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This study demonstrates the value of the combined use of scaling of the chemical evolution of cooling magmas have in-
vestigated the detailed relationships between tem-analysis and crystal size distribution (CSD) measurements in the

interpretation of igneous textures and outlines applications of these perature, phase abundance, and phase composition. The
reaction series (Bowen, 1922) and the CIPW norm (Crossmethods to other fundamentally important problems. Theoretical

calculations and measurements of natural samples are used to et al., 1903) have been supplemented by modern thermo-
dynamic models that predict the compositions and abund-characterize the relationship between igneous texture and cooling

history. The total number (NT) and mean length ( L̄ ) of crystals ances of minerals in equilibrium with melt of a given
composition and temperature (e.g. Ariskin et al., 1993;in a sample are correlated through a scaling relationship of the

form N−1/3
T ∝ L̄. This proportionality depends on the mineralogy Ghiorso & Sack, 1995). Although there are a few areas

of uncertainty, the chemistry of igneous petrogenesis isof the rock, and so a modal normalization factor (C) is introduced.
The CSD slope, S, and intercept, ln(n°), are uniquely related to fairly well understood.

But chemical models cannot address the central prob-each other through the equation ln(n°)= 4ln(S)− ln(C), where
S = L̄−1. This overall relationship allows the texture of a rock lem of igneous crystallization, which is the physical pro-

cess of generating a set of crystals from magma. Twoto be related to the local duration of cooling through an arbitrary
crystal growth model. Quantification of the link between the texture magmas with the same composition will normally produce

the same minerals in the same proportions. However,of a rock and its cooling history makes it possible to predict spatial
variations in texture. We show an example of this method using depending on their thermal histories, these two magmas

can solidify into rocks with drastically different physicalthe Sudbury Igneous Complex, Canada. Additional applications
include relating the textures of volcanic rocks to spatial and temporal appearances (e.g. basalt and gabbro). The set of minerals

is the same, but what distinguishes them is the abundancevariations in the magma chamber and extracting kinetic parameters
from suites of comagmatic rocks. and size of the constituent crystals.

The fine-grained rocks in the chilled margins of most
basic intrusions cooled rapidly and the coarse-grained
rocks in the interiors of plutons cooled slowly. This has

KEY WORDS: crystal size distributions; crystallization kinetics; magmatic been clear for many years, and many methods have been
processes; texture proposed to quantify the relationship between grain size

and position within mafic sills and dikes (Lane, 1899,
1903, 1928; Queneau, 1902; Winkler, 1949; Gray, 1970,
1978). These studies have pointed out the potential

INTRODUCTION value of textural analysis as a tool in igneous petrology.
The textures of igneous rocks record the physical history Cashman (1993) has compiled the results of numerous
of crystallization. As magma cools, crystals nucleate and earlier works on plagioclase crystallization and presented
grow. Because these minerals have different compositions correlations between the crystallization kinetics and cool-
than the magma, the chemistry of the liquid changes as ing rate. In this study, the focus is on developing

quantitative relationships between the ultimate textureit cools and precipitates new minerals. Systematic studies
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of a rock and its cooling history. On the basis of these diabase (45% clinopyroxene, 45% plagioclase) and an
extensive central zone of coarse orthopyroxene–relationships, crystal size distributions (CSDs) can be

directly connected to modal mineralogy and solidification plagioclase cumulate (60% orthopyroxene, 35% plagio-
clase). The nature and origin of this cumulate zone havehistory without relying on precise kinetic models. We

establish a general method for estimating the distribution been discussed by Marsh & Philipp (1996) and Marsh
(2000).of crystal sizes as a function of position in any intrusive

igneous body. The method is direct, and can be included Crystal size distributions (CSDs) were obtained for
each of the samples by manually tracing all of theeasily in crystallization computations.

To begin, we will describe the dataset used in this plagioclase crystals on a digital image of a thin section,
then measuring the long axis of each. Stereological cor-study. Analytical results from scaling theory will then be

used to reveal a basic relationship between the abundance rections were performed and a CSD was calculated using
the computer program CSDCorrections 1.1 (Higgins,and mean size of crystals in a rock. Using measured

textures, this relationship will be examined and calibrated; 2000). The CSDs are generally simple, as shown in Fig.
3, and can be described very well by means of a straightthe result is a fundamental link between CSD intercept

and slope. Finally, the intercept–slope relationship will line. The slope and intercept of each fitted line are given
in Table 1, along with calculated uncertainties. Also listedbe used together with the original scaling equations to

compute CSD variation as a function of the local cooling are the average crystal length and total number of crystals,
as measured directly from the thin section, the maximumhistory in crystallizing bodies.
observed crystal length, and the modal plagioclase frac-
tion.

