МИНЕРАЛОГИЧЕСКИЙ МУЗЕЙ им, А. Е. ФЕРСМАНА

Труды, вып. 16

1965 г.

Редактор д-р геол.-мин. наук Г. П. Барсанов

а. с. павленко, л. п. орлова, м. в. ахманова церфосфорхаттонит — минерал группы монацита

В известных силикатах и фосфатах тория и р.з.э. кристаллизующихся в структуре монацита, изоморфизм в катионной и особенно анионной частях весьма ограничен. Так, по литературным данным (Bowie, Horne, 1953) максимальное содержание ThO_2 в монаците составляет 28,20 вес. % и $SiO_2-6,09$ %. В чералите (TR, Th, Ca, U)·(P, Si)O₄, который рассматривается как промежуточный член в ряду монацит — синтетический $CaTh(PO_4)_2$, содержание ThO_2 возрастает до 31,50% при содержании $SiO_2-2,1$ %. С другой стороны, в хаттоните (Hutton, 1951) Ce_2O_3 составляет лишь 2,6%, а P_2O_5 отмечен в виде следов.

В 1956 г. нами был обнаружен минерал примерно с равным содержанием монацитового и хаттонитового компонентов, в котором, как мы увидим далее, содержание ThO₂ находится в простом стехиометрическом отношении с содержанием SiO₂. Минерал был встречен в юго-восточной Сибири в амазонитовом пегматите совместно с колумбитом, фергюсонитом и цирконом. Пегматит залегает в виде изометричного штока среди мраморов, слабо дифференцирован, сложен микроклином — амазонитом и квардем с незначительной примесью мусковита. Структура породы пегматоидная и блоковая. Альбитизация отсутствует. Из вторичных процессов отмечена лишь слабая серицитизация по трещинкам в микроклине.

Минерал встречается в виде отдельных, хорошо образованных кристалликов размером от микроскопических до 2 см, в одном случае найдена друза. По внешнему облику копьевидные и клиновидные кристаллы минерала похожи на кристаллы монацита. Цвет минерала от светло-желтого до красно-бурого; блеск смолистый до матового; твердость немного выше 5; удельный вес 5,06 (микропикнометрическое определение Р. Котиной).

Под микроскопом при одном николе минерал имеет желтоватую окраску, очень высокий рельеф и обнаруживает грубую неправильную трещиноватость. Правильные системы спайности отсутствуют. В скрещенных николях наблюдается чередование изотропизированных и анизотропных участков, образующих своего рода сеть (рис. 1). Анизотропные участки имеют невысокое двупреломление с Ng=1,825 и Np=1,821; показатель изотропных колеблется в пределах 1,823-1,820; $+2V=20-21^\circ$; в коноскопе наблюдается слабая дисперсия r < v (такая же как у монацита и хаттонита).

Минерал достаточно интенсивно замещается редкоземельным фторкарбонатом, который на основании оптических свойств (Ne = 1,770; No = 1,670) и дебаеграмм был идентифицирован как паризит. Паризит образует корочки на поверхности минерала и развивается по трещинкам

Рис. 1. Микрофотография церхаттонита. $\times 30$, николи скрещены

и в виде субмикроскопических выделений (см. рис. 1). Выделения паризита сопровождаются бурыми ореолами тонкодисперсных окислов железа. Кроме того в крупных кристаллах минерала обнаружены мелкие прожилки микроклина и серицита.

На дебаеграммах минерал дает отчетливую дифракционную картину, очень близкую к дебаеграммам монацита и хаттонита (табл. 1). Значения всех межплоскостных расстояний и, следовательно, параметры ячейки лежат в пределах, приводимых в литературе для различных монацитов, и наиболее сходны с дебаеграммами торийсодержащего монацита из Рат-

напура и хаттонита.

