Applied
Geochemistry

PERGAMON

Applied Geochemistry 18 (2003) 629-651
www.elsevier.com/locate/apgeochem

On the calculation of the surface area of different
soil size fractions

S. Koptsik®*, L. Strand®, N. Clarke®

aPhysics Faculty, Moscow State University, Moscow 119899, Russia
®Norwegian Forest Research Institute, Hogskoleveien 12, N-1432, Norway

Received 30 May 2000; accepted 11 July 2002
Editorial handling by R. Fuge

Abstract

A model that accounts for contributions to the total surface area (SA) by different size fractions of the soil is con-
sidered from a theoretical point of view. Calculations, based on continuous particle sizes and forms, explain SA mainly
as a geometric SA. It is common for coarse soils to have a discrepancy between the measured SA, say inferred from
adsorption of gases, and the calculated geometric area of up to two orders of magnitude. This discrepancy is removed
by the present method. Size distribution is the main factor influencing the SA; taking particle forms into account
resulted in a 2-3 times increase of SA. The several orders of magnitude range of grain sizes leads to crucial variations in
the contributions that soil fractions make to weight, SA and number of grains. The fundamental lower limit of varia-
tion of soil properties, originating from the discrete nature of soils, is introduced. Despite the deterministic physical
origin of SA, high sensitivity to the finest fractions can be considered on the environmental scale as a cause of the
dual—stochastic and deterministic—nature of SA. Small variations of weight within experimental error and the fun-
damental limit may result in significant variations of SA, close to the same order of magnitude for coarse soils. An
empirical equation (Sverdrup, 1990) relates textural data to SA at landscape scale. It is applicable to a collection of

samples, while individual samples must be characterised on a probabilistic basis.

© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Most chemical processes in the environment take
place at the surfaces of soil and parent rock particles.
The surface area (SA) of different mineral particles
constituting soil is a fundamental property that influ-
ences soil quality. It is important in determining cation
exchange capacity, adsorption and release of nutrients
and pollutants, water retention, etc. The SAs of the
mineral components in a soil are key parameters when
determining rates of dissolution, the only long-term
source of base cations in soils apart from deposition;
and are widely used for quantifying soil vulnerability to
acid deposition, including critical load assessment and
mapping. Realistic values of the bulk soil SA and con-
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tributions of different mineral fractions are of great
concern in geochemical applications, particularly in
acidification research. Consideration of natural soil
fractions having different origins allows determination
of their contributions to the SA. A natural fraction can
be thought of as a mineral species or group of closely
related species, or a set of particles, homogeneous in
some other respect, that arose due to a specific process
of soil formation, such as parent rock fragmentation or
wind deposition. Such fractions are characterised by
continuous size distributions (SD), not bounded by the
artificial limits of size classes introduced in the process
of measurement. SA measurements of the individual
mineral components, (Clow and Drever, 1996; White et
al., 1996), are very rare, if not exceptional, due to the
complex and time-consuming task of mineral particle
separation. The difficulties involved in such measurements
have stimulated a theoretical study of the problem.
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The ab initio calculations of the SA of a soil sample
divided into size classes are usually based on the rela-
tionship (Herdan, 1953; Sverdrup, 1990)

6M — &
A =— =, 1
SCA ,0¢;Dk 1

summation is performed over all size classes. D, is the
effective diameter defined as a diameter of the sphere
with the same volume as the average particle for the k-th
size class, &, is the fraction of the sample’s mass M
within this class (or weight fraction), p is the density of
the soil solid phase. Here and below all properties
(Table 1) that enter any equation must be expressed in
the main units of the same system of physical units,
usually in SI. The multiplier 6/D, is the ratio between
the SA of a sphere and its volume. The non-sphericity of
soil particles is taken into account by the factor ¢, which
usually has a value in the range 0.85-0.9 (Sverdrup,
1990). The area in Eq. (1) is traditionally called a geo-
metric SA since it is believed that this assessment reflects
a hypothetical smooth surface enveloping the actual soil
particles. This latter assumption, as will be shown, is not
valid, which is why it is termed a size class assessment
[index SCA in (1)].

Size class assessment is exact at the limit of infinitely
small size classes. It is also true for a limited number of
size classes if the particles within each class are identical;
however it is insufficient for understanding the SA of
real soils. When particles are not identical and a con-
sistent procedure for determination of the effective
parameters ¢ and D, is not applied, this equation

Table 1
Abbreviations, main symbols and units

underestimates the SA of relatively unweathered coarse
textured soils by one-two orders of magnitude
(Sverdrup, 1990). For more highly weathered soils and
marine sediments disagreement can reach 3 orders of
magnitude (Mayer and Rossi, 1982; White et al., 1996;
Brantley et al., 1999). Therefore an empirical correlation
equation relating weights of size classes and soil SA was
suggested (Sverdrup, 1990). The relationship was
recommended for use with coarse textured soils to esti-
mate the SA when SA data for a particular soil type was
lacking. It is usually used when applying the PROFILE
model to northern soils (e.g. Hodson et al., 1996; Langan
et al., 1996). A difference between the actual SA and the
size class assessment is often attributed to surface
roughness (Anbeek, 1992). Such a large effect of surface
roughness seems strange and contradictory to morpho-
logical observations of mineral particle surfaces. The
problem is that the corrosion pits seen on photo-
micrographs (Wilson, 1986; April and Newton, 1992) do
not seem to be deep and are typically separated by dis-
tances larger than their width. Considering, for simplicity,
a cubic particle with identical small cubic pits in a
checkerboard pattern on its faces, it is found that the
actual SA is twice as large as the SA of an equivalent
particle without pits. This simple geometric example
illustrates that the effect of surface roughness should not
be notably larger than the SA of an equivalent smooth
particle, unless some complicated surface structures, not
confirmed by direct observations, are assumed, such as,
of fractal type or hollow fibres. Blum (1994) has con-
cluded, on the basis of atomic force microscopy, that
surface topography can account for a twofold increase
in surface area.