DATA
Although this work is primarily based on theoretical SCALING ANALYSIS OF BASIC
considerations, it is critical to verify these predictions

RELATIONSusing information from real rocks. To ensure accuracy,
Equationswe have manually traced and measured an average of

1000 plagioclase crystals in each of 60 samples of norite Because of the inherent analytical and physical com-
and diabase from the Sudbury Igneous Complex and the plexity of crystallization kinetics (e.g. Swanson, 1977;
Ferrar Dolerite. These samples were specifically chosen to Dowty, 1980; Kirkpatrick, 1983), it is convenient to have
cover a range of mineralogies and cooling histories. a set of equations that are simple, but still preserve the
Because these rocks are all intrusive, we will also make first-order attributes of the complete system. Scaling is
comparisons with published textural measurements from especially useful when the exact values or functional
volcanic rocks. relationships of several parameters are unknown. In a

The Sudbury Igneous Complex (SIC), located in On- scaling analysis, only the dimensions and relative mag-
tario, Canada (Fig. 1) was formed at 1850 Ma as an nitudes of the parameters that characterize a process are
impact melt sheet (Dietz, 1964; Grieve, 1994). It is used to evaluate the form of the controlling relationships.
>2·5 km thick, with the upper two-thirds consisting of A set of scaling equations (Marsh, 1998; see also
granophyre and the bottom third consisting of norite. Brandeis & Jaupart, 1987b) relates the characteristic
The norite consists of 50% plagioclase and 25% ortho- number of crystals [N0 (cm−3)], crystal size [L0 (cm)], and
pyroxene with abundant (>25%) interstitial quartz and crystallization time [tc (s)] in a rock to the characteristic
granophyric intergrowth; it is locally referred to as felsic rates of nucleation and growth [J0 (cm−3/s) and G0

norite. At the base of the norite, the orthopyroxene (cm/s)]:
abundance increases to 50% and plagioclase decreases
to 25%; this phase is referred to as mafic norite. Excellent

N0= CN �J0

G0�
3/4

(1)
reviews of the petrography and petrology of the SIC
have been presented by, among others, Naldrett et al.
(1970) and Pye et al. (1984).

L0= CL �G0

J0�
1/4

(2)The Ferrar Dolerites are Jurassic rift-related tholeiites
that occur throughout the Trans-Antarctic Mountains,
and are particularly voluminous in the McMurdo Dry

tc= Ct (G0
3 J0)−1/4 (3)

Valleys (Gunn, 1966). The samples used in this study are
from the Basement and Peneplain sills of the Dry Valleys where CN, CL, and Ct are dimensionless constants. These
(Fig. 2). The Peneplain Sill is uniform diabase, containing relationships do not depend on the ultimate functional
approximately 35% calcic pyroxene and 45% plagioclase. forms describing the nucleation and growth rates, only

the characteristic magnitudes of these functions. In otherThe Basement Sill has margins composed of uniform
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Fig. 1. General geology of Sudbury Igneous Complex, Ontario, with drill core locations. Adapted from Naldrett & Kullerud (1967) and Dressler
et al. (1996).

words, these equations hold whether the growth rate is (e.g. Cashman, 1993), and although its fundamental
constant, size dependent, temperature dependent, or importance is not immediately obvious, it will be made
depends on other parameters. The drawback of such clear below.
relations is that the details of the temporal evolution of Equations (1) and (2) can also be combined with (3) to
N and L cannot be found. This is analogous to knowing determine the dependence of L0 and N0 on tc and G0:
the amplitude of a wave, but not its form.

Direct use of these equations requires values for the L0=
CL

Ct

G0tc (5)
characteristic rates of nucleation and growth, which are
generally not well known (but see Marsh, 1998). However,

N0= CNCt
3 (G0tc)−3. (6)by combining equations (1) and (2) into a single re-

lationship between L0 and N0, the direct dependence on Equation (5) predicts that L0 varies linearly with tc.
growth and nucleation rates can be eliminated, yielding This means that the rate of change of the characteristic

crystal size is a constant, even though the actual growthL0= (CN0)−1/3 (4)
rate for any individual crystal is likely to be a more
complex function of time, temperature, and other vari-where CL and CN have been combined into a single
ables. Equation (6) shows the complex interrelationshipconstant C. Equation (4) provides a quantitative link
that actually exists between the different parameters. Forbetween the characteristic crystal size in a rock (L0) and
a fixed characteristic time (tc), a slow effective growththe characteristic number of crystals in the rock (N0).
rate (G0) results in a greater number of crystals. For aHere the role of dimensional homogeneity in scaling is
fixed value of G0, a greater value of tc will result in aclear: to match the dimensions of L0 (cm), N0 (cm−3) must

be raised to the −1/3 power. This equation is not new smaller number of crystals. Equations (5) and (6) therefore
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Fig. 2. General geology of Ferrar Dolerites, Dry Valleys, Antarctica, with sampling profile locations.

correspond to the qualitative observation that quickly as the time required for the magma to cool from the
liquidus to the solidus, Lmax is the length of a crystal thatcooled rocks (small tc) are fine grained (small L0, large

N0) and that slowly cooled rocks (large tc) are coarse has been growing for the entire time tc. Any smaller
crystals have grown for a shorter time interval.grained (large L0, small N0).

To quantify relationship (4) between N0 and L0 (by The main difficulty with using the maximum crystal
length rather than the mean length is that Lmax is im-finding C), it is necessary to define a characteristic number

and length that can be accurately and easily measured practical to measure. There are fewer large crystals in a
sample than small, and it is impossible to be certain thatin samples. The mean length of the crystals in a sample

(L̄ ) was chosen as the characteristic length of crystals in the largest crystal measured is the largest in the rock.
The mean length is substituted for the maximum lengththe system, and the total number of crystals per unit

volume (NT) was chosen as the characteristic number of because although L̄ has less physical significance than
Lmax, it is also less dependent on the intersection andcrystals. The choice of NT as the characteristic number
measurement of specific crystals. It is a more stable andis obvious, but the choice of L̄ is not. The maximum
precise measurement.crystal length (Lmax) would seem preferable for several

reasons. First, it allows the definition of nondimensional
numbers (N/N0) and lengths (L/L0) that vary between
zero and one. By scaling on L̄, the nondimensional length