Слабое влияние химического состава на структурные параметры в минералах группы монацита отмечалось многими исследователями, и в этом отношении наш минерал не составляет исключения. Действительно, как ноказывают данные табл. 2, параметры и объемы ячеек монацитов разного состава, а также чералита (Bowie, Horne, 1953) и хаттонита укладываются в значения для ряда LaPO 4—NdPO 4 (Monney, Pabst, 1951). Изучение природных монацитов с колебаниями в содержании ThO 2 от 2,00 до 7,33 % и SiO 2— от 0,60 до 1,68 % подтвердило зависимость структуры монацитов только от вариаций отношения La: (Sm + Gd + U + Y) и независимость ее от содержания Th (Flinter, Butter, Harral, 1963). Объяснение этим фактам следует искать в соотношениях радиусов ионов в минералах

Таблица 1 Дебаеграммы манералов группы монацита и церфосфорхаттонита

Гидротермальный хаттонит (Костерин, Зуев, 1962)		Монацит * (Сэменов, 1963)		Mонацит (Pabst, 1961)		Монацит (Михеев, 1957)		Церфосфор- хаттонит **		Xаттонит (Pabst, 1957)			
I	d	I	d	I	d	I	d	I	d	I	d	I	d
				4	5,19	4	5,23					3	5,23
				4	4,66	4	4,72			5	4,69	5	4,71
				6	4,17	6	4,17			4	4,19	6	4,23
				6	3,51	5	3,52	3	3,54	5	3,52	4	4,53
				8	3,29	7	3,31	5	3,31	6	3,28	6	3,29
4	3,07	3	3,14	10	3,10	10	3,09	10	3,11	10	3,09	8	3,09
	,	Ü	0,	4	2,98	2	2,99	4	2,99	1	2,96	3	2,98
2	2,85			10	2,87	7	2,88	9	2,88	8	2,86	7	2,89
3	2,66	2	2,67	6	2,61	2	2,61	3	2,61	1	2,60	3	2,65
Ŭ	, , ,	_	, , , ,	6	2,44	3	2,45	3	2,45	1	2,44	1	2,44
				6	2,40			2	2,42				
				1	2,34			2	2,35				100
		2	2,23	1	2,25			1	2,26	2	2,25		
				6	2,19	4	2,19	7	2,18	4	2,18	4	2,19
		2	2,14	8	2,14	6	2,13	8	2,15	4	2,13	2	2,15
								8	2,13			3	2,11
5	1,98	6	1,93	8	1,97	5	1,97	6	1,97	2	1,96	4	1,95
	1			3	1,95	1	1,96	3	1,94				
				6	1,90	2	1,90	3	1,90	3	1,89	3	1,89
				8	1,87	6	1,87	7	1,86	3	1,84	3	1,86
8	1,83	2	1,84	3	1,81	2	1,80	2	1,80	1	1,79	2	1,81
				6	1,77	4	1,76	5	1,76	1	1,76	2	1,78
				8	1,75	6	1,75	6	1,74	6	1,75	4	1,75
				6	1,67	4	1,69	7	1,69	2	1,69	2	1,69
				4	1,63	1	1,63	3	1,63				
				6	1,61	1	1,60	5	1,60	1	1,60	3	1,60
				6	1,54	4	1,54	4	1,54	1	1,53	3	1,55
				6	1,49			2	1,47	2	1,49		
				4	1,46			2	1,46	3	1,46	3	1,44

^{*} В таблице опущены линии со следующими d: 4,11; 2,53; 2,03; 2,02; 2,00; 1,83; 1,72; 1,71; 1,59. ** В таблице опущены линии, отвечающие паризиту.

Таблица 2 Параметры ячеек минералов группы монацита

Минерал	а	ь	С	β	V, Å
Монацит	6,79	7,04	6,47	104°4′	299
Монацит	6,76	7,00	6,42	103°10′	296
LaPO ₄	6,89	7,05	6,48	103°34′	306
CePO ₄	6,71	6,92	6,36	103°28′	287
Чералит	6,74	7,00	6,43	104°24′	293
Хаттонит	6,80	6,96	6,54	104°55′	299

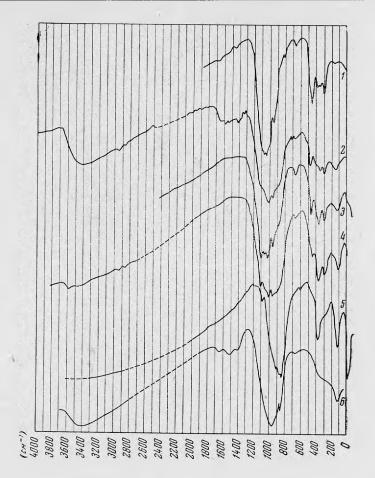


Рис. 2. ИК-спектры церхаттонита, монацита и торита 1 — монацит; 2 — церхаттонит; 3 — церхаттонит, прокаленный при 850° С; 4 — церхаттонит, прокаленный при 1000° С; 5 — торит, прокаленный при 850° С; 6 — торит