SA surface area

SFF surface form factor

PSD and SD (particle) size distribution

A (m?) surface area

M (kg) mass

D (m) particle size (diameter) or vector of particle parameters

Do and Dgr< >
Dy, and Dn{;”an
N

colloid and gravel borders of the SD
effective weight and weight average diameters
number of particles in a sample

o (kg m~) density of soil solid phase

¢ non-sphericity of soil particles

n surface form-factor

& fraction of mass (weight) within size class

e contribution of the k-th fraction to the n-th physical property of a sample

pu(D) and F,(D)

probability density and cumulative probability functions for the n-th property

n=0-—number of particles
n=1—integral thickness of particles
n=2—surface area

n=3—mass or weight

o (=) and Dy (m)

relative width and size parameter of the SDs
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At the same time it is known that the rigorous treat-
ment of continuous particle size distribution (PSD)
results in an agreement between measured and calcu-
lated SAs within a factor of 4 (Wu et al., 1993). This
paper discusses the relationships between PSD and the
SA of soils using the methods of statistical physics.
Contributions of individual size fractions to the SA of
soils naturally arise within the approach introduced here
and can be assessed. It will be shown that the large dis-
crepancy between measured and calculated SAs is con-
nected with the use of size class assessment for a few size
classes, i.e. outside its range of applicability. Based on
available experimental data for coarse textured soils, the
actual soil SA area can be interpreted mainly as a geo-
metric SA. The recent discussion in Applied Geochem-
istry (Hodson, 2002; Koptsik et al., 2002) stresses the
topical nature of the considered problem.

A theoretical model designed to fill a gap between the
present understanding of SA and the data available is
introduced. The aim of the paper is to call attention to
these poorly studied questions and to give experiment-
alists a set of tools with which integral soil properties can
be studied.

2. Geometric surface area: theoretical treatment

Soils are highly dispersed systems and contain a huge
number of particles. The number of particles in a soil
sample can be roughly assessed as the mass of the sample
divided by the mass of an effective particle. Assuming a
sandy soil composed of ~1 mm spherical particles
(Shirazi and Boersma, 1984) of density 2.65 g/cm? (Buol
et al., 1973), a 40 g sample, typical for granulometric
measurements (Vadunina and Korchagina, 1973),
would contain ~3x10° particles. Substitution of the
effective diameter that should be assessed for real soil by
1 mm results in a radical underestimate of the number
of particles. The authors assessed the total number of
particles for a group of young, relatively unweathered
soils, developed on sandy and sandy-loam moraines
after the last glaciation; such soils are widespread in
northern Europe and North America (Buol et al., 1973).
The number in a 40 g sample from the Kola Peninsula
(Koptsik et al., 1999) was typically ~2x10'! (see Section
3). For soils with a considerable clay content, the number
of particles in a sample of the same weight may reach
10%° (Wu et al., 1993). From a physical point of view
soil particles are different macroscopic objects; as a
matter of principle, they can be enumerated and studied
separately. However, the large number of soil particles
makes such an approach practically senseless. Soil
properties should be explained without explicit reference
to the detailed behaviour of individual particles.

Let us consider soil particles to be indistinguishable,
simply because to explain bulk soil properties it is not

necessary to distinguish individual particles. The huge
number of particles means that soil should be treated as a
large collection of particles subject to the laws of statistical
physics, where a discrete PSD can be substituted by a
continuous PSD. Applicability of this substitution is dis-
cussed in books on statistical physics (e.g. Reif, 1967).

2.1. General relationships

A soil SA will be considered based on the distribution
of particles according to their sizes as the simplest dis-
tribution. As different SDs are closely connected, in
principle it is also possible to start with the distribution
of particles by their SAs, volumes, masses, etc.; the
approach chosen intuitively seems simpler in the same
sense as a point in geometry is simpler than a surface or
a volume.

The term PSD is used in two ways—in the sense of
physics and mathematics and in the context of soil
science and geology. In soil science the finite set of rela-
tive weights, or weight contributions of classes, defined
by the interval of size of soil particles, is called the PSD.
Below these are termed size classes to distinguish them
from the continuous overlapping fractions of distinct
physical origin. The number of classes varies for different
classifications and experiments; 4-10 classes are typical.
In physics or mathematics the term PSD means the SD
of randomly selected soil particles and is often used in a
narrower sense as a synonym of the distribution’s
probability density function, or frequency of occurrence.
Though closely connected, the two meanings differ
qualitatively; it is not possible to go from the soil defi-
nition to the physical one by an infinite increase of the
number of size classes, as in the soil definition two dif-
ferent properties are considered—sizes and weights.
Since the usage of the term PSD in the two contexts is
quite different, such a usage will not cause difficulties.