CSD calculationshas no clear upper limit. Second, Lmax is directly related
As discussed above, a rock sample can be characterizedto NT, which can be defined as the number of crystals,

per unit volume, with a length between zero and Lmax. by the mean length of the crystals and the total number
of crystals per unit volume. These values can be obtainedFinally, the maximum crystal size can also be related to

the characteristic time for the system, tc. If tc is defined directly from a crystal size distribution (Marsh, 1988,
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Table 1: Measured CSDs and other textural parameters

Sample S (�slope) ln(n°) (�int) L̄Area NArea Lmax Xplg

(cm−1) (cm−4) (cm) (cm−2) (cm)

Sudbury

LA-115 18·02 (0·75) 10·28 (0·11) 0·1195 86·13 0·491 0·516

LA-129 21·62 (0·83) 11·03 (0·11) 0·1003 121·03 0·465 0·528

LA-135 22·93 (0·79) 11·17 (0·10) 0·0948 130·24 0·505 0·584

LA-140 26·10 (1·18) 11·67 (0·12) 0·0790 174·30 0·361 0·483

LA-145 27·69 (0·75) 11·82 (0·07) 0·0741 177·59 0·439 0·522

LA-146 28·47 (0·80) 11·99 (0·08) 0·0720 204·26 0·397 0·544

LA-148 28·12 (0·73) 11·91 (0·07) 0·0749 185·65 0·478 0·524

LA-149 28·49 (0·70) 12·11 (0·06) 0·0690 229·13 0·480 0·529

LA-155 34·24 (1·34) 12·64 (0·11) 0·0604 264·99 0·349 0·479

LA-161 35·35 (0·86) 12·85 (0·07) 0·0590 299·69 0·350 0·513

LA-164 33·37 (1·00) 12·55 (0·08) 0·0606 261·41 0·330 0·465

LB-80 19·52 (1·02) 10·50 (0·14) 0·1119 87·65 0·554 0·473

LB-91 20·67 (0·87) 10·69 (0·12) 0·1072 93·70 0·464 0·526

LB-100 22·39 (1·15) 10·97 (0·14) 0·0992 104·82 0·387 0·509

LB-110 23·69 (0·95) 11·17 (0·12) 0·0947 116·97 0·458 0·469

LB-120 26·89 (1·29) 11·93 (0·13) 0·0737 212·42 0·378 0·567

LB-130 39·27 (1·37) 13·16 (0·10) 0·0542 321·18 0·275 0·460

LB-135 42·23 (1·51) 13·50 (0·10) 0·0472 422·08 0·239 0·490

LC-91 23·27 (0·75) 11·21 (0·09) 0·0914 128·72 0·587 0·534

LC-98 21·30 (0·70) 10·90 (0·09) 0·0948 122·49 0·556 0·518

LC-110 24·39 (0·76) 11·46 (0·09) 0·0849 162·54 0·507 0·536

LC-117 28·75 (0·82) 12·00 (0·08) 0·0701 203·50 0·394 0·540

LC-124 34·69 (0·94) 12·77 (0·08) 0·0623 278·81 0·281 0·530

LC-128 33·86 (0·89) 12·63 (0·07) 0·0598 273·71 0·293 0·504

LC-129 31·38 (0·89) 12·48 (0·08) 0·0622 269·83 0·402 0·554

LC-131 33·39 (0·56) 12·60 (0·05) 0·0599 268·77 0·254 0·481

LC-133 34·47 (0·89) 12·60 (0·07) 0·0592 255·46 0·324 0·487

LC-137 34·89 (0·94) 12·71 (0·07) 0·0575 279·83 0·301 0·495

LC-139 46·33 (1·56) 13·84 (0·09) 0·0477 469·14 0·237 0·503

NA-55 30·80 (1·58) 12·15 (0·14) 0·0705 179·29 0·284 0·418

NA-64 21·12 (1·17) 10·60 (0·16) 0·1117 82·66 0·611 0·450

NA-72 26·80 (0·92) 11·58 (0·09) 0·0754 152·28 0·434 0·454

NA-79 35·32 (0·85) 12·73 (0·07) 0·0589 277·75 0·369 0·455

NB-40 20·78 (0·86) 10·65 (0·11) 0·1046 93·76 0·443 0·433

NB-49 20·85 (0·87) 10·68 (0·12) 0·1053 94·09 0·517 0·393

NB-51 31·31 (0·88) 12·14 (0·08) 0·0655 191·00 0·413 0·453

NB-54 31·24 (0·82) 12·20 (0·07) 0·0655 206·42 0·392 0·426

NB-55 28·79 (0·92) 11·80 (0·09) 0·0744 157·42 0·353 0·453

NB-56 31·11 (0·99) 12·33 (0·09) 0·0645 236·80 0·400 0·488

NB-57 35·49 (1·23) 12·79 (0·09) 0·0550 300·50 0·302 0·505

NB-60 39·99 (1·42) 13·26 (0·10) 0·0522 356·60 0·260 0·429

NC-68 17·75 (1·02) 9·99 (0·16) 0·1230 59·55 0·473 0·418

NC-75 20·29 (0·87) 10·63 (0·13) 0·1020 98·45 0·428 0·477

NC-82 24·06 (1·15) 11·28 (0·09) 0·0848 133·42 0·495 0·439

NC-86 28·90 (0·95) 11·93 (0·07) 0·0700 182·13 0·398 0·458

NC-92 32·87 (1·29) 12·47 (0·07) 0·0629 243·48 0·416 0·453
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Table 1: continued

