УДК 549.65 + 548.62 (430.123)

ЭММЕРИХИТ, Ba₂Na(Na,Fe²⁺)₂(Fe³⁺,Mg)Ti₂(Si₂O₇)₂O₂F₂ – НОВЫЙ МИНЕРАЛ ГРУППЫ ЛАМПРОФИЛЛИТА ИЗ ПАЛЕОВУЛКАНИЧЕСКОГО РАЙОНА АЙФЕЛЬ, ГЕРМАНИЯ¹

Н.В. Чуканов

Институт проблем химической физики, РАН, Черноголовка, chukanov@icp.ac.ru

Р.К. Расцветаева

Институт кристаллографии, РАН, Москва, rast@ns.crys.ras.ru

С.М. Аксенов

Институт кристаллографии, РАН, Москва, aks.crys@gmail.com

Г. Бласс

Merzbachstrasse 6, D-52249, Eschweiler, Germany, nc-blaszgu@netcologne.de

И.В. Пеков

Московский государственный университет им. М.В. Ломоносова, геологический факультет, Москва, igorpekov@mail.ru

Д.И. Белаковский Минералогический музей им. А.Е. Ферсмана, РАН, Москва, dmz@fmm.ru

Й. Чёртнер

Judenpfad 40, 50996 Köln, Germany

В. Шюллер

Im Straussenpesch 22, 53518 Adenau, Germany, Willi.Schueller@dlr.rlp.de

Б. Тернес

Bahnhofstrasse 45, 56727 Mayen, Ĝermany, Bernd.Ternes@dlr.rlp.de

Новый минерал группы лампрофиллита эммерихит, Ba₂Na(Na,Fe²⁺)₂(Fe³⁺,Mg)Ti₂(Si₂O7)₂O₂F₂, найден в базальтовых карьерах Ротер Копф и Грауляй (палеовулканический район Айфель, Рейнланд-Пфальц, Германия) в составе поздних ассоциаций, включающих нефелин, авгит, мелилит, гётценит, лилейит, фторапатит, а также (Ротер Копф) лейцит, флогопит, магнетит, перовскит и гюнтерблассит. Эммерихит образует пластинчатые кристаллы размерами до 0.05 × 0.3 × 0.5 мм и эпитаксические срастания с лилейитом. Цвет нового минерала коричневый, блеск стеклянный. Хрупкий, твёрдость по Моосу 3-4, спайность весьма совершенная по (100). Вычисленная плотность 3.864 г/см³. Эммерихит оптически двуосный (+), n_p = 1.725(4), $n_m = 1.728(4), n_q = 1.759(4).$ Химический состав (по данным микрозондовых анализов, отношение Fe²⁺/Fe³⁺ — по данным рентгеноструктурного анализа, мас.%): Na₂O 5.44, K₂O 1.03, CaO 1.98, SrO 3.23, BaO 25.94, MgO 3.13, MnO 2.22, FeO 4.85, Fe₂O3 6.73, TiO₂ 15.21, ZrO₂ 0.52, Nb₂O5 1.32, SiO₂ 27.13, F 3.54, -O=F₂ -1.49, сумма 100.78. Эмпирическая формула $Ba_{1.49}Sr_{0.27}K_{0.19}Na_{1.54}Ca_{0.31}Mn_{0.275}Mg_{0.68}Fe_{0.57}^{2.59}Fe_{0.74}^{3.74}Ti_{1.67}Zr_{0.04}Nb_{0.09}$ Si_{3.97}O_{16.36}F_{1.64}. Кристаллическая структура изучена на монокристалле, R = 0.044. Новый минерал моноклинный, C2/m, a = 19.960(1), b = 7.098(1), c = 5.4074(3)Å, β = 96.368(1)°, V = 761.37(12)Å³, Z = 2. Эммерихит изоструктурен с другими моноклинными минералами группы лампрофиллита. Его кристаллохимическая формула: [Ba,Sr,K]₂([Na,Ca)(Na,Fe²⁺,Mn²⁺,Mg)₂(Fe³⁺,Mg)][(Ti,Fe³⁺,Nb,Zr)₂(Si₂O₇)₂O₂](F,O)₂. Сильные линии рентгенограммы [d, Å (I, %) (hkl)]: 9.97 (55) (200); 3.461 (65) (510, 311, 401); 3.312 (40) (220, 600); 2.882 (38) (22-1, 420); 2.792 (100) (221, 511); 2.670 (56) (002, 601, 20-2); 2.629 (45) (710, 42-1); 2.140 (57) (131, 022, 621, 22-2). Эталонный материал хранится в Минералогическом музее им. А.Е. Ферсмана РАН (Москва).

В статье 7 таблиц, 6 рисунков, список литературы из 26 наименований.

Ключевые слова: эммерихит, новый минерал, слоистый титаносиликат, группа лампрофиллита, Ротер Копф, Грауляй, Айфель, щелочной базальт.