The physical definition is the starting point. Let po(D)
be the probability density function, po(D)-AD is the
probability that a particle size lies within a small interval
AD near D; the integral

& = J po(D)AD @
(D1<D<D>)

expresses the fraction of the number of particles within
each class, D; and D, being the lower and upper size
boundaries. The ensemble average, which is the average
over a large collection of indistinguishable particles,
with an arbitrary deterministic function ®(D) equals
(e.g. Reif, 1967; Bickel and Doksum, 1976)

Brmean = J ®(D)po(D)dD, 3)
(D)

where the integral is taken over the entire region over
which D can vary. This fundamental equation of statistical
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physics can be used for the calculation of various soil
properties. For example, consider a hypothetical single-
mineral soil fraction of spherical particles with mass
M(D) = prD3/6, where p is the mineral density and D is
the diameter (taken as particle size). When M(D) is put
in (3) instead of ®(D), we get the average mass of par-
ticles for this soil fraction, po(D) being the PSD of the
fraction. Assume that the dependence of SA (4) of a
particle on its size (D) for the whole soil is known.
Inserting this dependence A(D) (instead of ®(D)) in (3)
the average SA of particles is obtained, po(D) char-
acterising the bulk soil.

If the particles are divided into size classes, then the
piecewise function, that equals po(D)/&, when D is inside
size class borders, D;<D<D,, and otherwise equals
zero, is the probability density function for this size
class. Inserting this function in (3), the average value
®L1D2 of (D) can be calculated for the size class. Let
M(D) be a function of additive physical character, say
the mass of a particle, and N be the number of particles
in the soil sample. Substituting the exact numbers of
particles for the whole sample and for the size class by
their average values, it follows directly from Egs. (2)
and (3) that the weight fraction, or weight content, of
the class equals

by = EMMpL:
NMmczm

M(D)po(D)

M]TlC'dll dD ' (4)

J(D|<D<D2)

Thus, M(D)py(D)/ M ynean 1s the probability density func-
tion for weights of particles classified by their size. It is
the continuous equivalent of the discrete relative weights
of size classes traditionally called PSD in geology and
soil science.

The number of particles in the soil sample can be
estimated as

M
Mmean

N= , ©)

M being the mass of the sample, and M .., the average
mass (3) of a particle. The reason for applying (5), giving
the average N, is that there are always a huge number of
particles in the sample. Its relative inaccuracy, ~ 1/+/N,
is small for large N (e.g. Reif, 1967). Knowing the
number of particles in the sample (5), the SA of the soil
contained in the sample can be calculated

Atotal = N Amean (6)

or any other additive property provided its average
value is known. The average SA of a particle, 4ean, can
be calculated with Eq. (3), in a fashion similar to M ,cap.
Calculation of the SA thus boils down to computation
of SA and mass averages. Below assumptions within
which integrals for M e., and Ape.n can be taken and
thus SA explicitly calculated will be considered.

Considerable attention has been paid to the determina-
tion of continuous PSDs in sediments, soils etc. (Herdan,
1953; Griffiths, 1967; Allen, 1968; and references therein).
However, two factors complicate the direct use of
extensive experimental attempts to fit observed PSDs
with continuous functions.

Firstly, though the qualitative difference between
number and weight SDs is conceptually well under-
stood, in the great majority of experimental investiga-
tions, fractions of numbers of particles are substituted
by fractions of weight (Griffiths, 1967). In other words,
Eq. (2) is used to fit observed PSDs, whereas Eq. (4)
should be used if we want to get a PSD that not only
approximates the data observed, but also allows calcu-
lation of other soil properties. Detailed studies of PSDs
from 10 mm down to 40 nm, such as those by Wu et al.
(1993) and Borkovec et al. (1993), are rare exceptions.

Secondly, observed PSDs are mostly fit by simple
single distributions whereas soil is a mixture of different
fractions. The variety of functions used and the extremely
wide range of parameters (see below) only confirms that
this approach, neglecting differences in fractions, can
hardly describe soils as a whole. Meanwhile, the con-
tinuous experimental monitoring of the small-size end
(D<100 um) of PSD with a sedigraph shows that PSDs
of more than 1000 soil and parent rock samples from
different natural zones exhibit a pronounced minimum
at D~5 pm (Berezin and Voronin, 1981, 1983). The
quasi-continuous sizing of particles with the light scat-
tering technique demonstrates for young soils at least 3
well resolved peaks of weight SD in the 5-1000 um
region (see Fig. 9, White et al., 1996). Thus, the mea-
sured PSDs should be separated in fractions according
to their physical origin. Attempts to separate observed
PSDs into elementary PSDs that might be physically
interpreted, such as those by Shirazi et al. (1988), Shio-
zawa and Campbell (1991) and Buchan et al. (1993), are
rare. The authors do not know of works where both of
the above-mentioned points are considered.