Sample S (�slope) ln(n°) (�int) L̄Area NArea Lmax Xplg

(cm−1) (cm−4) (cm) (cm−2) (cm)

Peneplain Sill

PPS-270 70·96 (2·37) 15·34 (0·09) 0·0306 847·11 0·132 0·406

PPS-271 74·84 (2·25) 15·42 (0·08) 0·0272 911·30 0·133 0·332

PPS-273 90·48 (2·69) 16·23 (0·08) 0·0221 1462·75 0·119 0·385

PPS-275 101·46 (2·88) 16·70 (0·08) 0·0204 1748·56 0·136 0·366

PPS-276 88·72 (2·74) 16·27 (0·08) 0·0230 1527·40 0·105 0·388

96-PPS-1 83·36 (2·78) 15·94 (0·09) 0·0249 1190·22 0·124 0·322

96-PPS-5 93·88 (2·11) 16·54 (0·06) 0·0224 1687·33 0·109 0·379

Basement Sill

A-36 224·91 (7·24) 19·67 (0·09) 0·0101 6216·84 0·055 0·341

A-37 393·46 (14·53) 22·02 (0·10) 0·0059 19536·68 0·023 0·272

A-100A 389·63 (14·31) 22·01 (0·11) 0·0069 15996·78 0·029 0·315

A-100B 199·59 (6·55) 19·46 (0·09) 0·0112 6297·09 0·048 0·365

A-104 213·56 (6·89) 19·35 (0·09) 0·0104 5223·19 0·050 0·263

A-105 389·88 (13·58) 21·84 (0·11) 0·0067 15000·00 0·048 0·313

A-106 481·41 (19·31) 22·69 (0·12) 0·0046 27018·18 0·019 0·215

size L; ln(n°) and S are the intercept and absolute value
of the slope, respectively, of a linear approximation to
the CSD (see Fig. 3). The population density can also
be obtained explicitly by rewriting equation (7):

n(L)= n°exp(− SL). (8)

The cumulative distribution N(L), the number of crys-
tals smaller than L, can be obtained from the CSD by
integrating the population density over the size range
from zero to L:

N (L) o �L
0 n(L) dL=

n°
S

[1− exp (− SL)]. (9)

The total number of crystals, NT, is found by integrating
the population density over the entire size range from
zero to infinity (or zero to Lmax, if known):

Fig. 3. Example CSD. The slope and intercept are obtained from a NT o �∞0 n(L) dL=
n°
S

. (10)
best-fit approximation to the measured data points. Although CSD
slopes are always negative, we refer to them as positive numbers.

The upper limit of integration is not given in terms of
Lmax for two reasons. As mentioned above, the true

1998). CSDs of many crystallizing systems in both in- maximum crystal length is generally difficult to determine
dustry and nature can be approximated as straight lines accurately. More importantly, the population density at
described by an equation of the form high values of L is generally very low (note that a CSD

diagram shows the natural logarithm of the populationln[n(L)]= ln(n°)− SL. (7)
density), and the number density of crystals projected
beyond Lmax is very small relative to the number ofThe population density n(L) is defined as the number of

crystals per volume per length, as a function of crystal crystals between zero and Lmax. Thus, the contribution
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made to NT in equation (10) by continuing the integral NTL̄3= C−1. (14)
in the size interval from Lmax to infinity is negligible.

When NTL̄ 3 is compared with the observed modal abund-The total length (LT) of all the crystals in a sample can
ance of plagioclase Xplg (Fig. 4b), there is a clear cor-be obtained from the first moment of the population
relation:density equation [see Marsh (1988) and Randolph &

Larson (1988) for details]. That is,
NTL̄3= 0·48Xplg= C−1 (15)

LT o �∞0 Ln(L) dL=
n°
S 2. (11) which is simply a restatement of the conservation of mass

condition. The number of crystals per unit volume (NT)
times a characteristic crystal volume (L̄ 3) must be directlyThe mean length can then be calculated from equations
related to the volumetric proportion of that mineral in(10) and (11):
the rock.

As NT is more sensitive than L̄ to the abundance of
L̄ o

LT

NT
=

1
S

. (12) plagioclase in the system, it can be adjusted to eliminate
the effect of varying mode. That is, a normalized total
number (NN) can be defined using equation (15):Equations (10) and (12) define the characteristic num-

ber and characteristic length scales of the sample in terms
NN o CNT= 2·08NT X−1

plg . (16)of the population density equation (8). These two variables
are fully consistent with each other, are easily measured,

A similar modal correction factor (C=X−1) was proposedand can be used to test and calibrate equation (4). In the
by Higgins (1999). It should be noted that in this method,following sections, they will be referred to frequently.
the value of C (i.e. 2·08 X−1

plg ) will depend on the mineral
being studied and, to a much lesser extent, on the detailed
method of measurement and data reduction used to
calculate the CSD. We have experimented with two

Calibration of number–length relationship methods of CSD calculation, and found only very minor
differences in the results.The significance of equations (10) and (12) is that they

The results of this normalization are shown in Fig. 4c.provide a link between generic scaling relationships and
The correlation is significantly improved. Low-plagioclasequantitative textural measurements. That is, equation (4)
Ferrar Dolerites are now in agreement with the trendcan be rewritten as
defined by the high-plagioclase SIC norites.

