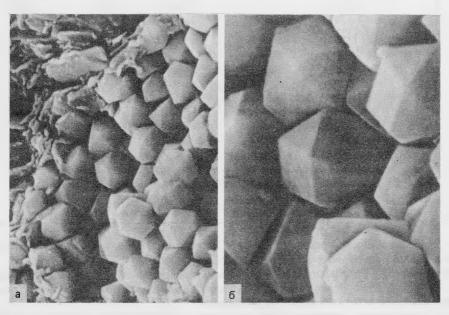
## МИНЕРАЛОГИЧЕСКИЕ ЗАМЕТКИ

УДК 549.327.7


## в.н. аполлонов, в.н. соколов, а.а. ульянов О МОРФОЛОГИИ КРИСТАЛЛОВ МЕЛЬНИКОВИТА (ГРЕЙГИТА)

Впервые мельниковит был обнаружен и описан в миоценовых глинах Самарской губернии в 1911 году Б. Доссом (1). Затем продолжительное время мельниковитом назывались без достаточных оснований любые черные землистые разновидности пирита и марказита [2, 3]. В 1963 г. самостоятельность мельниковита как минерального вида ( $Fe_2S_4$ ) со структурой типа шпинели была доказана при разностороннем исследовании образцов олигоценовых глин Мангышлака [1]. В 1964 г. американские минералоги описали под названием грейгит минерал, идентичный мельниковиту [4]. В последнее время мельниковит обнаружен в ряде гипогенных месторождений [5] в современных морских илах и синтезирован.

Несмотря на широкое распространение мельниковита, детальные морфологические описания в литературе отсутствуют. В работе [1] кристаллы мельниковита описываются как пластинчатые и игольчатые. Скиннер и другие [4] отмечают по данным электронномикроскопических исследований (фотографии не приведены) октаэдрическую форму кристаллов с незначительным развитием граней куба. Вильямом [6] кристаллы мельниковита описаны как кривогранные октаэдры.

Нами исследовался образец морской майкопской глины  $P_3 + N_1^{1-2}$ , отобранный в Ставропольском крае вблизи горы Курчавка из скважины с глубины 85 м. Образец представляет собой плотную полиминеральную глину каолинит-гидрослюдистомонтмориллонитового состава. Основные физические свойства образца приведены в табл. 1.

Микроморфологические исследования проводились на высокоразрешающем сканирующем электронном микроскопе "CWIK SKAN-106 A". Работа велась в высоковольтном режиме с ускоряющим напряжением 16 кВ и током эмиссии 10 мкА.



Электронная микрофотография скопления кристаллов мельниковита на сколе образца майкопской глины

a — увеличение 5000,  $\delta$  — увеличение 10 000

Таблица 1 Физические свойства образца майкопской глины

| Естественная | Объемная масса влажной породы, г/см <sup>3</sup> | Плот-<br>ность,<br>г/см <sup>3</sup> | Порис-<br>тость,<br>% | Удель-<br>ная по-<br>верх-<br>ность,<br>м <sup>2</sup> /г | Гранулометрический состав фракции в % |                     |                      |                        |             |
|--------------|--------------------------------------------------|--------------------------------------|-----------------------|-----------------------------------------------------------|---------------------------------------|---------------------|----------------------|------------------------|-------------|
| влажность,   |                                                  |                                      |                       |                                                           | 0,1-0,05<br>MM                        | 0,05-<br>0,01<br>MM | 0,01-<br>0,005<br>MM | 0,005 —<br>0,001<br>MM | 0,001<br>MM |
| 17,4         | 2,20                                             | 2,70                                 | 30                    | 187                                                       | 0                                     | 7                   | 13                   | 33                     | 47          |

Таблица 2 Межплоскостные расстояния мельниковита (грейгита)