2.2. Superposition model

When soil can be presented as the superposition of
elementary PSDs, the probability density function equals

po(D) =Y fo,po, (D), (Zfb,( = 1), @)
k k

where f, is the number fraction (the relative number of
particles in the k-th fraction). Inserting (7) in (3) for SA
and the mass of a particle, the averages, needed for cal-
culation of SA are obtained,

Amean = E )0/\Amean“ Mmean = 2 Jo Mmeank (8)
k k
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Here Amean, and Mpmean, are the SA and mass averages
for the k-th elementary fraction [calculated with their
probability density function py, (D), also using Eq. (3)].

Elementary PSDs po (D) characterise individual
mineral species, that were formed during geological
processes and further weathered during soil formation
relatively independently of each other; extremely coarse
textured soil fractions are, most likely, parent rock
fractions. If some of the ancient, pre-glacial, fractions
are in the soil, the same mineral fractions of different
age can be represented by different PSDs. Thus, theore-
tically the number of elementary PSDs can be expected
to be larger than the number of minerals constituting
the soil. However, considering a comparison of the
model with the observed data, a large number of frac-
tions mean that most of the model parameters will be
statistically insignificant, or excess parameters. Technically
the decomposition problem is similar to those in spectro-
scopy. It can not be expected that even a considerable
part of the elementary PSDs can be experimentally
resolved from the observed SD, represented either by a
finite number of size classes, or by quasi-continuous
monitoring of probability density, since the observed
PSDs are smooth (e.g. Born and Wolf, 1964; Zeeman,
1977). There are two reasons to introduce the super-
position model.

The first point is purely conceptual. Soils are char-
acterised by very different spatial scales (Glazovskaya
and Dmitriev, 1970; Hoosbeek et al., 2000), as are eco-
systems in general (Levin, 1992). The authors shall not
focus on small-scale spatial variations. Then from general
considerations one can naturally expect that parameters
of the true mineral and parent rock PSDs should be
sample-independent—they should depend only on the
geological and soil history of the sample location. In
particular, such situations should be anticipated for soils
formed on post-glacial and aeolian deposits. It is intended
to average small-scale patterns controlled, say, by the
random turbulent variation in melt streams and air-
flows. Thus, in many situations, parameters of SDs
should be determined not for the individual samples,
but for similar soils of the same effective age. Sample-
dependent contributions of the fractions ko, can be
determined independently from the mineralogical ana-
lysis. An approach along these lines might remove the
problem of excess parameters.

Secondly, it can be expected that all or most of a few
elementary PSDs, resolved from fitting (7) to the mea-
sured data, will represent several mineral components
with similar PSDs. Parameters of elementary SDs are
expected to be better defined (varying in a narrower range)
than for single fraction models, and thus might be con-
sidered as a rough estimate of the ‘“‘true” parameters.
This approach will be implemented in the next section.

Remembering that ®(D)po(D)/ DPmean 18 the probability
density function for values of the arbitrary additive

function ®(D) classified by particle size D, Eq. (7) can
be generalised for probability density functions of SA
also and weight classified by size of a particle

Pu(D) =Y foupn (D), (Zf = 1). ©)
k

k

Index n=0 corresponds to number, 2 to SA and 3 to
weight SDs; the logic of notation is the exponent in
which each of these properties depends on size. Similar
equations relate the correspondm cumulative prob-
dbl]lty functions F,(D) = jopn sdD and F, (D)=

fopnk D)dD (e.g. Bickel and Doksum, 1976; Snedecor
and Cohran, 1989), just substituting p, by F, and p,, by
F,, in (9). Cumulative functions are convenient when
fitting observed size classes (Gardner, 1956; Shiozawa
and Campbell, 1991). However, the SA and weight
fractions f,, are not independent. It can be shown that
they are one-to-one related with the number fractions f;,

ka g}o meany fi?,\ £}6 meany, (IOa)
and inversely
1 -1
fO fZ/( ( medn;\) ﬁ) _ f3A (Mmezmk) (IOb)
3 1 JOo — . —1°
ZfZ ( mean,) Zf3, (Mmean,-) !
i

Combining relationships (5,6,8, and 10b) we get the
SA of the soil sample

Atotdl = ME ) mean/ (1 ])

mean/

Here M is the sample mass, Amean, and Myean, are the
average SA and mass of a particle for the k-th fraction,
/3, 1s the fraction’s relative weight. Provided that SI
units are used in the calculations, the specific SA, A1/
M, is in m?/kg. This equation for SA plays a central role
when soil is represented as a superposition of fractions,
analogous to Eq. (1) when soil is viewed as a super-
position of size classes with identical particles. One can
get the effective diameter for the k-th class by equating
the k-th terms in Agca (1) and Ay (11), D=(6
Mmean, ) /(PP Amean, ). The effective diameter is given only
to compare the two expressions; its practical application
is limited since the averages Amean, and Mmean, for the
size classes should anyhow be calculated first.

Results obtained up to now are rather general.
Though D was termed particle size for simplicity, its size
meaning is not used explicitly except in the range of
integration in (2)—(4). All the above are valid if D is a
multidimensional vector of parameters characterising
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each particle (parameters of particle form, surface
roughness, internal cavities, etc.), and integration while
calculating averages is performed in this multi-
dimensional space. When doing so, the only assumption
made is that the soil sample is large enough to contain a
huge number of particles. Within this assumption, the
above equations are valid and expression (11) gives the
exact value of the geometric SA of the soil. However, in
order to provide expressions that are useful in practice,
simplifications, or model assumptions, must be made.

