or to predict detrital modes from

assumed mixing proportions of known parent rocks

(Graham et al., 1986; DeCelles, 1988; Pivnik, 1990;

DeCelles et al., 1991; Ibbeken and Schleyer, 1991;

Molinaroli and Basu, 1993). However, detailed infor-

mation about the parent-rock assemblages forming the

end members of a series of observed mixtures is not

commonly available, and the primary objective of a

provenance analysis is to identify likely end members.

In the absence of prior knowledge, a suite of

sandstone specimens from a single sedimentary basin

may be regarded as a series of mixtures of sediments

supplied by an unknown number of sources with

unknown compositional characteristics. A provenance

reconstruction thus requires an assessment of the

number of sediment sources and their compositional

signatures, before each specimen can be expressed as

a mixture. The development of multivariate models

aimed at explaining compositional variation in terms

of mixing of fixed end members was initiated in the

early 1960s and continues to this day (Manson and

Imbrie, 1964; Klovan and Imbrie, 1971; Klovan and

Miesch, 1976; Miesch, 1976, 1981; Full et al., 1981,

1982; Renner, 1993, 1995; Van der Ark, 1999; Weltje,

1997, 1998, in press). In the earth sciences, this form

of analysis has been historically conceived as unmix-

ing, but the term end-member modelling is considered

more appropriate (Weltje, 1995, 1997). Early versions

of end-member modelling algorithms have been

applied to heavy-mineral assemblages by Imbrie and

Van Andel (1964), Pigorini (1968), Flores and Shid-

eler (1978), Fay (1982), Bahk and Chough (1983),

Stattegger (1987), Clemens and Komar (1988), Mez-

zadri and Saccani (1989) and Mezzadri and Valloni (in

Ibbeken and Schleyer, 1991).

Weltje (1995), Weltje et al. (1996), Prins and Weltje

(1999a,b), Prins et al. (2000) and Stuut et al. (in press)
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have presented applications of a recent end-member-

modelling algorithm. Numerical experiments with this

algorithm as well as validation of modelling results by

means of independent data on ‘true’ end-member

compositions have clearly established its usefulness

for unravelling contributions of sediments from multi-

ple sources in the absence of prior knowledge.

11. Discussion and conclusions

11.1. Compositional hierarchy

Compositional data used in sedimentary petrology

represent different levels of information within a

compositional hierarchy. Compositional elements at

a given level may be expressed as linear combinations

(mixtures) of elements at a lower level. For detrital

modes of sands and sandstones, this hierarchy can be

represented by:

� Grain assemblages (sediment sources),
� Mineral assemblages (polymineralic grains),
� Minerals (monomineralic grains),
� Chemical elements.

The compositional hierarchy provides a useful frame

of reference for data acquisition and analysis,

because many problems in sedimentary provenance

studies are related to the ‘conversion’ of information

from a lower to a higher level (or vice versa). For

instance, low-level characterisation of sediment com-

position can be routinely performed by means of

chemical analysis, but these data cannot be routinely

converted into detrital modes, as discussed in the

section on normative analysis. In contrast, the high-

level information obtained by a careful examination

of polymineralic fragments in thin section potentially

allows for detailed provenance interpretations in

terms of individual parent lithologies, but it implies

a time-consuming analysis that cannot be easily

automated. Successful application of quantitative

sedimentary petrology to the field of basin analysis

requires some form of compromise between these

two extremes, based on the trade-off between the

desire for high-level information on the one hand,

and ease of (automated) data acquisition on the other

hand.

Genetic interpretations of compositional heteroge-

neity other than the ‘single population concepts’

underlying the use of confidence regions should be

based on a quantitative description of sediment com-

position on the highest level within the hierarchy

presented above, that is in terms of grain assemblages.

According to this view, the objective of quantitative

sedimentary provenance studies is to infer the mixing

structure of a basin fill, i.e. to translate the spatio-

temporal distribution of grain types into proportional

contributions of fixed grain assemblages. Such end-

member assemblages may have been supplied by a

single source at different times, or shed by different

sediment sources at the same time.