Поздние пневматолитовые ассоциации минералов, связанные со щелочными базальтами палеовулканического района Айфель (земля Рейнланд-Пфальц, Германия), характеризуются значительным разнообразием минеральных видов (Blass *et al.*, 2008; 2011), список которых из года в год пополняется (Blass *et al.*, 2009₁, 2009₂; Чуканов и др., 2010; 2011; 2012₁; 2012₂; Chukanov *et al.*, 2012). Более десятка известных здесь минералов, в том числе титанит, гётценит, фресноит, ферсманит, батисит, нунканбахит и члены группы лампрофиллита (лилейит, фторный аналог баритолампрофиллита), родственный группе лампрофиллита минерал шюллерит, а также описываемый в настоящей статье новый представитель этой группы эммерихит, относятся к титаносиликатам.

Эммерихит назван в честь немецкого минералога-любителя и коллекционера Франца-Йозефа Эммериха (р. 1940) за его вклад в изучение минералов Айфеля. Эммерих был, в частности, инициатором и издателем первой электронной версии популярной публикации

¹ — Новый минерал эммерихит и его название одобрены Комиссией по новым минералам и названиям минералов РМО и утверждены Комиссией по новым минералам, номенклатуре и классификации Международной минералогической ассоциации 2 сентября 2013 года, IMA No. 2013-064.

6

о минералах Айфеля с многочисленными иллюстрациями (Blass *et al.*, 2011).

Эталонный образец хранится в Минералогическом музее им. А.Е. Ферсмана РАН (Москва), номер в систематической коллекции 94122.

Условия нахождения

Образцы с эммерихитом найдены в двух действующих базальтовых карьерах, расположенных в палеовулканическом районе Западного Айфеля (земля Рейнланд-Пфальц, Германия).

Голотипный материал происходит из карьера Ротер Копф, расположенного близ посёлка Рот (Roth), в 20 км на ЗЮЗ от города Герольштайн (Gerolstein). Здесь эммерихит образует уплощённые кристаллы, часто в срастании с изменённым гётценитом и гюнтербласситом (рис. 1). К минералам пневматолитовой стадии здесь относятся нефелин, лейцит, авгит, флогопит, акерманит, гётценит, лилейит, фторапатит, магнетит и перовскит. Все эти минералы кристаллизовались в полостях в щелочном базальте. В некоторых полостях на них нарастают кристаллы более поздних минералов гидротермальной стадии — шабазита-К, шабазита-Са, филлипсита-К и кальцита. Гюнтерблассит является трансформационным минеральным видом, образовавшимся в результате выщелачивания части катионов и анионов из более раннего безводородного минерала группы гюнтерблассита (Чуканов и др., 2012₂), видимо, родственного умбрианиту (Sharygin *et al.*, 2013). Гётценит и акерманит в этой ассоциации обычно в той или иной степени изменены наложенными гидротермальными процессами (вплоть до полного замещения этих минералов аморфными водными силикатами).

Котипный образец нового минерала найден в карьере Грауляй (Graulay; другие варианты написания — Graulai, Grauley, Graulei), близ посёлка Хиллесхайм (Hillesheim) в ассоциации с нефелином, авгитом, высокотитановым андрадитом, титанитом, нунканбахитом, лилейитом, фресноитом, мелилитом, гётценитом, фторапатитом, перовскитом, батиферритом, баритом и более поздним алюмогидрокальцитом. Эммерихит в этой ассоциации присутствует в виде эпитаксических нарастаний на кристаллах лилейита (внешние зоны толщиной до 50 мкм) с резкой границей между двумя минералами (рис. 2, 3).

Морфология и физические свойства

Эммерихит образует уплощенные — от тонкопластинчатых до таблитчатых, иногда дощатые — кристаллы размерами до 0.05 × 0.3 × 0.5 мм и их сростки до 1 мм в поперечнике. Главная габитусная форма — {100}; подчинённые формы — {110} и грани пояса {*hol*}. Цвет нового минерала коричневый разных оттенков, блеск стеклянный, черта белая. Эммерихит хрупкий, его твёрдость по Моосу составляет 3 — 4, спайность весьма совершенная по (100). Вычисленная плотность равна 3.864 г/см³.

Рис. 1. Пластинчатые кристаллы эммерихита (коричневые) с гюнтербласситом. (бесцветный). Карьер Ротер Копф. Ширина изображения 1.5 мм. Фото: Фолькер Бетц.

Рис. 2. Эпитаксическое нарастание эммерихита (тёмные зоны) на кристаллы лилейита. Карьер Грауляй. Ширина изображения 0.8 мм. Фото: Фред Круйен.

7

Эммерихит оптически двуосный (+), $n_p = 1.725(4), n_m = 1.728(4), n_g = 1.759(4);$ $2V_{\text{H3M.}} = 80(5)^\circ, 2V_{\text{BLFU.}} = 79^\circ.$ Дисперсия оптических осей средняя, r > v. Оптическая ориентировка: X = a; оси Y u Z лежат в плоскости (100); ось Y совпадает с направлением удлинения кристаллов. Плеохроизм умеренный по схеме: Z (коричневый) $\geq Y$ (светло-коричневый) > X (зеленовато-серый).