N−1/3
T = C1/3 L̄. (13)

This result predicts a linear relationship between the
inverse cube root of NT and L̄. Figure 4a shows a plot
of these values, calculated from data in Table 1. In CSD intercept–slope correlation
this plot, there is a reasonably clear linear relationship. It should be emphasized that the relationship between
However, careful inspection shows that the data follow mean crystal length and total number [equation (13)],
two similar, but distinct trends. although ultimately based in kinetic theory, is not in itself

For a given value of L̄, the Ferrar Dolerite samples a central conclusion. Rather, it is a valuable quantitative
have a slightly lower total number (higher N−1/3

T ) than relationship for reducing the number of variables in
the SIC felsic norite samples. This difference is due to the system, especially in intrusive rocks. Rather than
the different modal mineralogies of the two suites (see considering the numbers and sizes separately, Fig. 4
Table 1). Although the size of any given crystal depends shows that it is sufficient to measure only one, and
only on its growth history, the total number of crystals because of the conservation of mass condition in equation
of a particular phase is strongly influenced by the bulk (15), the other can be calculated accurately. In this
mineralogy of the rock. For example, let us consider a section, it will be shown that this one relationship allows
high-alumina basalt (HAB) and a picrite. The HAB the entire spectrum of crystal sizes to be predicted ac-
contains significantly more modal plagioclase than the curately from a knowledge of only one of these parameters
picrite. However, if these two magmas follow identical (L̄ or NT).
cooling paths, the plagioclase crystals in both rocks will In equations (10) and (12), NT and L̄ are quantitatively
have similar sizes. The much lower modal plagioclase related to the CSD intercept and slope. Equation (10)
content of the picrite will be reflected in fewer, not can be rearranged as
smaller, plagioclase crystals. This effect can be shown
explicitly by rewriting equation (13): n° = NTS. (17)
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Fig. 4. (a) Relationship between N−1/3
T and L̄. Total number and mean length are calculated from CSD slopes and intercepts (Table 1). The

Antarctic samples follow a slightly higher trend than the Sudbury samples. This indicates that for the same mean length, there will be a smaller
total number of crystals (per cm3) in a sample of Antarctic diabase than in a sample of felsic norite from the SIC. (b) The effect of modal
plagioclase. If mean grain size is assumed to be independent of modal mineralogy in a rock, then the total number of crystals in a rock will be
proportional to the plagioclase abundance. (c) Relationship between N−1/3

T and L̄. The total number is corrected for the effect of varying modal
plagioclase content in the rocks.

Using equation (13) to eliminate NT, and substituting the different curves can be related directly to different
equation (12), this reduces to modal plagioclase contents.

The same relationship between CSD intercept and
n° = C−1L̄−3S= C−1S4 (18) slope is shown in Fig. 6 for published CSD data (Cash-

man, 1992; Crisp et al., 1994; Resmini & Marsh, 1995;or
Higgins, 1996a, 1996b; Waters & Boudreau, 1996;

ln(n°)= 4ln(S )− ln(C ). (19) Wilhelm & Wörner, 1996; Hammer et al., 1999). Because
different methods of CSD calculation were used in theseThis completely general relationship between intercept
studies, the numerical value of n° in different publishedand slope is demonstrated, for both the high-plagioclase,
sources cannot be compared directly. Therefore, thecoarse-grained Sudbury norites and the low-plagioclase,
intercepts reported in the original publications have beenfine-grained Antarctic dolerites, in Fig. 5. The basic form
replaced in Fig. 6 by normalized intercepts that alsois set by the first term on the right-hand side in equation
contain the constant C. The normalized intercept elim-(19). The modal variations and the exact means of data
inates the effect of variable modal mineralogy and differ-reduction used in obtaining the CSD are taken into
ing CSD measurement techniques. This effectiveaccount in the second term. Because the relationship

between C and Xplg has been calibrated [equation (15)], intercept is equal to ln(n°) + ln(C), where ln(n°) is the
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that the textures of all rocks are governed by the same
set of physical processes. Additionally, the various re-
searchers each used a different routine for measuring
and calculating CSDs. The variability in CSD technique
has no effect on the validity of the relationships we have
developed above. Finally, it should be noted that the
chromite CSDs obey the same relationship as the plagio-
clase CSDs. The scaling relationships that have been
developed are based on general kinetic and mass-balance
considerations, and their usefulness is not limited to
plagioclase in mafic intrusions.

DISCUSSION
A primary value of a scaling analysis is that it allows the
behavior of complex systems to be studied even when
the detailed mechanics are unknown. In the field of
textural development, much progress has been made
towards the goal of a complete predictive model of crystal
nucleation and growth (e.g. Kirkpatrick, 1976; Dowty,
1980; Brandeis & Jaupart, 1987a, 1987b; Spohn et al.,
1988; Hort & Spohn, 1991; Hort, 1997; Toramaru,
2001). Despite these advances, there is not yet a general
quantitative model capable of retrieving the cooling his-
tory of a magma from the texture of a rock. However,
even without a detailed knowledge of the functional
dependence of nucleation and growth rates on the ther-
mal evolution of the magma, igneous textures can be
quantitatively related to cooling history using the scaling
relationships discussed above.