11.2. Conclusions

Current developments in sedimentary petrology

focus primarily on the improvement of data-acqui-

sition techniques. The development of appropriate

numerical and statistical techniques for extracting

genetic information from petrographic data has re-

ceived far less attention. The focus on acquisition me-

thodology suggests a widespread conviction that

many problems encountered in provenance studies

cannot be resolved by analysis of petrographic data

gathered by ‘conventional’ methods such as point

counting. Unfortunately, the current state of affairs

in quantitative sedimentary–petrologic data process-

ing tends to reinforce such beliefs. Disappointing

results from petrographic data analysis are to be

expected if nonrigorous or inappropriate procedures

are used, that fail to provide theoretically sound in-

ferences about the nature of compositional variation in

sediments.

Many of the current problems in statistical charac-

terisation and prediction of sediment composition

can be overcome by using appropriate multivariate

methods that honour the intrinsic properties of com-

positional data. The use of statistically rigorous con-

fidence regions in ternary diagrams is a first step in

this direction. Their advantages over the conventional

hexagons have been illustrated by analysing the

compositional variability of modern sands. In cases

where the observed variation among specimens can-

not be satisfactorily explained in terms of sampling

from a single population, more sophisticated multi-

variate procedures should be used. Some of the multi-
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variate tools that have been regularly applied in

sedimentary provenance studies have been briefly

discussed, and suggestions have been made as to their

proper application. The need for a well chosen physi-

cally based statistical model to characterise basin fills

is of paramount importance for prediction of sediment

composition across a reservoir or basin (Giles, 1997).

The examples presented in this review highlight the

added value of appropriate multivariate statistical

models, that can be coupled with stochastic simulation

tools for compositional data (Woronow, 1993) to

provide such predictions. The next step along this

line of quantitative sedimentary petrology is the

development of process-based models of sediment

production, which predict sediment composition and

texture (Weltje et al., 1998).

As shown in this study, much of the valuable

information that could be gained from quantitative

analysis of sedimentary–petrographic data is lost for-

ever if one attempts to ‘summarise’ the results of one’s

painstaking labour in the form of univariate statistics.

This common practice has not been beneficial to the

development of sedimentary provenance studies and

related fields of sedimentary petrology. Fortunately, it

has become standard practice to publish raw point-

count data in digital format, so that other researchers

can re-analyse the data with different models, or test

other hypotheses. There are no compelling reasons to

assume that pattern recognition in petrographic data

will become easier if larger data sets are available. On

the contrary, problems of provenance interpretation

tend to increase with larger data sets, as shown by

Ibbeken and Schleyer (1991). In view of the increas-

ing sophistication of data-acquisition technology, the

development of a theoretical framework and appro-

priate quantitative models for deductive reasoning and

testing of hypotheses becomes ever more important.

The development of more sophisticated data process-

ing and modelling techniques forms an essential part

of provenance studies, because it enables sedimentary

geologists to fully enjoy the benefit of current devel-

opments in data-acquisition technology.
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Appendix A. Multinomial confidence regions

A.1. Binary composition (binomial model)

Critical values of v2 in the binary case (k = 2, hence

df = 1) are equal to 2.71, 3.84 and 6.63, for the usual

(1� a) confidence regions of content 0.90, 0.95, and

0.99, respectively (Davis, 1986). The problem to be

solved is explicitly:

v2ð1�aÞ ¼
ðn1 � Np1Þ2

Np1
þ ðn2 � Np2Þ2

Np2
ðA-1Þ

By taking into account thatS2
i¼1 pi ¼ 1andS2

i¼1 p̂i ¼1,

this equation is simplified to:

1þ
v2ð1�aÞ
N

¼ p̂21
p1

þ p̂22
ð1� p1Þ

ðA-2Þ

Solving for p1 results in a quadratic equation of stand-

ard form: ap1
2 + bp1 + c = 0, where

a ¼ �N � v 2
ð1�aÞ

b ¼ v 2
ð1�aÞ þ 2Np̂1

c ¼ �Np̂21

8><
>: ðA-3Þ

The quadratic equation has two roots for each value

of p1:

p1 ¼
�bF

ffiffiffiffi
D

p

2a
, where D ¼ b2 � 4ac ðA-4Þ
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The solution consists of two pairs ( p1, p2) given by:

p1 ¼
v2ð1�aÞ þ 2Np̂1F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ð1�aÞfv2ð1�aÞ þ 4Np̂1ð1� p̂1Þg

q
2N þ 2v2ð1�aÞ

p2 ¼ 1� p1

8>><
>>:

ðA-5Þ

A.2. Ternary composition (trinomial model)

Critical values of v2 in the ternary case (k = 3,

hence df = 2) are equal to 4.61, 5.99, and 9.21, for

the usual (1� a) confidence regions of content 0.90,

0.95, and 0.99, respectively (Davis, 1986). The prob-

lem to be solved is explicitly:

v2
ð1�aÞ ¼

ðn1 � Np1Þ2

Np1
þ ðn2 � Np2Þ2

Np2

þ ðn3 � Np3Þ2

Np3
ðA-6Þ

By taking into account thatS3
i¼1 pi ¼ 1andS3

i¼1 p̂i¼ 1,

this equation is simplified to:

1þ
v2
ð1�aÞ
N

¼ p̂21
p1

þ p̂22
p2

þ p̂23
ð1� p1 � p2Þ

ðA-7Þ

Numerical solution of this equation is accomplished

by calculation of a series of discrete points ( p1, p2).

Solving for one of the two unknowns, in this case p1,

results in a quadratic equation of standard form:

ap1
2 + bp1 + c= 0, where:

a ¼ �Np̂22 þ Np2 þ v2ð1�aÞp2

b ¼ Np2ðp2 � 2p̂1 � 2p̂2 � 2p̂1 p̂2Þ

þ v2ð1�aÞp2ðp2 � 1Þ þ Np̂22

c ¼ Np̂21p2ð1� p2Þ ðA-8Þ

The roots of the quadratic equation are given by Eq.

(A-4). A quadratic equation has two roots for positive

values of D, and one root if D is equal to zero. The

minimum and maximum values of p2, min( p2) and

max( p2), are thus found by solving the equation

D = 0. A convenient strategy for obtaining these

values is to use bracketing and bisection (e.g., Press

et al., 1994).

The equation for D is a fourth-degree polynomial

in p2. Some care is required in the estimation of

min( p2), because a singular point exists for small

values of p2 (i.e., the coefficient of the quadratic

equation a = 0). This point is defined as:

p̃2 ¼
Np̂2

N þ v 2
ð1�aÞ

ðA-9Þ

The desired value of min( p2) is located somewhere in

the interval (p̃2 , p̂2) and the value of max( p2) in the

interval (p̂2,1). In the bracketing phase, the value of D

is calculated iteratively for different trial values of p2,

starting at p2 = p̂2. Progressively smaller or larger trial

values of p2 are substituted until D becomes negative,

indicating that current and previous estimates of p2
bracket the desired min( p2) or max( p2). In the bisec-

tion phase, the intervals containing the desired values

of p2 are narrowed until an approximation criterion is

satisfied (i.e., D should be sufficiently close to zero).

The range of admissible values of p2 has now been

defined.

The following procedure has been developed for

calculating 40 approximately equally spaced boun-

dary points and placing them in the correct order in an

array:

� Define the array index: 1V jV 40.
� The values of p1 corresponding to min( p2) and

max( p2) are calculated from the relation:

p1 ¼
�b

2a
, ðA-10Þ

where a and b are defined as in Eq. (A-8).
� Put the two points ( p1, p2) in array locations

{ j = 40} and { j= 20}.
� The remaining 38 boundary points are calcu-

lated pairwise, as the value of D is positive

throughout the range of p2. Define a loop index

for calculation of 19 successive pairs as:

i = 1!19. Then, for each i:
� Calculate the value of p2 as:

p2 ¼ minð p2Þ þ
1

2
fcosðbÞ þ 1gfmaxð p2Þ

�minðp2Þg ðA-11Þ

where b = p� (ip/20)
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� Calculate the two values of p1 corresponding to

each p2, using the above equation for the roots

of the standard quadratic (Eq. (A-4)) or the

equivalent expression given by Press et al.