ИК-спектр поглощения эммерихита (рис. 4) получен с помощью Фурье-спектрометра ALPHA FTIR фирмы Bruker Optics при разрешающей способности 4 см⁻¹. Для этого порошок минерала смешивался с безводным KBr и запрессовывался в таблетку. Аналогичная таблетка чистого бромистого калия использовалась как образец сравнения. Положения (см-1) и отнесения полос ИК-спектра следующие (s — сильная полоса, w — слабая полоса, sh — плечо): 1055sh, 1038s, 954s, 907s, 853s (Si-O-валентные колебания), 686w, 658w (деформационные колебания О-Si-О в группах Si₂O₇), 580sh, 536 (комбинация валентных колебаний полиздров TiO_5 и $Fe^{3+}O_6$), 458s, 400s (комбинация деформационных колебаний Si-O-Si и валентных колебаний октаэдров

Рис. 3. Эпитаксия эммерихита — светло-серые зоны, эмпирическая формула $(Ba_{1.46}Sr_{0.26}K_{0.16}Na_{0.02})_{1.90}Na(Na_{0.66}Fe_{1.10}Mg_{0.76}Mn_{0.27}Ca_{0.27})_{3.00}(Ti_{1.77},Fe_{0.13}Nb_{0.08}Zr_{0.08})_{2.00}(Si_{3.37}Al_{0.03})O_{16.33}F_{1.67}$ на лилейите — тёмно-серый, эмпирическая формула $(Ba_{1.50}Sr_{0.19}K_{0.19}Na_{0.06})_{1.94}Na(Na_{1.00}Mg_{0.75}Fe_{0.54}Ca_{0.46}Mn_{0.16}Ti_{0.05}Nb_{0.02}Zr_{0.02})_{3.00}Ti_{2.09}Si_{4.00}O_{16.37}F_{1.67}$. Карьер Грауляй. Изображение в отражённых электронах.

cm-1

3000

1000

2000

е — набалампрофиллит из щелочно-ультраосновного массива Инагли (Якутия).

Таблица 1. Химический состав эммерихита

8

Компонент	Среднее	Пределы	Эталон	
	содержание,			
	мас.%			
Na ₂ O	5.44	5.20 - 5.78	Альбит	
K_2O	1.03	0.95 - 1.13	Микроклин	
CaO	1.98	1.86 - 2.07	Волластонит	
SrO	3.23	3.02 - 3.48	SrF_2	
BaO	25.94	25.50 - 26.23	$BaSO_4$	
MgO	3.13	3.05 - 3.28	Диопсид	
MnO	2.22	2.04 - 2.43	MnTiO ₃	
FeO*	4.85	10 55 11 100		
$Fe_2O_3^{\star}$	6.73	10.75-11.16**	Fe ₂ O ₃	
TiO ₂	15.21	15.05 - 15.45	MnTiO ₃	
ZrO_2	0.52	0.33-0.78	Zr	
Nb_2O_5	1.32	1.04 - 1.53	Nb	
SiO_2	27.13	26.92 - 27.38	SiO_2	
F	3.54	3.35 - 3.74	CaF_2	
O = F	-1.49			
Total	100.78			

Примечание. • — Общее содержание железа, соответствующее 10.91 мас. % FeO, распределено между FeO и Fe₂O₃ в отношении Fe²⁺:Fe³⁺ = 0.60:0.75 с учётом структурных данных (величин межатомных расстояний и баланса валентных усилий для катионных позиций).

** — Для всего железа, в расчёте на FeO.

 MO_6 , где M = Fe, Mg, Mn, Ca). ИК-спектр эммерихита близок к спектрам других титановых минералов группы лампрофиллита (рис. 4), особенно Mg-доминантного аналога эммерихита — лилейита, Ba₂Na(Na,Fe²⁺,Ca)₂ (Mg,Fe³⁺)Ti₂(Si₂O7)₂O₂F₂ (Chukanov *et al.*, 2012₂; рис. 4b). Различия между последними наиболее отчётливо проявляются в интервале волновых чисел 520 — 690 см⁻¹. Отсутствие полос с волновыми числами выше 1100 см⁻¹ свидетельствует об отсутствии в минерале H-, Bи C-содержащих групп.

Химический состав

Химический состав эммерихита изучен методом локального рентгеноспектрального анализа с помощью волнового микроанализатора Oxford INCA Wave 700 при ускоряющем напряжении 20 кВ, токе 20 нА и диаметре пучка 0.6 мкм. Было выполнено 5 локальных анализов. Средние значения и пределы изменения содержаний компонентов приведены в таблице 1.

Содержания P, S, Al, V, Cr, Ni, Zn, Y, Ln, Th и U в минерале ниже порога обнаружения этих компонентов микрозондовым методом. Разделение железа на Fe²⁺ и Fe³⁺ произведено с учётом структурных данных (см. ниже). Анализ CO₂ и H₂O не производился, так как в ИК-спектре эммерихита отсутствуют полосы поглощения молекул $\mathrm{H}_2\mathrm{O}$, гидроксильных и карбонатных групп.

Эмпирическая формула эммерихита, рассчитанная на 18 атомов O+F, следующая: Ba_{1.49}Sr_{0.27}K_{0.19}Na_{1.54}Ca_{0.31}Mn_{0.275}Mg_{0.68}Fe³_{0.59}Fe³_{0.74}Ti_{1.67}Zr_{0.04}Nb_{0.09}Si_{3.97}O_{16.36}F_{1.64}. Идеализированной формуле Ba₂Na₃Fe³⁺Ti₂(Si₂O₇)₂O₂F₂ отвечает состав Na₂O 10.31, BaO 34.02, Fe₂O₃ 8.86, TiO₂ 17.72, SiO₂ 26.65, F 4.21, -O = F₂-1.77, сумма 100.00 мас.%.