2.3. Separation of the particle form

Soil particles have highly varying and complex forms;
their linear sizes are not uniquely defined, however, this
ambiguity is not very significant for the present case. Let
D be an effective diameter of a particle, i.e. the diameter
of a sphere of the same mineral with mass equal to the
mass of the particle. Then the SA and mass of a particle
equal

D3
M(D) = p™—. (12)

A(D) = nnD?,
where 7 is an effective surface form factor (SFF; for a
spherical particle n = 1) and p is the particle density.
Since the surfaces of real particles are pitted and etched
(see scanning electron images of weathered particles;
Wilson, 1986; April and Newton, 1992), the value n for
real particles can be higher than the corresponding
values of smooth geometric forms enveloping the parti-
cles. SFF n reflects both particle form and surface
roughness SDs.

Assuming that for each of the elementary PSDs SFF
and effective diameter are independent random vari-
ables, or equivalently that the probability density func-
tions can be presented as the products of two functions
pi(n, D) = py (n)-pp, (D) depending only on n and D,
largely simplifies the problem. Then when calculating
average SAs (3), variables  and D are separated and
averaging by form can be made before averaging by
size. This results in the enlargement of the SAS by #mean,
times, compared with the SAs of spherical particles with
the same PSDs. The authors do not know any experi-
mental evidence directly confirming or contradicting
this assumption; application of the model as a whole
confirms it indirectly. An argument in favour of the
assumption is that it is less rigid than the assumption
commonly made about constancy of particle forms.
There is no data for explicit calculation of average SFFs
Nmean,; they will be assessed by comparing calculated
and observed SAs. Assumption about separation of
form and size variables allows introduction of the
empirical SFFs and makes relationships (2)—(11)
applicable to soil particles characterised by only one
parameter—the effective diameter, thus permitting the

explicit taking into account of PSD in calculation of the
SA. Eq. (12) can be understood as relating SA and dia-
meter for particles of elementary SDs, 1 = fymean, being
averages in particle form.

2.4. Elementary distributions

Practically speaking, choice of elementary SDs is not
crucial. A well-approximated total PSD will result in
correctly determined soil properties, regardless of which
set of functions is used to represent PSD. However,
knowledge of elementary PSDs is necessary for under-
standing the origin of soil properties.

The proper choice of elementary PSDs is a key con-
ceptual problem for what is termed the superposition
model. There is no agreed, (i.e. included in textbooks)
law of PSD. When such a law is not known and the
studied parameter varies in a very wide range, a log-
normal distribution is usually employed (Schnoor,
1996). The Gamma and Weibull distributions (Korn
and Korn, 1961; Dapples, 1975), which are in some
respects similar to lognormal, seem to be other simple
reasonable candidates for elementary SDs. The authors
intentionally did not use fractal, or power distributions
(Rieu and Sposito, 1991; Wu et al., 1993), in the super-
position model, as these PSDs assume self-similarity of
particles, obviously not observed for particle forms.
Besides, the background fragmentation mechanism,
when in each act of fragmentation some fixed fraction of
newly formed particles is laid aside from further fragmen-
tation (Matsushita, 1985), seems to be unrealistic, since
weathering influences each soil particle. The simplicity is
probably the main reason why a lognormal distribution
was used to describe observed PSDs in many other
publications (e.g. Gardner, 1956; Griffiths, 1967; Shirazi
and Boersma, 1984). However, the role of a lognormal
distribution for soils seems to be much larger. Dapples
(1975) and Buchan (1989) noted that general physical
arguments suggest the development of a lognormal PSD in
weathered and deposited materials under certain natural
processes. The authors chose the lognormal distribu-
tion, as physically conditioned and, probably, the most
extensively studied, for assessments. The lognormal dis-
tribution results in an asymptotic limit to the geological
processes involved in the formation of particles. Below
the main assumptions, first discussed by Kolmogoroff
(1941) for fragmentation mechanisms are repeated. The
process of physical weathering is considered as a stochas-
tic process; in each step the particle might be broken into
several fragments. Probabilities of breakage and the
corresponding conditional distributions for ratios of
sizes of newly formed particles to the size of the parent
particle are size independent for each channel of break-
age. Then, disregarding the initial law of distribution,
the final law of distribution after a sufficiently large
number of steps will be lognormal with any desirable
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accuracy. Physically speaking, as mechanical strength
characteristics differ for different materials, the condi-
tions of the Kolmogoroff theorem can be applicable
only to particular elementary fractions—parent rock(s)
and minerals. The simplicity and mathematical elegance
of the assumption about size independence of fragmen-
tation probabilities is a forcible argument in favour of
lognormal distribution.

Another physical limiting condition concerns extre-
mely small particles. Mathematically, the Kolmogoroff
process of disruption of soil particles is indefinite; how-
ever, it is limited by other physical and chemical processes.
When soil particles become small enough, close to the
colloid border Dy, they either become mobile and are
washed away from soil with the water flow, or they are
effectively removed from the infinite disruption process
by aggregation, coagulation, etc. Let us assume for
simplicity that the removal of particles from a con-
sidered set of primary minerals is very sharp, takes place
at the colloid border D, and may be described by the
step function (1 when D> D.,, 0 otherwise). This
assumption is confirmed by an observed (Wu et al.,
1993) plateau of cumulative PSD at D<0.1-0.2 um and
by aggregation of particles with D<0.1 um, observed
within 0.5 h of sonification.