группы монацита. Замещение $Ce^{4+}(1,07\text{\AA}) - P^{5+}(0,35\text{\AA})$ на Th^{4+} $(1,02\text{\AA}) - Si^{4+}$ $(0,37\text{\AA})$, очевидно, не будет изменять параметры и объем элементарной ячейки. Заметные изменения, как и следует ожидать, происходят лишь при изовалентных замещениях ионов с существенно различными радиусами (например, $La^{3+} - 1,14\text{\AA} \to Nd^{3+} - 1,04\text{\AA}$). (Радиусы

ионов даны по Аренсу.)

В ИК-спектре минерала (рис. 2, 2) проявлены полосы, характерные, с одной стороны, для спектра монацита (рис. 2, 1) и, с другой — торита (рис. 2, 6), особенно прокаленного до 850° С (рис. 2, 5). Последнее может быть связано с переходом торита при 715—950° С в моноклинную модификацию (Pabst, 1952). Полосы в областях 545, 625, 970 и 1100 см⁻¹ (табл. 3) по аналогии со спектром монацита могут быть связаны с валентными и деформационными колебаниями РО₄-тетраэдров. Полосы поглощения SiO₄-групп (1000, 880, 460 см⁻¹) выражены в спектре минерала довольно слабо, что вообще характерно для изотропизированных, метамиктных минералов (Ахманова, Леонова, 1963). При прокаливании минерала, так же как и в случае торита, полосы поглощения SiO₄-групп усиливаются, в то время как полосы РО₄-групп сохраняют прежнюю интенсивность

Частоты поглощения минералов в ИК-области

	№ кривой	Частоты поглощения, см-1										
Минерал	на рис. 2	$\left \delta_1 (as) \operatorname{SiO}_4 \right \delta_1 (as) \operatorname{PO}_4$		δ ₂ (as) PO ₄	ν ₁ (s) SiO ₄	ν ₂ (αs) SiO ₄	ν ₂ (as) ΓΟ ₄	*	δH ₂ O	ν (s), ν (as)H ₂ O		
Церфосфорхаттонит	2	460 cp.	545 сл.	5650 сл. 625 сл.	880 пл.	965 сл. 1000 с.	1120 пл.	1390, 1420 сл.	1550— 1650 сл.ш.р.	2800— 3700 е. ш. р.		
» , прокал. 850° С	3	450 cp.	545 сл.	585 ср. 625 сл.	870 пл.	970 сл. 1000	1110 сл.	1400 о. сл.	1650 о. сл.	3300—3600 о. ел. ш. р.		
» , прокал. 1000° С	4											
Монацит	1	475 о.сл.ш.	545 ср.	565—585 сл. 625 с. рз.		970 сл. рз.	1080— 1100 o. c.					
Торит	6	460 ср.	580 пл.		870 сл.	970— 1000 o.c.		1400 cp.	1520— 1650 ср.	3000— 3600 о. сл.		
Торит, прокал. 850° С	5	450 c.	540 пл.	585 с.	860 o. c.		1100 сл.*					

Обозначения: v— валентные колебания; б— деформационные колебания; (s)— симметричные колебания; (аs)— асимметричные деформационные колебания; о. сл. — очень слабая; сл. — слабая; ср. — средняя; пл. — плечо; с. — сильная; о. с. — очень сильная; ш. — широкая; р. — размытая; рз. — резкая.

^{* —} Полосы поглощения $CO_3^{\frac{3}{2}}$ -иона в паризите.

(рис. 2,2,4). Следовательно, большая устойчивость PO_4 -групп по сравнению с группами SiO_4 в торийсодержащих минералах проявляется не только в простых соединениях типа монацита и торита, но и в минерале с комплексным анионным составом.

После прокаливания в спектре минерала исчезают полосы воды в областях 1550-1650 и 2800-3700 см⁻¹.