Рентгенографические данные и кристаллическая структура

Ренттенограмма порошка эммерихита (табл. 2) получена методом Гандольфи с помощью монокристального дифрактометра Stoe IPDS II с плоским детектором захвата сигнала (image plate detector), на Мо $K\alpha$ -излучении, при ускоряющем напряжении 45 кВ и токе 30 мА. Съёмка проводилась с вращением образца по двум осям (ω и φ), расстояние образец – детектор 200 мм, время экспозиции 40 мин. Порошкограмма эммерихита хорошо индицируется в моноклинной ячейке с уточнёнными по МНК параметрами: a = 19.93(3), b = 7.11(1), c = 5.407(8)Å, $\beta = 96.5(1)^\circ$, V = 760(3)Å³.

Монокристальные дифракционные данные получены на дифрактометре Xcalibur S с ССD-детектором, с использованием МоКа-излучения. Параметры моноклинной (пространственная группа C^2/m) ячейки по монокристальным данным составили: a =19.960(1), b = 7.098(1), c = 5.4074(3)Å, $\beta =$ 96.37(1)°, V = 761.37(1)Å³, Z = 2.

Кристаллическая структура эммерихита решена с использованием 5201 независимых отражений с $|F| > 3\sigma(F)$, R = 0.044. Подробные данные о структуре эммерихита приведены в статье (Aksenov *et al.*, 2014), здесь дана её краткая характеристика.

В основе структуры нового минерала (см. рис. 5, 6; табл. 3, 4), как и других членов группы лампрофиллита, лежит трехслойный *НОН*-пакет (модуль). Внутренний *О*-слой (рис. 6) состоит из октаэдров *M*1, *M*2 и *M*3, соединяющихся через общие рёбра. Внешние гетерополиэдрические H-слои состоят из пятивершинников *LO*₅ и диортогрупп Si₂O₇. Крупные катионы (Ba, Sr, K) заселяют позицию в межблочном пространстве. Заселённости катионных позиций, найденные с учётом данных по рассеивающей способности, межатомным расстояниям и суммам валентных усилий, следующие:

Ва — Ва с примесями Sr и K.

*M*1 — Nа с примесью Ca.

9

Таблица 2. Порошковые рентгенографические данные для эммерихита					
I _{изм.}	$d_{\mu_{3M}}$	<i>I</i> _{выч.} .	$d_{\scriptscriptstyle m BHYL}$	hkl	
55	9.97	39	9.919	200	
4	6.68	4	6.683	110	
2	4.946	2	4.959	400	
2	4.509	3	4.519	201	
19	4.119	27	4.114	111	
36	3.752	54	3.750	31-1	
65	3.461	36, 53, 10	3.463, 3.459, 3.458	510, 311, 401	
40	3.312	22, 29	3.341, 3.306	220, 600	
27	3.044	45	3.048	51-1	
38	2.882	24, 22	2.886, 2.886	22-1, 420	
100	2.792	100, 28	2.791, 2.791	221, 511	
56	2.670	16, 15, 38	2.687, 2.686, 2.669	002, 601, 20-2	
45	2.629	37, 29	2.632, 2.614	710, 42-1	
8	2.469	4, 1, 4, 3	2.481, 2.477, 2.466, 2.461	40-2, 421, 71-1, 112	
5	2.427	4, 5	2.434, 2.419	31-2, 620	
3	2.355	10	2.353	80-1	
6	2.269	10	2.272	312	
13	2.222	10, 6, 8	2.230, 2.228, 2.209	51-2, 330, 60-2	
57	2.140	9, 26, 19, 22	2.142, 2.142, 2.142, 2.133	131, 022, 621, 22-2	
15	2.093	16, 6	2.105, 2.086	910, 33-1	
28	2.032	8, 22, 4, 13	2.033, 2.032, 2.031, 2.030	42-2, 530, 331, 512	
13	1.982	18, 4, 9	1.985, 1.981, 1.961	71-2, 602, 82-1	
5	1.934	7, 3	1.937, 1.932	53-1, 10.01	
2	1.894	6	1.893	911	
3	1.865	8	1.866	531	
6	1.813	13	1.816	730	
20	1.774	28	1.774	040	
8	1.748	5, 3, 3	1.749, 1.748, 1.747	91-2, 11.1.0, 33-2	
4	1.715	6, 5	1.717, 1.714	11.11, 113	
5	1.654	9, 3, 1	1.658, 1.654, 1.652	51-3, 60-3, 241	
4	1.638	7	1.637	313	
26	1.601	10, 21, 15	1.604, 1.603, 1.599	22-3, 10.2.1, 023	
6	1.560	1, 2, 9	1.563, 1.557, 1.557	640, 71-3, 73-2	
2	1.527	2, 4	1.532, 1.523	513, 64-1	
27	1.479	24, 8, 4, 3,	1.482, 1.481, 1.481, 1.480,	12.21, 042, 641, 423,	
		2, 17	1.479, 1.478	13.11, 24-2	
5	1.453	11, 2	1.457, 1.452	732, 242	
6	1.435	10, 4	1.435, 1.434	93-2, 13-3	
6	1.414	3, 2, 2	1.417, 1.415, 1.410	84-1, 133, 10.03	
1	1.375	3, 1, 2, 2	1.383, 1.381, 1.372, 1.371	53-3, 803, 841, 333	
5	1.354	3, 3, 6	1.356, 1.352, 1.351	11.3.1, 35-1, 20-4	
11	1.341	6, 10, 1, 6,	1.343, 1.343, 1.337, 1.336,	004, 12.0.2, 550, 351,	
		3	1.336	932	
6	1.310	2, 5	1.310, 1.309	10.23, 55-1	
2	1.291	4, 2	1.287, 1.286	823, 551	
2	1.249	2, 2, 2, 2	1.250, 1.249, 1.249, 1.245	71-4, 42-4, 152, 35-2	
2	1.224	2, 2	1.223, 1.222	10.42, 13.3.1	
3	1.213	1, 1, 3,	1.217, 1.215, 1.214,	62-4, 55-2, 514,	
		2, 3, 1	1.213, 1.211, 1.210	13.13, 12.23, 64-3	
3	1.190	3, 3, 3	1.193, 1.191, 1.189	950, 91-4, 10.2.3	
2	1.178	1, 3	1.179, 1.177	552, 16.02	
2	1.174	2	1.175	260	
2	1.150	2, 2, 2	1.150, 1.150, 1.149	951, 714, 643	