Let us assume that the soil has already reached textural
maturity in the context of physical weathering considered
here. Then, accounting also for the gravel border of par-
ticle sizes, Dy, for the k-th elementary fraction the
probability density functions for the number (index
n=0) of particles, SA (n=2) and weight (n=3) of par-
ticles classified by their sizes, equal

1n((D/Dok)2)

P (0%, Do,; D) = B, D" 'exp| — 207 ,

when Deo < D < Dy,

P (0%, Do,; D) =0,  when D < Dgop or D > Dg;. (13)

For brevity these 3 functions are called (13, and their
sums relating to soil as a whole) number, SA and weight
SDs. Exact expressions for normalising the constant E,,
and the most probable, average and root-mean-square
deviation (width Dgy) diameters are presented in the
Appendix. Parameter D, has the dimension of size and
controls size-dependent properties of PSD, the dimen-
sionless parameter o; characterises its relative width.
Diameters when SDs reach maximums depend linearly
on D,. Widths of PSDs depend on Dy, approximately
linearly; deviation is significant at the ends of PSDs.
Relative width Dg/Dmode depends weakly on Dy, and
approximately equals exp(30?)/exp(c?) — 1 for all SDs.
As modification of SDs at the colloid and gravel borders

is in a sense only a correction of the tails of SDs, the
number SD (n=0) is called ‘“‘truncated lognormal”.
Probability densities (13) can be also applied to size
classes equating D, and D, with size class borders.

Given the number SDs (13, n=0) and, thus, knowing
the average SAs (A3) and masses (A4) of particles, the
SA (11) of soil can be written as

Atotal = 6MZ
k

Nmeany, f3k 2 .
. 14
(e v ) a0

meany

Here 7mean, are average SFFs, Dﬁfgﬁnk are weight
average diameters (the upper index reminds us that
particle diameter is averaged with the weight SD (13,
$n$=3)). The correction factors C, , connected with
truncation of lognormal distribution at the low and high
size boundaries, are given in the Appendix (A2). The
terms in (14) are grouped to show common features and
distinctions from the size class assessment (1).

2.5. Example of calculation

Now the authors repeat in brief the major conceptual
steps and consider a numerical example. Fitting the sum
of weight SDs (9, n=3, or the corresponding cumulative
functions) with the observed weights of size classes,
parameters of elementary PSDs and their weight con-
tent are determined. Then it is possible to either directly
calculate total SA by (14) or determine within a general
system the average SA and masses of particles for the
elementary number SDs (9, n=0), and finally deter-
mine the soil SA by (11). The average SA and mass,
cumulative probability functions and other relation-
ships useful for comparison of truncated lognormal
distribution(s) with experimental data are summarised
in the appendix. Calculation within the general system,
being only slightly longer, helps to better understand
soil properties.

If one is interested only in the SAs (11) and (14), it is
convenient to take units widely used in soil SA research.
Taking sample mass M in g, and size (parameter Dy) in
um, then the scaling factors are exactly matched and
Eqgs. (11) and (14) give specific soil SA Ao/M in m?/g.
Here the standard system is considered, using SI units.

Let us calculate the SA of a hypothetical soil consisting
of spherical particles (n = 1) characterised by SDs (13) with
parameters Dy=2.8x107'® ym=2.8x10"?> m, 0=3.8,
Deoi=0.2 um=2x10"" m, Dy, =5 mm=5x1073; the den-
sity of soil particles p=2.65 g/cm®=2.65x 103 kg/m?. These
are the parameters of a single-fraction PSD that fits one
of the measured PSDs analysed in the next section. This
is an effective, uniquely wide PSD; such PSDs, as will be
discussed below, do not make sense as elementary
PSDs. However, this extreme case clarifies a role of the
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truncation correction and demonstrates several features
of the PSD on one example.

The classical (unlimited particle sizes) lognormal dis-
tribution will be considered first, then the correction factors
C,=1 (n=0,1,...). Expressions for the average SA
(Appendix, A3) and mass (A4) of particles give 4D
neDiexp(202) = 1-7-(2.8 x 1072 [m])”-  exp(2 x 3.8?)
=8.6x107"m? and M), = p(r/6)Diexp(30°) =
(2.65x 10° [kg/m*])-(/6)-(2.8 x 10-22 [m])’exp($3.8%)
= 5.1 x 107* kg(dimensions are in square brackets). A
one gram sample (M=10"3 kg) contains N =
M/MD =103 [ke])/(5.1x 1073 [kg])=2.0x 10* parti-
cles, its SA A = ND. 4D = (2.0 x 10°)-(8.6x
1073[m?]) = 1.7 m?. The specific SA of this hypothetical
medium is 1.7 m?/g; by itself this value might seem rea-
sonable at first glance. The fractions (A7¢D) of the
number and SA of colloid particles equal
Fé"”(le;o, Do) =1.0 (99.9...%, 18 (!) successive 9),
Fz”/) = 0.92, showing that the number and SA of parti-
cles are dominated by colloid particles, while their
weight content F§”’> = 0.0082 is negligible. Inclusion of
particles with D <D, in the PSD results in a non-
physically small average particle (its mass is by 3 orders
of magnitude smaller than the rest mass of an electron)
and an astronomically high number of particles. Thus,
this PSD can not be used to assess soil properties.