Химический состав минерала представлен в табл. 4. Содержания индивидуальных р.з.э. рассчитаны по данным рентгеноспектрального анализа, выполненного H. В. Туранской. В анализированном материале содержится 1,59% CO₂, что обусловлено неотделимой примесью тонкодисперсного паризита. При расчете формулы минерала вычли 119 молей CaO, по 238 молей $TRO_{\frac{3}{2}}$ и F и 119 + 238 молей CO_2 , соответствующих составу паризита. Последовательность расчета приводится в табл. 4. Простые стехиометрические отношения компонентов получаются при расчете формулы минерала на 5, а не на 4 атома кислорода, что связано с достаточно высоким содержанием воды $(H_2O^+=4,43)$. Формула минерала имеет вид:

$$\begin{split} [Th_{\mathfrak{0},51}\,(\text{Ce, La, Nd})_{\mathfrak{0},41} U_{\mathfrak{0},\mathfrak{0}2} Fe_{\mathfrak{0},14}]_{\mathfrak{1},08} [(Si_{\mathfrak{0},55} \cdot P_{\mathfrak{0},46})_{\mathfrak{1},\mathfrak{0}1}\,(O_{3,34} \cdot OH_{\mathfrak{0},63} \cdot F_{\mathfrak{0},\mathfrak{0}3})_{4}] \cdot (OH). \end{split}$$

Состояние воды в минерале требует специального изучения, однако по ряду соображений ее скорее следует рассматривать как воду, захваченную при частичном метамиктном распаде минерала. В первую очередь об этом говорит полная идентичность дебаеграммы минерала дебаеграммам безводных монацита и хаттонита. В ИК-спектрах минерала имеются полосы поглощения, характерные для H_2O -групп (1550—1650 и 2800—3700 см⁻¹), которые резко ослабляются при прокаливании, и отсутствуют полосы ОНгрупп. Наличие в гидротермальном метамиктном хаттоните (Костерин, Зуев, 1962) 11,9 % H₂O, выделяющейся при 200° C, позволяет предполагать аналогичную природу воды и в нашем минерале. Валентности катионов в формуле минерала (в сумме 8,27) могут быть с достаточным приближением скомпенсированы одним кислородом без привлечения гидроксильной воды. Ульянов (1963), проводивший исследование искусственных церортофосфатов, указывает, что соединения типа 9 CePO₄·Ce (OH)₃· ·хH₂O и 9 CePO₄ ·Ce(OH)₃ являются полуаморфными, а водосодержащие фосфаты $CePO_4 \cdot xH_2O$, $CePO_4 \cdot 2H_2O$, $CePO_4 \cdot 15H_2O$, так же как и СеРО4, — кристаллическими. Все это позволяет принять для описываемого минерала формулу типа $ABX_4 \cdot nH_2O$, предложенную И. Д. Борнеман-Старынкевич:

$$(Th_{0,48}Ce_{0,39}U_{0,02}Fe_{0,13})_{1,02}(Si_{0,53}P_{0,44}C_{0,01})_{0,98}O_{3,98}(OH)_{0,02}\cdot 1,5 H_2O.$$

Упрощенная безводная формула, предложенная Е. И. Семеновым (1963, стр. 117) на основании знакомства с материалами данной статьи до ее опубликования, имеет вид:

ThCeSiPOs.

По рекомендации Э. М. Бонштедт-Куплетской минерал рационально назвать церфосфорхаттонитом.

Установление церфосфорхаттонита с почти равными содержаниями монацитового и хаттонитового компонентов ставит вопрос о существовании непрерывного изоморфного ряда между этими минералами. В пользу существования подобного ряда говорит тот факт, что составы природных монацитов и чералита описываются компонентами 4CePO₄—4ThSiO₄—2CaTh(PO₄)₂, предложенными С. Х. Бове и Дж. Е. Хорном (Bowie,