Prediction of texture variation
The most important variable controlling the development
of igneous textures is time. More specifically, the char-
acteristic size of crystals in a rock is controlled by the
duration of the growth interval. Crystals will not nucleate
at temperatures above the liquidus and are unlikely toFig. 5. Comparison of measured and predicted CSD intercepts and

slopes. Measured values are from Table 1, predicted curves are from grow appreciably below the solidus.
equation (19). (a) Sudbury Igneous Complex norite samples are fairly Given the relationship between CSD intercept and
consistent at C ≈ 5, corresponding to Xplg ≈ 0·45. (b) Ferrar Dolerite

slope defined by equation (19) and depicted in Fig. 5, asamples range from C≈ 6·5 to 10, corresponding to Xplg≈ 0·35–0·25.
full CSD can be calculated if either the slope or the
intercept is known. The slope can be found from L̄ using

published CSD intercept and C is estimated from the equation (12) and the mean length can be determined
entire published dataset using equation (13). from a growth law and the crystallization interval �t.

Although the agreement between the published CSDs This time �t is therefore the fundamental constraint on
and those measured in this study is not surprising in light the textural variation in an igneous body.
of the fundamental nature of the scaling results, it does One common simplification used in cooling and so-
demonstrate the versatility of the method. All of the rocks lidification modeling is to reduce the problem to one-
measured for this study are intrusive, but the published dimensional thermal diffusion in two adjacent semi-
data include both intrusive and extrusive rocks, with a infinite regions. This corresponds to an infinite body of
range of composition from basaltic to dacitic. The vol- magma (0 Ζ z < x) next to an infinite expanse of
canic rocks exhibit the same textural relationships as the uniform country rock (−x < zΖ 0). This is a reasonable

assumption when the distance from the margin is muchplutonic rocks, without regard to composition, verifying
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Fig. 6. CSD intercept–slope relationship from published data. CSDs from published studies follow the same trend as data measured in this
study (Fig. 5). The effective intercept includes the constant C, which incorporates both modal and CSD calculation effects. Sources: Ferrar,
Wilhelm & Wörner (1996); Kameni, Higgins (1996b); Egmont, Higgins (1996a); Stillwater, Waters & Boudreau (1996); Mauna Loa, Crisp et al.
(1994); Mount Pinatubo, Hammer et al. (1999); Mount St. Helens, Cashman (1992); Dome Mountain, Resmini & Marsh (1995).

smaller than the thickness of the intrusion. In this case, To replicate the variation in mean lengths that is
the location of the liquidus and solidus isotherms as a observed in the Sudbury Igneous Complex, we use an
function of time are described by an equation of the expression that is slightly more complex than equation
general form (Carslaw & Jaeger, 1959, p. 285) (5), but dimensionally identical:

zi= bi ��t (20) L̄= G° (�t+ �). (23)

where bi is a constant that depends on the latent heat of This growth law accounts for the fact that the margins
crystallization and the initial temperatures of the magma of igneous intrusions are almost never glassy, and often
and country rock. The subscript refers to the specific do not even have a hard chill. The presence of coarse-
isotherm being considered. The functional form of the grained marginal rocks indicates that the solidus did not
equation holds for any conductive cooling model, re- immediately propagate into a cooling intrusion, and
gardless of its level of sophistication. therefore �t (z = 0) ≠ 0, which apparently contradicts

The time at which the isotherms arrive at a point in equation (22).
space z can be obtained by rewriting equation (20): Thermal models show that the contact of a cooling

magma chamber remains at a constant temperature for
ti=

z2

�bi
2. (21) a long period, usually until the center of the intrusion has

begun to cool ( Jaeger, 1968). The contact temperature is
The time required for the temperature of the magma at approximately the average of the initial temperatures of
position z to drop from the liquidus to the solidus is �t : the magma and country rock. Therefore, if either the

magma or the country rock starts at a sufficiently high
temperature, it is possible for the contact temperature to�t= ts− tl=

z2

� �1
b2

s
−

1
b2

l �=
z2

�b2 (22)
start above the solidus of the magma, where it may then
spend a significant length of time before cooling further.
This effect is reflected in the parameter �, which will bewhich is the amount of time available for crystals to

nucleate and grow at that location. larger with higher initial temperatures (higher contact
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intrusion can be predicted accurately using only a coolingTable 2: Physical parameters
model and a growth law. The irregularities in the cal-

used in texture model culated intercept profile are caused by the incorporation
of measured plagioclase modes into the calculations

Parameter Symbol Value (through C ). These irregularities are of the same amp-
litude as irregularities in the measured intercepts, and
demonstrate the sensitivity of this model. In this particularThermal diffusivity � 10−2 cm2/s

example, the growth law was constrained by measuredIsotherm constant b 0·475

data, but the method could just as easily be used toEffective growth rate G° 1·55 × 10−14 cm/s
predict textural variations with an independent estimateTime constant � 1·79 × 1012 s
of G° and �.