Примечание. * — Приведены вычисленные рефлексы с интенсивностями ≥ 1 .

** — Вычислено для параметров элементарной ячейки, определённой из монокристальных данных.

Новые данные о минералах. 2014. Вып. 49

Рис. 5. Общий вид кристаллической структуры эммерихита в проекции на плоскость (ab).

Рис. 6. Октаэдрический слой в структуре эммерихита.

Таблица 3. Межатомные расстояния (Å) в координационных полиэдрах эммерихита

	пационных полиздрах эмперихита					
Ba-O1	2.761(2)	M2-O5	2.222(2) × 2			
Ba-O3	2.761(2) × 2	M2-F	2.283(2) × 2			
Ba-O4	2.861(2)	M2-O2 2.322(2) >				
Ba-O4′	2.870(2)	Среднее	2.276			
Ba-03'	$2.901(2) \times 2$					
Ba-O1'	$2.909(2) \times 2$					
Среднее	2.848					
L - O2	1.703(3)	M3-F	$2.003(4) \times 2$			
L - O1	$1.977(2) \times 2$	M3 - O5	$2.063(2) \times 4$			
L - O3	$1.980(2) \times 2$	2.043 Среднее				
Среднее	1.923					
M1-O2	O2 2.267(3) × 2 Si - 0		1.603(2)			
M1 - O5	$2.473(2) \times 4$	4 Si-O3 1.624(2)				
Среднее	2.404	Si - O1	1.627(2)			
		Si - O4	1.669(1)			
		Среднее	1.631			
		Среднее	1.631			

*M*2 — в основном Na при подчинённых содержаниях Fe²⁺, Mn²⁺ и Mg.

*М*3 — в основном Fe³⁺ при подчинённом содержании Mq.

L — Ті с примесями Fe³⁺, Nb и Zr.

Ионы F⁻ заселяют позицию на стыке *М*3-октаэдра и двух *М*2-октаэдров.

Обсуждение результатов

Группа лампрофиллита относится к меро-плезиотипной серии бафертисита, которая, в свою очередь, принадлежит семейству гетерофиллосиликатов (Ferraris et al., 2001; Ferraris, Gula, 2005). Основой кристаллических структур всех этих минералов является трёхслойный пакет НОН, где О - слой, состоящий из октаэдров MO_6 (M = Ti, Nb, Fe^{2+} , Mn²⁺, Na и др.), а H – гетерополиздрический слой, в построении которого наряду с тетраэдрами SiO₄ (образующими диортогруппы Si₂O₇) участвуют различные катионы с высокими силовыми характеристиками (Ti, Nb, Zr, Fe³⁺), имеющие координационные числа 6 или 5 (L-катионы). Общая формула минералов бафертиситовой серии может быть записана в виде $A_2 \{ M_4 [L_2 X_{2+p} (Si_2 O_7)_2] Y_2 \} W$, где A катионы с низкими силовыми характеристиками (как правило, катионы щелочных и щелочноземельных элементов с координационными числами выше 6), М — катионы октаэдрического слоя, X и $Y - O^{2-}$, F^- или OH^- , W — молекулы воды или многоатомные анионы (PO₄³⁻, SO₄²⁻, CO₃²⁻), p = 0 - 2.