Таблица 4 Химический состав и расчет формулы церфосфорхаттонита

Bec. %	Молекулярный вес	Молекулярное количество (×10 ⁴)	Атомное коли- чество (×10 ⁴)	Атомное коли- чество за вычетом паризита	Атомное количество кислорода	Число атомов кислорода, рассчитанное на 5	Атомные сатоврицоя
10.50	201	1520	4526	4526	2075	1.02	0,51
· ·				1990	301a	1,02	0,51
		1	1	10/0	1070	0.69	0.71
			1	1248	1872	0,62	0,41
					_		
						· ·	0,14
		19		1			0,02
0,34	223	15	15	15	15		0,005
0,11	442	2	4	4	10		0,001
10,05	60	1672	1672	1672	3344	1,10	0,55
	142	704	1408	1408	3520	1,16	0,46
i i	44	361	361	(14)		_	
	19	352			114	0,03	_
	18		4922	4922	2461	0,81	1,63
(2,03)	18	(1127)	_	_		_	-
100,09					$ \begin{array}{r} -15190 \\ -57 \\ \hline 15133 \end{array} $	5,0184 -0,0188 -4,996	
	40,56 11,85 4,51 1,47 5,64 1,19 0,67 3,35 1,63 0,34 0,11 10,05 10,00 1,59 0,67 4,43 (2,03)	40,56	Вес. % Воличество (х104) 40,56 264 1536 11,85 328 360 4,51 326 138 1,47 24,66 330 44 743 5,64 337 167 44 743 4,19 349 34 34 34 34 0,67 56 119 3,35 160 209 1,63 842 19 34 15 15 0,11 442 2 2 15 0,11 442 2 1672 10,00 142 704 1,59 44 361 361 0,67 19 352 4,43 18 2461 (1127) 100,09 18 1127) 100,09	Bec. % Mostevystaphstal Roshiffeetho (×104)	Bec. % Молекульрым вес количество (х10³) Атомное кончество (х10³) чество за вычетом паризита 40,56 264 1536 1536 1536 11,85 328 360) 720) 720 4,51 326 138 276 144 1,47 24,66 330 44 743 88 1486 1248 5,64 337 167 334 68 68 68 68 68 0,67 56 119 119 — — 418 418 418 1,63 842 19 57	Вес. % Моличество вство (х10°) Атомное количество (х10°) чество за вычетом наризита количество кислорода 40,56 264 1536 1536 1536 3075 11,85 328 360 720 326 138 276 1,47 24,66 330 44 743 88 1486 1248 1872 5,64 337 167 334 68 334 48 486 1248 1872 0,67 56 119 119 — — — — 3,35 160 209 418 418 627 627 1,63 842 19 57 57 152 0,34 223 15 15 15 15 15 0,11 442 2 4 4 10 40,05 60 1672 1672 1672 3344 10 3520 1,59 44 361 361 (14) 40,00 144 40,80	Вес. % Молекулярный всс Молекулярный всс Молекулярные количество (×10°) Атомное количество вал вычегом наризита Атомное количество вал вычегом наризита Атомное количество вал вычегом наризита Молекулярный кислорода кислорода, рассчитанное встим наризита Кислорода кислорода

Нотпе, 1953). В то же время, имеются составы торийсодержащих монацитов, а также гидротермального редкоземельного хаттонита (Костерин, Зуев, 1962), которые не могут быть получены с помощью указанных компонентов. Простое стехиометрическое отношение компонентов CePO₄ и ThSiO₄ (1:1) в церфосфорхаттоните позволило предположить Е. И. Семенову (1963) существование в нем упорядоченности, подобной упорядоченности двойных солей. Таким образом, вопрос о кристаллохимической природе перфосфорхаттонита и изоморфизме в моноклинных редкоземельно-ториевых силикофосфатах требует дальнейшего изучения. К сожалению, структурная идентичность хаттонита и монацита не позволяет использовать при решении этого вопроса обычные методы рентгеноструктурного исследования природных объектов. Поскольку монацит и хаттонит легко синтезируются (Frondel и др., 1954), то немалую роль здесь могут сыграть эспериментальные исследования.