Within an intrusion, the slope and intercept vary
systematically with distance from the margin. They are
highest near the contact, where the cooling was rapid,temperature) and with thicker intrusions (longer time
and lowest in the interior of the body, where cooling wasuntil the contact begins to cool). The effect can also be
slow. This suggests that the CSDs of a sample canrelated to observed physical properties of the system by
be used to determine the solidification time �t. Thenoting that the product G°� is, in effect, the mean size
solidification time can then be related to the position ofof the crystals at the contact. If the magma does quench
a sample with respect to the margin. Therefore, a seriesto a glass at the contact, then � = 0.
of textures can be used to determine the relative positionsAny reasonable growth model could be substituted in
of the samples.place of equation (23). If desired, a detailed time-de-

pendent growth model could be tested using measured
CSD profiles. To evaluate this type of growth model,

Interpretation of volcanic textureshowever, it would be necessary to have a nucleation
model as well because the two processes operate together In contrast to plutonic rocks, volcanic rocks generally

cannot be uniquely associated with a specific position into produce the final texture. The interdependence of
nucleation and growth rates and the use of these rate a magma chamber. However, because the crystallization

process is the same in both systems, the texture of aequations to predict a CSD were thoroughly discussed
by Marsh (1998). In this study, however, the purpose is volcanic rock also records the thermal history of the

sample. The challenge is to use a series of distinct lavanot to determine the details of crystallization history, but
to provide a concise method for quantitatively relating flows to obtain information about the spatial and temporal

variations in a subvolcanic magma chamber.the ultimate texture of a rock to the overall cooling
history using a few simple parameters. As discussed previously, differences in cooling regime

reflect differences in position, and lead to differences inAn example of the application of the scaling re-
lationships and a growth law to the prediction of textural texture. When a set of textures obeying the general

intercept–slope relationship are plotted simultaneouslyvariations is shown in Fig. 7. We have used the simplified
cooling model of equation (22) to calculate the variation on a CSD, they appear to fan (Fig. 8). The position of

the individual CSD within the fan is related to its positionin solidification time as a function of distance from
the contact in the Sudbury Igneous Complex. Physical within the intrusion, and therefore to the cooling history

of the sample.parameters for the model are listed in Table 2. The value
of b was verified by comparison of the analytical solution It is not uncommon to find fanning CSDs in suites of

comagmatic volcanic rocks (Marsh et al., 1995). Twowith a full numerical cooling model (Zieg, 2001). The
results of the cooling model were then used to obtain examples are suites from the Atka volcanic center in the

Aleutians (Myers et al., 1986; Marsh, 1998) and fromvalues for G° and � by comparing measured textures of
felsic norites to the calculated solidification times. Ocean Drilling Program (ODP) Hole 504B in the Costa

Rica rift (Marsh & Liu, 1999). Both suites show CSDsThe variation in mean crystal size was then used to
calculate the CSD slope and intercept using equations that closely resemble the calculated fan and the SIC fan

(Fig. 9). Although the volcanic CSDs from Atka and(12) and (19), together with the measured mineralogy of
each rock. Because the slope and intercept fully describe Hole 504B show the same pattern as the intrusive CSDs

from Sudbury, the interpretation is not as straight-the first-order characteristics of the CSD, the accuracy
of the model can be tested by comparing the measured forward. Specifically, it is difficult to separate the effects

of varying residence times and varying positions withinand predicted variations in slope and intercept as a
function of distance from the contact. The calculated the chamber.

To use volcanic CSDs as meaningful indicators ofprofiles in Fig. 7c and d match the measured data very
well, indicating that the variation in texture within an magma chamber processes, it is important to distinguish
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Fig. 7. Model and measured textural profiles. The continuous lines represent model predictions and the symbols indicate measured data. The
data are obtained from drill core LA in the Sudbury Igneous Complex. (a) The solidification interval �t is calculated as a function of distance
from the contact using equation (22) and the parameters in Table 2. (b) The mean length is calculated from the solidification interval using
equation (23). G° and � are obtained from measured data. (c) CSD slope is related to mean length of the crystals through equation (12). (d)
CSD intercept can be predicted from the slope using equation (19). In this example, the model curve has been modified by incorporating the
measured plagioclase abundances.

between samples taken from the same location at different and with proximity to the margin at a fixed time. The
interaction between intercept, slope, and crystallinity willsystem ages, and samples taken from different locations

at roughly the same time. The modal plagioclase (Xplg) reflect the cooling regime (i.e. cooling rate and system
age) at the position within the magma chamber fromplays a vital role in making this distinction because

crystallinity increases with time at a fixed point in space which the lava was erupted. A full treatment of this
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Fig. 8. Application of intercept–slope equation. Each point along the curve represents an idealized CSD. Moving along the curve corresponds
to changing spatial position within the intrusion, or to changing the cooling history of the magma. When a series of predicted CSDs is plotted
together, it results in a fanning pattern. The position within the fan corresponds to a particular thermal regime, or equivalently, a particular
position within the intrusion. The relationship can be quantified by relating the slope to the cooling interval through a growth model.

problem is beyond the scope of this paper, but it dem-
J0=

c1N0

tc
=

c1 n°
S�t

(24)onstrates a potential application of the methods outlined
above.

G0=
c2 L0

tc
=

c2

S�t
. (25)

Characteristic nucleation and growth rates
Equation (22) expresses �t in terms of position withinCashman (1993) has discussed the dependence of plagio-
the intrusion, which allows equations (24) and (25) to beclase growth and nucleation rates on the local cooling
rewritten in terms of z:rate. The kinetic parameters were obtained from the

textures of the rocks and the cooling rates are calculated
as kz−2, with a value for k between 0·135 and 0·822. J0=

c1�n°
Sz2 (26)

In other words, the cooling rate (∂T/∂t) is inversely
proportional to the cooling duration �t. The total tem-
perature interval of crystallization (�T ) is constant; the G0=

c2�
Sz2. (27)

only variable is the length of time required for the
temperature change (�t). The growth and nucleation