| Мельниковит майкопских<br>глин |       |        | никовит | Грейгит<br>(4) |        |  |
|--------------------------------|-------|--------|---------|----------------|--------|--|
| I                              | d     | I      | d       | I              | d      |  |
| 1 ш                            | 7,0*  | -      | _       | _              | -      |  |
| -                              | _     | 4      | 5,74    | 28             | 5,72   |  |
| 1 ш                            | 4,9*  | _      | _       | _              | - 4    |  |
| 3                              | 4,4*  | _      | -       | ~              | 9      |  |
| 3                              | 4,2*  | -      | -       | _              | - /    |  |
| 3                              | 3,45  | 6      | 3,51    | 31,5           | 3,498  |  |
| 10                             | 3,31  | _      |         |                | _      |  |
| -                              | _     | 1      | 3,13    | _              | _      |  |
| 10                             | 2,95  | 10     | 2,97    | 100            | 2,980  |  |
| 2                              | 2,82  | 1      | 2,87    | 3,9            | 2,855  |  |
| 3                              | 2,56  | _      | _       | _              | - 1    |  |
| 7                              | 2,46  | 8      | 2,47    | 54,8           | 2,470  |  |
| _                              | _     | _      |         | 1,2            | 2,260  |  |
| 2 ш                            | 1,992 | 4      | 2,01    | 9,2            | 2,017  |  |
| 3 ш                            | 1,892 | 7      | 1,900   | 28,6           | 1,901  |  |
| 3                              | 1,803 |        | _       | _              | -      |  |
| 9                              | 1,732 | 10     | 1,743   | 76,8           | 1,745  |  |
|                                | -     | 1      | 1,641   |                | - 4    |  |
| _                              | _     | 1      | 1,564   | 4,2            | 1,5625 |  |
| 3 ш                            | 1,498 | 5      | 1,504   | 9,8            | 1,5058 |  |
| 2                              | 1,420 | 5      | 1,426   | 8,6            | 1,4253 |  |
| 2                              | 1,372 | 3      | -       | 0,7            | 1,3826 |  |
| 2                              | 1,372 | 2      | 1,320   | 3,6            |        |  |
| 2                              | 1,282 | 3<br>7 | 1,285   | 12,8           | 1,3204 |  |
| 1                              | 1,252 | 6      | 1,283   | 9,2            | 1,2859 |  |
| 1                              | 1,232 | 2      |         |                | 1,2349 |  |
| _                              | 1 100 | 2      | 1,219   | 0,3            | 1,2097 |  |
| 2                              | 1,180 | -      | -       | _              | -      |  |
| _                              | _     | 1      | 1,164   | 0,3            | 1,1640 |  |
| _                              | 1.100 | 7      | 1,140   | 1,8            | 1,1401 |  |
| 3 ш                            | 1,100 | 8      | 1,106   | 16,4           | 1,1051 |  |
| 2                              | 1,080 | _      | -       | 0,6            | 1,0844 |  |
| _                              | _     | 1      | 1,052   | 2,1            | 1,0544 |  |
| _                              | _     | 1      | 1,043   | _              | _      |  |
| 2                              | 1,033 | 6      | 1,035   | 7,1            | 1,0351 |  |
| 4 ш                            | 1,006 | 10     | 1,007   | 30,9           | 1,0080 |  |

Для предотвращения искажения формы кристаллов плоскость раскола образца располагалась нормально к электронному зонду.

При электронномикроскопическом изучении майкопской глины были обнаружены корочки хорошо ограненных кристаллов, выстилающих тонкие полости (рис. a,  $\delta$ ) в чешуйчатом агрегате глинистых минералов.

Для диагностики минерала были проведены дополнительные исследования. При наблюдении невооруженным глазом и под бинокулярной лупой скопления минерала выглядят как тончайшие линзочки толщиной в доли миллиметра и длиной до не-

скольких миллиметров, согласные со слоистостью глин и неравномерно, спорадически развитые в породе. Цвет темно-серый с синеватым или желтоватым оттенками, блеск полуметаллический. Кристаллы магнитные — прилипают к стальной игле. Попытка выделения больших количеств чистого минерала с помощью мокрой магнитной сепарации оказалась неудачной из-за высокой дисперсности материала и присутствия в глинах большого количества зерен обломочного магнетита. Отборку кристаллов проводили под бинокулярной лупой в капле воды; состав отобранного материала контролировался под электронным микроскопом. Таким образом, было отобрано несколько миллиграммов концентрата для рентгенофазового анализа (камера РКД-57,3, FeK). Результаты приведены в табл. 2. За вычетом некоторых линий, отнесенных нами к породообразующим минералам (отмечено звездочкой), рентгенограммы отвечают мельниковиту — грейгиту.

Как следует из электронных микрофотографий (рис. a,  $\delta$ ), кристаллы мельниковита в исследованной нами майкопской глине представлены однородными по размеру ( $\sim$  3 мкм) и форме плоскогранными кубоктаэдрами с одинаковым развитием граней куба и октаэдра.

Учитывая довольно широкое развитие мельниковита как в осадочных, так и в гипогенных образованиях, следует при изучении сажистых сульфидов железа проводить всестороннее исследование материала электронномикроскопическими, рентгенографичскими и магнитометрическими методами.

## ЛИТЕРАТУРА

- 1. А.П. Полушкина, Г.А. Сидоренко. Мельниковит как минеральный вид. Зап. Всес. минерал. о-ва, 1963, ч. 92, вып. 5.
- Всес. минерал. о-ва, 1963, ч. 92, вып. 5. 2. А.А. Годовиков. Минералогия. М.: Недра, 1975.
- Ф.В. Чухров. Коллонды в земной коре.
  М.: Изд-во АН СССР, 1955.
- 4. B.J. Skinner, R.C. Erd. Grimaldi. Greigite,
- the thiospinel of iron a new mineral. Amer. mineral., 1964, vol. 49, N 5, 6.
- В.С. Груздев и др. Грейгит из Якутии и его оптические свойства. – АН СССР, т. 202, № 4.
- William Sidney A. More data on greigite. Amer. mineral., 1968, vol. 53, N 11, 12.