В членах группы лампрофиллита W-компоненты отсутствуют, p = 0, позиция Узаселена ионами O²⁻, а *L*-катионы (Fe³⁺ в эрикссоните и ферроэрикссоните или Ti⁴⁺ в остальных членах группы) имеют координационное число 5. Общая кристаллохимическая формула этих минералов: ^[10-11]A₂ [^[6]M1 ^[6]M2₂ ^[6]M3 X2] [^[5]L₂ (Si₂O₇)₂O₂]. В титановых (с Ті в позиции L) членах группы октаэдры М1 и М2 заселены преимущественно натрием. Среди изученных минералов группы лампрофиллита преобладают моноклинные (пространственная группа С2/*m*, политип 2*M*). Для лампрофиллита, баритолампрофиллита и эрикссонита известны также ромбические разновидности (пространственная группа Pnmn, политип 2O) с параметрами элементарной ячейки а = 19.1 - 20.3, b = 7.0 - 7.1, c = 5.3 - 5.4Å (Moore, 1971; Matsubara, 1980; Krivovichev et al., 2003; Sokolova, Hawthorne, 2008).

Главным отличием эммерихита от других минералов группы лампрофиллита является доминирование Fe³⁺ в малом октаэдре *M*3. В других минералах этой группы преобладаю-

Таблица 4. Расчёт сумм валентных усилий для эммерихита							
Site	Ba	L	<i>M</i> 1	M2	<i>M</i> 3	Si	V_{i}
01	0.28 ^{(×2)↓}	$0.65^{(imes 2)\downarrow}$				$1.00^{\downarrow ightarrow}$	1.93
	0.28 →	0.65 →					
O2		1.37↓	$0.27^{(imes 2)\downarrow}$	$0.19^{(\times 2)\downarrow \rightarrow}$			2.02
		1.37 →	0.27 →				
O3	$0.28^{\scriptscriptstyle(\times2)\downarrow}+0.19^{\downarrow}$	$0.64^{(imes 2)\downarrow}$				$1.00^{\downarrow ightarrow}$	2.11
	(0.28 + 0.19) →	0.64 →					
04	$(0.21 + 0.21)^{\downarrow}$					0.89↓	2.20
	0.21 ^{(× 2)→}					0.89 ^{(×2)→}	
O5			0.17 ^{(× 4)↓}	$0.24^{(imes 2)\downarrow}$	0.40 ^{(× 4)↓}	$1.06^{\downarrow \rightarrow}$	1.87
			0.17 →	0.24 →	0.40 →		
F				$0.21^{(\times 2)\downarrow ightarrow}$	$0.48^{(imes 2)\downarrow}$		0.90
					0.48 →		
V_{i}	1.73	3.95	1.22	1.28	2.56*	3.89	

Примечание. - Величина V_i = 2.56 для M3 вычислена в предположении о том, что позиция F полностью заселена фтором. Для кислорода в позиции F V_i = 2.56.

Таблица 5.	Сравнительные данные для эммерихита	и других моноклинных	титановых минералов груп
	пы лампрофиллита		

Минерал	Эммерихит	Лилейит	Баритолампрофиллит	Лампрофиллит	Набалампрофиллит
Формула	$Ba_2Na(Na,Fe^{2+})_2$	Ba ₂ (Na,Fe ²⁺ ,Ca) ₃	Ba ₂ (Na,Fe ²⁺ ,Mn) ₃ Ti ₃	$Sr_2(Na,Fe^{2+},Mn)_3Ti_3$	Ba(Na,Ba)Na ₃ Ti ₃
	$(Fe^{3+},Mg)Ti_2$	(Mg, Fe ³⁺)Ti ₂	$(Si_2O_7)_2O_2(O,OH,F)_2$	$(Si_2O_7)_2O_2(O,OH,F)_2$	(Si ₂ O ₇) ₂ O ₂ (OH) ₂
	$(Si_2O_7)_2O_2F_2$	$(Si_2O_7)_2O_2F_2$			
Пространственная	C2/m	C2/m	C2/m	C2/m	P2/m
группа					
a, Å	19.960	19.905	19.833	19.431	19.741
b, Å	7.098	7.098	7.089	7.086	7.105
<i>c</i> , Å	5.407	5.405	5.393	5.392	5.408
β,°	96.37	96.35	96.66	96.75	96.67
Z	2	2	2	2	2
Сильные линии	9.97 (55)	3.749 (45)	3.447 (70)	3.73 (40)	9.87 (96)
порошкограммы:	3.461 (65)	3.464 (76)	3.294 (50)	3.43 (55)	3.75 (65)
d, Å (I, %)	3.312 (40)	2.792 (100)	2.801 (100)	3.27 (40)	3.45 (90)
	2.792 (100)	2.672 (54)	2.153 (90)	2.874 (40)	3.275 (78)
	2.670 (56)	2.624 (43)	1.790 (70)	2.773 (100)	3.040 (41)
	2.629 (45)	2.140 (52)	1.601 (80)	2.130 (45)	2.797 (100)
	2.140 (57)		1.482 (90)	1.477 (45)	2.610 (43)
Оптич. данные:					
α	1.725	1.718	1.735-1.743	1.733-1.751	1.750
β	1.728	1.735	1.741-1.754	1.740-1.760	1.755
γ	1.759	1.755	1.767-1.778	1.769-1.781	1.799
Оптич. знак, 2 <i>V</i> ,	+ 30	+86	+30 - +45	+21 - +43	+40
Плотность, г/см ³	3.864	3.776	3.62-3.66	3.44-3.53	3.65
Ссылки	Настоящая	Chukanov	The-Chung Peng,	Власов и др., 1959;	Чуканов и др., 2004
	работа	et al., 2012	Chien-Hung Chang,	1983; Сафьянов	
			1965; Zhizhong	и др., Расцветаева	
			Peng et al., 1984;	и др., 1990;	
			Rastsvetaeva <i>et al.</i> , 1995;	Фекличев, 1989	
			Фекличев, 1989		