These groups, which represent characteristic rates, couldrates were determined by dividing the characteristic
be used to form dimensionless nucleation and growthlengths and numbers by the cooling duration.
rates in other problems. We now define two new variables,The data from Table 1 can be used to calculate growth
J∗ and G∗, which are not strictly rate parameters, butand nucleation rates using a similar procedure. Using the
are related to the rates of nucleation and growth throughrelationships developed above, we obtain the following
the thermal diffusivity � and the dimensionless constantsequations for J0 and G0 in terms of the slope and intercept

of the CSD and the solidification interval �t: c1 and c2 (into which b has been incorporated):
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Fig. 9. Fanning CSDs. (a) Calculated CSD fan, with each CSD represented by a straight line corresponding to a single point along the
intercept–slope curve (e.g. Fig. 8). The different CSDs correspond to different cooling regimes. (b) CSDs of plutonic rocks of the Sudbury Igneous
Complex show a pattern similar to the calculated fan. In this case, the position in the fan can be correlated directly with the position within the
intrusion. (c, d) CSDs of volcanic rocks from the Costa Rica rift and the Atka volcanic center, Alaska. Although the same fanning pattern is
observed as in the plutonic rocks, the position in the fan cannot necessarily be directly related to the position in the magma chamber from
which the lava was derived without considering the degree of crystallization.

rate is correctly scaled in the equations above. It is still
J∗ =

J0

c1�
=

n°
Sz2 (28) unclear whether the deviation from linearity in Fig. 10b

is significant. If significant, it may indicate that equations
(5) and (23) are not entirely correct, in which case the

G∗ =
G0

c2�
=

1
Sz2. (29)

mean length of crystals in a rock may be related to time
in a nonlinear fashion. In fact, there is no reason to

The new nucleation parameter J∗ has units of cm−5 assume that this would not be the case. But, regardless
and the new growth parameter G∗ has units of cm−1. of how Fig. 10b is interpreted, the basic assumption (L
Figure 10 shows ( J∗)−1/5 and (G∗)−1 plotted as a function ∝ �t) of the model is sufficient to accurately predict
of distance from the margin for samples from Sudbury most of the textural variation in the two intrusions.
drill hole LA and the Peneplain Sill transect from A final observation is that the variation in G∗ is on
Antarctica. The linearity of the relationship between the order of 50, and the variation in J∗ is on the

order of 500. Given the difficulty of measuring growth( J∗)−1/5 and z in Fig. 10a indicates that the nucleation
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Fig. 10. Kinetic data as derived from CSDs and sample position. (a) Nucleation parameter, (J∗)−1/5, as a function of position. The same trend
in nucleation rates is apparent for rocks from the Ferrar Dolerite (Peneplain Sill) and the Sudbury Igneous Complex (drill core LA). Nucleation
rate is greatest near the contact and decreases with distance from the margin. (b) Growth parameter, (G∗)−1, as a function of distance from the
margin. The trend is linear in the Antarctic samples, but not in the Sudbury samples. The departure from linearity indicates that equation (23)
may not always hold precisely. However, the total range in G∗ is extremely narrow.

or nucleation rates, this range of values is small enough CSD slope is directly linked to L̄ and slope is related to
to treat these parameters as constants for the purpose the intercept, a full CSD for plutonic rocks can be found
of scaling. Therefore, the assumptions made in equations by incorporating a crystal growth law into any model of
(1) and (2) can be justified. Although the characteristic solidification.
nucleation and growth rates are not constant throughout In fact, the dependence of CSDs on L̄ is the key to
an intrusion, over a nearly 1 km section of norite in relating textures to the cooling process. Specifically, it
the Sudbury Igneous Complex, the maximum variation means that any model that predicts L̄ as a function of
is less than three orders of magnitude. As seen in Fig. position in a pluton or as a function of time for a volcanic
7, even if the effective growth rate is taken to be a sequence can be used to generate a hypothetical series
universal (instead of local) constant, the measured of textures. Deviations between predicted and measured
variation in textures can be predicted with a high textures reveal additional processes beyond simple nuc-
degree of accuracy. leation and growth that have contributed to the final

CSD. These processes may include, for example, crystal
sorting or resorption of small crystals. The spatial vari-
ation of textures within a sill or pluton may also revealCONCLUSIONS
multiple cooling or injection events. Because the pre-Scaling or dimensional analysis (e.g. Barenblatt, 1996)
vailing local thermal regime, or solidification time, is theallows fundamental relationships to be found between
key factor controlling L̄, a suite of CSDs will exhibit akey parameters in kinetic systems without a detailed
systematic fanning pattern within any magmatic body.formulation of the actual processes of crystal nucleation
This characteristic feature, which is common in co-and growth. Although many of the relationships shown
magmatic volcanic suites, may allow the relative spatialhere were previously known, the consistent incorporation
positions of the volcanic rocks to be estimated in the pre-of quantitative measures of total crystal numbers (NT)
eruptive parent body. It could also allow an estimate ofand mean crystal size (L̄ ) allows the relationship between
the local cooling rate in the parent magma, which wouldthem to be calibrated using information from plagioclase
be particularly useful to know along the ocean ridges.in mafic rocks. This scaling also allows a unique relation

The fundamental value of these results is that, despite ato be defined between CSD slope and intercept, the
lack of the complete information needed for a quantitativeexistence of which has long been suspected from CSD

observations (e.g. Marsh, 1998; Higgins, 1999). Because kinetic model of crystallizing magmatic systems, a critical
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equilibria in magmatic systems at elevated temperatures and pres-quantitative link has been made between rock texture,
sures. Contributions to Mineralogy and Petrology 119, 197–212.cooling history, and phase equilibria.
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