Now the truncated SD (13) will be considered. Values of
the correction functions (A2) Cy=1.1x10"1°, C,=0.081,
C3=0.60 (error functions can be calculated using tables
(e.g. Abramowitz and Stegun, 1964) or, more conveniently,
in mathematical packages, such as Mathematica, Maple or
Matlab). For the truncated SD the average particle SA (A3)
and mass (A4) equal Amean=ALnCo/Co=(8.6x1073!
[m?])-0.081/(1.1x1071)=6.2x10"13 m? and Mpyean=
MED,,-C3/Co=(5.1x10~*[kg])-0.60/(1.1x 10719 =2.7x
10~15 kg. The truncation has returned physical sense to
these properties. The number of particles and SA of one
gram of soil N=M/Mpy..=(10"3kg])/(2.7x10~13
[ke)=3.7x 10" and Aoa1=N-Amean=3.7x10').
(6.2x10713 [m?))=0.23 m>. So, specific soil SA is 0.23
m?/g, an order of magnitude smaller than for the parent
non-truncated SD.

The separation of particle size and form variables and
the choice of probability density functions for mineral
particle fractions are the main theoretical assumptions
for introduction of the superposition model of the soil
SA. Simplifications made in the next section serve
mainly for illustrative purposes. To understand if the
model is applicable to soils, conceptually the most con-
troversial (from the point of view of statistical physics)
case of a low specific number of soil particles—coarse
textured soils will be considered. It will be shown that
even without fitting of empirical SFFs the model
removes the 1-2 orders of magnitude divergence
between the measured and calculated SA of coarse tex-
tured soils.

3. Application of the model: results and discussion
3.1. Parameters of distributions

In order to determine the reasonable physical range of
parameters of elementary PSDs the weight SD of the
previous section was applied to fit the discrete PSDs
(Koptsik and Teveldal, 1995) for soils characteristic of
the Kola Peninsula (northernmost Europe). Cumulative
relative weights, or relative weights of particles with
sizes D < Dy, borders Of 8 successive size classes (ending
with the gravel fraction, Dgje border =12, 63, 125, 250
um, 0.5, 1, 2, and 5 mm}) were first fitted independently
for each sample by single elementary weight cumulative
functions (A9, n=3) or by a sum of two of them. To
minimise the number of free parameters, the relative
widths o of the two elementary PSDs were set to be
equal. To fit observed weight fractions, nonlinear least
squares optimisation of the parameters of the PSDs was
performed using the simplex search method (Nelder and
Mead, 1964). In all cases the colloid border was fixed at
D.s1=0.2 um (Gedroits, 1975). Twenty-three observed
PSDs were fitted. As densities of soil minerals vary in a
relatively narrow range 2.5-3.2 g/cm® (Hurlbut and
Klein, 1977), it was assumed for simplicity that all soil
minerals have equal density, 2.65 g/cm?® (Soil Survey
Manual, 1993). The hidden inner cavities of particles
were neglected.

Half of the observed PSDs were fitted by a single
truncated lognormal distribution (+>>0.9, where r is the
correlation coefficient between observed and calculated
weight fractions). The width parameter o of SD changes
in the range 0.4—4. This range for o might at first glance
seem to be moderate; however, as o influences SDs (13)
through the common exponential multiplier
exp(=In((D/Dy)*)/(207)), it greatly influences the SDs.
If colloid correction had not been taken into account,
the total SA of the widest PSD would have been over-
estimated by more than one order of magnitude (see
previous section).

About half of the observed PSDs could be decom-
posed into two single truncated lognormal distributions
(r>=0.9), while the other PSDs were more complex.
However, the range for the parameters was notably
narrower: the width o lay in the range 0.4-1.1, both
parameters D, lay within the limit borders of size classes
and varied by only one order of magnitude. Compared
with the previous cases, these two PSDs might be viewed
as physically determined. Buchan et al., 1993 have con-
cluded that the sum of two lognormal distributions seems
to be an optimum model for the PSD in several studied
models. The nearness of the lognormal distribution to the
SD (13, n=3; see below) forms, in the authors’ opinion,
the physical background of this observation.

Though all soils studied were characterised by low,
but non-zero clay contents, both single and two-fraction
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models predicted a practically zero content of the clay
class, the most significant class when explaining SA.
Due to the crude size classification used, the small-sized
elementary fraction(s) could not be determined when
treating each sample individually, as parameters of the
finest fraction were controlled by small errors. To solve
this problem, an integrated approach was applied. The
soils studied were developed on tills and glaciofluvial
deposits after the last glaciation (late Pleistocene) about
10 ka. The PSD is mainly controlled by fragmentation
processes accompanying the movement and melting of
the glacier; initial conditions at the site of final deposi-
tion exert more control on the PSD of coarse textured
soils than breakage resulting from their subsequent
evolution (Middleton, 1970; Dapples, 1975). In accor-
dance with this observation the elementary PSDs were
considered to be characteristic for the entire region, and
the only sample-specific parameters were the relative
weights of the fractions.