(1994).
� Put the point ( p1 , p2) with the smallest value of

p1 in array location { j= i}, and the other point

in array location { j = 40� i}.
� If i < 19 loop back for the next i.
� The transformation to ternary coordinates is

performed by generating the values of p3 from

the relation:

p3 ¼ 1� p1 � p2 ðA-12Þ

Appendix B. Logistic normal confidence regions

B.1. Binary compositions (univariate normal model)

Logratio transformation of binary compositions

leads to a univariate normal distribution of observa-

tions, whose parameters may be estimated with the

help of the univariate Eqs. (2)–(6). The fundamental

difference between application of these equations to

raw compositions of the form (x1, x2) and a logratio y

is the unconstrained nature of the latter. Hence, one is

free to use all of these equations if the appropriate

logratio transformation has been applied (cf. Eq. (15)),

which in this case is defined by:

y ¼ ln
x1

x2


 �
¼ ln

x1

1� x1


 �
ðB-1Þ

After the desired calculations have been completed,

the results can be transformed back to conventional

binary coordinates by applying:

x1 ¼
e y

1þ e y

x2 ¼ 1� x1

8><
>: ðB-2Þ

which is the binary equivalent of Eqs. (16) and (17).

B.2. Ternary compositions (bivariate normal model)

The boundaries of the ellipsoidal confidence

regions are constructed as follows. Firstly, the right-

hand side of Eqs. (20) and (21) is simplified for

notational convenience by defining:

hk ¼
km ðn� 1Þ
nðn� mÞ Fð1�a;df1;df2Þ ðB-3Þ

where k equals one of two possible values: k = 1 for a

confidence region of the population mean; k= n + 1

for a confidence region of the entire population.

Secondly, the singular value decomposition of the

inverted sample covariance matrix S� 1 is introduced

to obtain a more convenient expression for subsequent

calculations. The singular value decomposition of a

square symmetric matrix (e.g., Press et al., 1994) is

defined as:

S ¼ VW2VT ðB-4Þ

and its inverse is given by:

S�1 ¼ V½W2
�1VT ðB-5Þ

The matrix V contains the set of columnwise ortho-

normal eigenvectors of the data matrix, which repre-

sent the principal axes of the confidence ellipsoid. The

elements of the diagonal matrix [W 2]�1 are simply the

reciprocals of the eigenvalues of the data matrix W 2,

which may be thought of as scaling factors for the

relative lengths of the principal axes.

After substitution of Eqs. (B-3) and (B-5) into Eqs.

(20) or (21), the equation to be solved is written as:

½Y � Y
TV½W2
�1VT½Y � Y
 ¼ hk ðB-6Þ

A coordinate transformation involving translation and

rotation is applied to facilitate the numerical solution

of this equation. The problem is put into standard

form by defining the vector G as:

G ¼ VT½Y � Y
 ðB-7Þ

The centre of the ellipsoid in g-space now coincides

with the origin of the g-coordinate system, and the

principal axes of the ellipsoid are parallel to the g-

axes. The equation to be solved simplifies to:

GT½W2
�1G ¼ hk ðB-8Þ

Logratio transformation of ternary compositions leads

to a bivariate version of the above equation. The

equation for the bivariate case is obtained by writing
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out Eq. (B-8) for the case m = 2, giving the standard

ellipse:

g1

w1

ffiffiffiffiffi
hk

p

 �2

þ g2

w2

ffiffiffiffiffi
hk

p

 �2

¼ 1 ðB-9Þ

The eigenvalues and eigenvectors of a bivariate cova-

riance matrix can be found by a simple algorithm

(e.g., Fisher et al., 1993). If the sample covariance

matrix S is defined as:

S ¼ A B

B C

� �
ðB-10Þ

and the matrix of eigenvectors V as:

V ¼ a �b

b a

� �
ðB-11Þ

Then:

a ¼ bffiffiffiffiffiffiffiffiffiffiffi
b þ 1

p

b ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
b þ 1

p
,

8>><
>>: ðB-12Þ

where b ¼ A� C

2B
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� C

2B


 �2

þ1

s
: The elements

of the diagonal matrix of eigenvalues:

W2 ¼ w2
1 0

0 w2
2

� �
ðB-13Þ

are given by:

w1 ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2Aþ 2abBþ b2C

p

w2 ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2A� 2abBþ a2C

p
�

ðB-14Þ

The desired solution consists of a series of 40 approx-

imately equally spaced pairs ( g1,g2) located on the

boundary of the elliptical confidence region. These are

calculated as follows:

� Start by defining a loop index as: i = 1! 40.

Then, for each i:

� Calculate a boundary point ( g1,g2) in polar co-

ordinates as:

g1 ¼ w1

ffiffiffiffiffi
hk

p
cosb

g2 ¼ w2

ffiffiffiffiffi
hk

p
sinb,

�
ðB-15Þ

where b= (ip/20)
� Put the pair ( g1,g2) in array location {i}
� If i< 40, loop back for the next i.

After the above equation has been solved, the

location of the boundary points in y-space is obtained

by applying the inverse coordinate transformation

(Eq. (B-7)). The ellipse is symmetrical about the

origin in g-space, indicating that the inverse transform

may be defined as:

Y ¼ VG þ Y ðB-16Þ

In other words, the 40 pairs ( g1,g2) are premultiplied

with V (the inverse rotation), after which the vector of

sample means is added to each point (the inverse

translation). Finally, the inverse logratio transforma-

tion (Eqs. (16) and (17)) is applied to obtain the ternary

coordinates of the array of boundary points B
N.
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möglichkeiten. Berl. Geowiss. Abh., Reihe A 38, 55–144.

Fisher, N.I., Lewis, T., Embleton, B.J.J., 1993. Statistical Analysis

of Spherical Data. University Press, Cambridge, 329 pp.

Flores, R.M., Shideler, G.L., 1978. Factors controlling heavy-min-

eral variations on the South Texas outer continental shelf, Gulf

of Mexico. J. Sediment. Petrol. 48, 269–280.

Fontana, D., Zuffa, G.G., Garzanti, E., 1989. The interaction of

eustacy and tectonism from provenance studies of the Eocene

Hecho Group turbidite complex (South-Central Pyrenees, Spain).

Basin Res. 2, 223–237.

Frangipane, M., Schmid, R., 1974. Point counting and its errors: a

review. Schweiz. Mineral. Petrogr. Mitt. 54, 19–31.

Friedman, G.M., 1958. Determination of sieve-size distribution

from thin-section data for sedimentary petrological studies.

J. Geol. 66, 394–416.

Friedman, G.M., 1960. Chemical analyses of rocks with the petro-

graphic microscope. Am. Mineral. 45, 69–78.

Friedman, G.M., 1962. Comparison of moment measures for siev-

ing and thin-section data for sedimentary petrological studies.

J. Sediment. Petrol. 32, 15–25.

Friedman, G.M., 1996. Discussion: thin section grain size analysis

revisited. Sedimentology 43, 189.

Full, W.E., Ehrlich, R., Klovan, J.E., 1981. EXTENDED QMO-

DEL—Objective definition of external end members in the

analysis of mixtures. J. Math. Geol. 13, 331–344.

Full, W.E., Ehrlich, R., Bezdek, J.C., 1982. FUZZY QMODEL—A

new approach for linear unmixing. J. Math. Geol. 14, 259–270.

Galehouse, J.S., 1971. Point counting. In: Carver, R.E. (Ed.),

Procedures in Sedimentary Petrology. Wiley-Interscience, New

York, pp. 385–407.

Garzanti, E., 1991. Non-carbonate intrabasinal grains in arenites:

their recognition, significance, and relationship to eustatic

cycles and tectonic setting. J. Sediment. Petrol. 61, 959–975.
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