щими катионами в этой позиции являются Ti (в лампрофиллите, баритолампрофиллите и набалампрофиллите), Mg (в лилейите), Mn²⁺ в эрикссоните и Fe²⁺ в ферроэрикссоните. От последнего минерала эммерихит, помимо валентного состояния железа, отличается доминированием титана в *L*-позиции и наличи-

ем двух натрий-доминантных октаэдрических позиций. Кристаллохимическая формула эммерихита следующая: [Ba,Sr,K]₂[(Na,Ca) (Na,Fe²⁺,Mn²⁺,Mg)₂(Fe³⁺,Mg)][(Ti,Fe³⁺,Nb,Zr)₂ (Si₂O7)₂O₂](F,O)₂ (квадратными скобками выделены межпакетные катионы, катионы *O*-слоя и *H*-слой). Сравнительные данные для эммерихита и других моноклинных титановых минералов группы лампрофиллита приведены в таблице 5.

Филло- и гетерофиллосиликаты из пневматолитовых ассоциаций, связанных со щелочными базальтами Айфеля — оксифлогопит КМg₂Ti(Si₃AlO₁₀)O₂, шюллерит Ba₂Na $(Mn^{2+}, Ca)(Fe^{3+}, Mg, Fe^{2+})_2Ti_2(Si_2O_7)_2O_2(F, O_2)_2$ минералы группы лампрофиллита — характеризуются практически полным отсутствием в их составе водорода, что отличает эти минералы от большинства их аналогов (слюд и членов группы лампрофиллита) из агпаитовых интрузивных пород и пегматитов. Низкое содержание ОН-групп характерно и для других первичных минералов из базальтов Айфеля (амфиболов, фторапатита и др.). По-видимому, этот обстоятельство связано с совместным проявлением ряда генетических факторов, включая дегазацию магмы, высокие температуры кристаллизации и высокую фугитивность кислорода и фтора (Чуканов и др., 2008).

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 14-05-00190-а).

Литература

- Власов К.А., Кузьменко М.В., Еськова Е.М. Ловозерский щелочной массив. М.: АН СССР, **1959**. 632 с.
- Расцветаева Р.К., Соколова М.Н., Гусев А.И. Уточненная кристаллическая структура лампрофиллита // Минерал. журн. **1990**. Т. 12. № 5. С. 25 – 28.
- Сафьянов Ю.Н., Васильева Н.О., Головачев В.П., Кузьмин Э.А., Белов Н.В. Кристаллическая структура лампрофиллита // Докл. АН СССР. **1983**. Т. 269. № 1. С. 117-120.
- *Фекличев В.Г.* Диагностические константы минералов. М.: Недра, **1989**. 479 с.
- Чуканов Н.В., Зубкова Н.В., Пеков И.В., Белаковский Д.И., Шюллер В., Тернес Б., Бласс Г., Пущаровский Д.Ю. Хиллесхаймит (К,Са,□)₂(Mg,Fe,Ca,□)₂[(Si,Al)₁₃O₂₃ (OH)₆](OH)•8H₂O — новый слоистый силикат группы гюнтерблассита // Зап. PMO. **2012**₁. Ч. 141. № 3. С. 29–39.
- Чуканов Н.В., Расцветаева Р.К., Аксенов С.М., Пеков И.В., Зубкова Н.В., Бритвин С.Н., Белаковский Д.И., Шюллер В., Тернес Б. Гюнтерблассит (К.Са)_{3-х}Fe[(Si,Al)₁₃O₂₅(OH, O)₄]•7H₂O — новый минерал, первый филлосиликат с тройным тетраэдрическим слоем // Зап. РМО. **2012**₂. Ч. 141. № 1. С. 71 – 79.