Нахождение церфосфорхаттонита в слабодифференцированном незамещенном пегматите однозначно определяет его происхождение. Парагенезис церфосфорхаттонита с колумбитом, фергюсонитом и цирконом указывает, что его выделение произошло на ранней, высокотемпературной стадии пегматитового процесса. Спектр р.з.э. в церфосфорхаттоните

Таблица 5 Состав р.з.э. в минералах (в % от ΣTR в минерале)

		1					1			
м инерал	La	Се	Pr	Nd	Sm	Gd	Dy	Er	Yb	Y
Церфосфорхаттонит	18	48	6	23	5					
Монацит из гранита	24	43	6	22	5	_	_		_	_
Монацит из гранитного пегматита	27	40	5	19	4	3	2	-	_	
Монацит из альбитизированного пегматоидного шлира в граносиените	39	46	3	10	1	_	_	_	_	_
Торит из альбититов, связанных с нефелиновыми сиенитами	15	22	3	12	3	4	5	3	3	30
Торит из альбитизированных гранитов	_		_	1	1	4	14	3	7	70

(табл. 5) ближе всего к спектрам монацитов из гранитов и высокотемпературных пегматитов и резко отличается от состава р.з.э. в низкотемпературных метасоматических монацитах и торитах (Павленко, Вайнштейн, Туранская, 1959). Знаменательно, что даже в торите из альбититов, связанных с нефелиновыми сиенитами, состав р.з.э. оказывается значительно более иттровым. Косвенным свидетельством того, что церфосфорхаттонит образуется при высокой температуре, служит также установленный Пабстом (1952) переход торита в моноклинную модификацию при 715—950° С. Естественно предположить, что изоморфная смесь, илидвойная соль изоструктурных хаттонита и монацита, должна быть устойчивой именно при высоких температурах. В более низкотемпературных условиях компоненты церфосфорхаттонита образуют два самостоятельных минерала — монацит и торит, парагенезис которых наблюдался в альбитизированных гранитах и пегматитах.

В низкотемпературных условиях церфосфорхаттонит, вероятно, мало устойчив, о чем свидетельствуют его изотропизация и интенсивное замещение паризитом даже в очень свежем, неизмененном пегматите. С этими процессами связан вынос из минерала радиогенного свинца, что наблюдается также и в изотропизированных торитах (Зыков, Ступникова,

Павленко, Тугаринов, Орлова, 1961). Поэтому возраст минерала не мог быть определен свинцово-урано-ториевым методом. По аналогии в геологическом положении и минералогическом составе пегматита, содержащего церфосфорхаттонит, с другими амазонитовыми негматитами этого региона его возраст можно принять в 420-450 млн. лет.

В заключение считаем долгом выразить благодарность Е. И. Семенову за ценные консультации.

ЛИТЕРАТУРА

- Ахманова М. В., Леонова Л. Л. Исследование метамиктного распада силикатов с помощью ИК-спектроскопии. Минералы СССР. — Труды Минер. музея, вып. 14, 1963.
- Зыков С. И., Ступникова Н. И., Павленко А. С., Тугаринов А. И., Орлова Л. П. Абсолютный возраст интрузий Восточно-Тувинского региона и Енисейского кряжа. Геохимия, 1961, № 7.
- Костерин В. В., Зуев В. Н. Гидротермальный хаттонит.— Зап. Всес. мин. об-ва, 1962, 91, № 1. Михеев В. И. Рентгенометрический определитель минералов. М., 1957.
- Павленко А. С., Вайнштейн Э. Е., Туранская Н. В. О некоторых закономерностях поведения редких земель и иттрия в магматических и
- постмагматических процессах. Геохимия, 1959, № 4. Семенов Е.И. Минералогия редких земель. Изд-во АН СССР, 1963. Ульянов А.И. Изучение реакций образования церортофосфатов. Редкоземель-
- во wie S. H. U., Horne Y. E. T. Cheralite, a new mineral of the monazite group.— Mineral. Mag., 1953, 30, N 221.

 Flinter B. H., Butler I. R., Harral G. M. A study of alluvial monazite from Malaya.— Am. miner., 1963, 38. Harral G. M. A study of alluvial monazite
- Frondel C., Collette R. L., Ross V., Berman E. Synthesis of uranium minerals U. S. Atomic Energy Comm., RME-3101, 1954.
- Pabst A. Huttonite, a new monoclimic thorium silicate. Am. miner., 1951, 36,
- Pabst A. The metamict state. Am. miner., 1952, 37, N 3-4.
- Pabst A., Hutton C. O. Occurrence, optical properties and chemical composition of huttonite. - Am. miner., 1951, 36, N 1-2.