- Чуканов Н.В., Моисеев М.М., Пеков И.В., Лазебник К.А., Расцветаева Р.К., Заякина Н.В., Феррарис Дж., Ивальди Г. Набалампрофиллит Ва(Na,Ba) {Na₃Ti[Ti₂O₂Si₄O₁₄] (OH,F)₂} – новый слоистый титаносиликат группы лампрофиллита из щелочно-ультраосновных массивов Инагли и Ковдор, Россия // Зап. ВМО. 2004. Ч. 133. № 1. С. 59–72.
- Чуканов Н.В., Муханова А.А., Расцветаева Р.К., Белаковский Д.И., Мёккель Ш., Каримова А.В., Бритвин С.Н., Кривовичев С.В. Оксифлогопит К(Mg, Ti, Fe)₃[(Si, Al)₄O₁₀] (O, F)₂ – новый минерал группы слюд // Зап. РМО. **2010**. Ч. 139. Вып. 3. С. 31 – 40.
- Чуканов Н.В., Расцветаева Р.К., Бритвин С.Н., Вирюс А.А., Белаковский Д.И., Пеков И.В., Аксенов С.М., Тернес Б. Шюллерит Ba₂Na(Mn,Ca)(Fe³⁺,Mg,Fe²⁺)₂Ti₂(Si₂O₇)₂ (O,F)₄ — новый минерал из вулканического района Айфель, Германия // Зап. РМО. **2011.** Ч. 140. № 1. С. 67 — 75.
- Чуканов Н.В., Розенберг К.А., Расцветаева Р.К., Мёккель Ш. Новые данные о высокотитановом биотите. Проблема «воданита» // Новые данные о минералах. 2008. Вып. 43. С. 72—77.
- Aksenov S.M., Rastsvetaeva R.K., Chukanov N.V. The crystal structure of emmerichite Ba₂Na₃ Fe³⁺Ti₂(Si₂O₇)₂O₂F₂, a new lamprophyllitegroup mineral // Z. Kristallogr. **2014**. Vol. 229. No. 1. (в печати).
- Blass G., Emmerich F., Graf H.-W., Schäfer Ch., Tschörtner J. Minerale der Eifelvulkane // Version 1.0 / CD. Published by Authors. 2011. / URL: http://wannenkopfe.strahlen.org/ (in German).
- Blass G., Felsberger-Ruuti S., Kruijen F., Leu K., Locker H., Paulick H., Schmotz F., Schüller W., Ternes B. Die Mineralien der Vulkaneifel // ExtraLapis. 2008. No. 34. 98 pp. (in German).
- Blass G., Graf H.-W., Kolitsch U., Sebold D. The new finds from the volcanic Eifel (I) // Mineralien-Welt. 2009₁. Vol. 20. No. 1. P. 46-54 (in German).
- Blass G., Graf H.-W., Kolitsch U., Sebold D. The new finds from the volcanic Eifel (II) // Mineralien-Welt. 2009₂. Vol. 20. No. 2. P. 38-49 (in German).
- Chukanov N.V., Pekov I.V., Rastsvetaeva R.K., Aksenov S.M., Zadov A.E., Van K.V., Blass G., Schüller W., Ternes B. Lileyite, Ba₂(Na,Fe, Ca)₃MgTi₂(Si₂O₇)₂O₂F₂, a new lamprophyllite-group mineral from the Eifel volcanic area, Germany // Eur. J. Mineral. **2012**. Vol. 24. No. 1. P. 181–188.
- Ferraris G., Gula A. Polysomatic aspects of microporous minerals – heterophyllosilicates,

12

palysepioles and rhodesite-related structures // Rev. Mineral. Geochem. **2005**. Vol. 57. P. 69–104.

- Ferraris G., Ivaldi G., Pushcharovsky D.Yu., Zubkova N.V., Pekov I.V. The crystal structure of delindeite, Ba₂{(Na,K,□)₃(Ti,Fe) [Ti₂(O,OH)₄Si₄O₁₄](H₂O,OH)₂}, a member of the mero-plesiotype bafertisite series // Canad. Mineral. **2001**. Vol. 39. No. 5. P. 1307-1316.
- Krivovichev S.V., Armbruster T., Yakovenchuk V.N., Pakhomovsky Ya.A., Men'shikov Yu.P. Crystal structures of lamprophyllite-2M and lamprophyllite-2O from the Lovozero alkaline massif, Kola peninsula, Russia // Eur. J. Mineral. 2003. Vol. 15. No. 4. P. 711-718.
- Matsubara S. The crystal structure of orthoericssonite // Mineral. J. **1980**. Vol. 10. No. 3. P. 107–121.
- Moore P.B. Ericssonite and orthoericssonite. Two new members of the lamprophyllite group from Långban, Sweden // Lithos. **1971**. Vol. 4. P. 137–145.

- Rastsvetaeva R.K., Evsyunin V.G., Konev A.A. Crystal structure of K-barytolamprophyllite // Crystallography Reports. 1995. Vol. 40. P. 472-474.
- Sharygin V.V., Pekov I.V., Zubkova N.V., Khomyakov A.P., Stoppa F., Pushcharovsky D.Yu. Umbrianite, K₇Na₂Ca₂[Al₃Si₁₀O₂₉] F₂Cl₂, a new mineral species from melilitolite of the Pian di Celle volcano, Umbria, Italy // Eur. J. Mineral. **2013**. Vol. 25. No. 4. P. 655-669.
- Sokolova E., Hawthorne F.C. From structure topology to chemical composition. IV. Titanium silicates: the orthorhombic polytype of nabalamprophyllite from the Lovozero massif, Kola Peninsula, Russia // Can. Mineral. 2008. Vol. 46. No. 5. P. 1323 – 1331.
- The-Chung Peng, Chien-Hung Chang. New varieties of lamprophyllite-barytolamprophyllite and orthorhombic lamprophyllite // Scientia Sinica. **1965**. Vol. 14. P. 1827 – 1840.
- Zhizhong Peng, Jianhong Zhang, Jinfu Shu. The crystal structure of barytolamprophyllite // Kexue Tongbao. **1984**. Vol. 29. P. 237 241.