All samples were fitted as one data set. The introduc-
tion of 4 or 5 elementary fractions allowed a reasonable
description of the data: the parameters of these two
representations were close and, thus, might be viewed as
physically determined. The main advantage was a rea-
sonable description of all the samples and a better fit of
the small-size end of the PSD compared with a single- or
two-fraction individual approach. The squared corre-
lation coefficient r2;=0.9 for all the data, and for indi-
vidual samples r§amn16>0.7. The parameters of the PSDs
of the 4-fraction representation and the relative weight
contributions of fractions to size classes are presented in
Table 2 for the International and USDA systems.
Instead of Dy, more easily perceived characteristics are
given: the effective weight diameter (Dy,, AS), or dia-
meter of a sphere of the same material with mass equal
to the average mass of a particle, and the weight average

Table 2

diameter (Dﬁf;?n, A6). The calculated clay content,

remained lower than the observed and fit badly
(r%lay =0.1). As can be seen, the clay class was controlled
by the tail of the silt-sized elementary PSD. As result,
the 4-fraction representation underestimated the role of
small particles in the PSD. Addition of the fifth PSD to
the fit, while only slightly increasing the overall agree-
ment, led to a good approximation of the clay content
(r%lay=0.9). The parameters of 3 coarse elementary
fractions remained practically unchanged, the silt-sized
elementary PSD shifted to larger sizes (D, was increased
1.5 times). Though the clay-sized elementary fraction
can be interpreted as the large-side tail of the weight SD,
the small Dy, =0.03 pm implies that this fraction can
not be viewed as physically determined. The small clay
content and the crude size class borders prevented reliable
determination of this fraction. Introduction of the fifth
PSD caused overfit of the clay content, and the 5-fraction
model overestimated the role of small particles. Since the
content of fine particles is represented in opposite ways by
the 4- and 5-fraction models, the models will be used for
lower and upper estimates of SA.

The parameters of PSDs, determined and derived
from the literature, are presented in Fig. 1. The para-
meters were derived as described in the Appendix,
neglecting the truncation correction as it plays a rela-
tively minor role in the weight SD (the lognormal dis-
tribution, used to fit measured weights of size classes,
can be excellently approximated with (13, n=3)). The
lognormal transformation of the y-axis is in line with
the dependence of characteristic diameters of elemen-
tary PSDs on o2 (see the Appendix). The parameters
determined are in accordance with the literature: the
addition of derived parameters only extends the para-
meter domain. The parameters of the single-fraction
model showed a trend (Fig. 1a; the solid line is the fitted

Parameters of 4 elementary distributions and their size classes for soils from the Kola Peninsula

No. o©=042 Weight contributions (%) of elementary fractions to size classes (um), international system
Dy, (um)
<2 2-6 6-20 20-60 60-200 200-600 600-2000 2000-6000
1 23 17.3 78.0 4.71 0 0 0 0 0
2 100 0 0 0 2.77 80.2 17.0 0.02 0
3 360 0 0 0 0 2.18 70.3 27.5 0.03
4 2400 0 0 0 0 0 0 12.3 87.7
No. 5=0.42 Weight contributions (%) of elementary fractions to size classes (um), USDA system
Dl(npsa)n “’m)
<2 2-50 50-100 100-250 250-500 500-1000 1000-2000 2000-5000
1 33 17.3 82.7 0 0 0 0 0 0
2 150 0 0.941 23.3 68.9 6.82 0.09 0 0
3 510 0 0 0.01 6.84 49.6 40.0 3.46 0.03
4 3100 0 0 0 0 0 0.25 13.3 86.5
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Fig. 1. Parameters of elementary distributions when soils are represented as single fractions (a) and as sums of several fractions (b).
I—present study, 2—Gardner (1956), 3—Shiozawa and Campbell (1991), 4—Buchan (1989), 5—Shirazi et al. (1988). The solid line is

(p3)

an isoline of equation Dyesn =300 um, dashed lines are linear trends.

isoline Déﬁf«}n =300 pm for the non-truncated SD). The

main difference between the soils is in the width of the
PSDs. Grouping of points along this line revealed the
similarity of the soils: the D,g{?gn values were approxi-
mately equal for all fitted single-fraction soils. The 95%
confidence interval for Dﬁ{’é}n was 200—450 pm. The slope
of the isoline (—7/2) was close to the slope of the linear
trend (—3.140.1). The residual sum of squared errors
was only 1.5 times higher than for the linear trend, and

according to Mallows’ C, test (Mallows, 1973; Snedecor
and Cohran, 1989) the isoline better fitted the data.

The parameters of the single-fraction model varied
widely, the size parameter by several tens of orders of
magnitude, whereas the border limits of the size classes
varied by only 4 orders of magnitude. The size para-
meter of the widest PSD (Shirazi et al., 1988) was by
tens of orders of magnitude smaller than any con-
ceivable size in physics. Obviously, such a wide range of
parameters reflected only the effective character of wide
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PSDs. The parameters of several-fraction representa-
tions (Fig. 1b) varied within a significantly lower range.
Most of the size parameters lay within the border limits
of size classes. The two outliers and a different trend in
the parameters found by Shiozawa and Campbell (1991)
were, probably, connected with the fact that the finest
fraction was not fitted to the data but fixed for all sam-
ples. In this sense the procedure was closer to determi-
nation of a single fraction. That is why behaviour of their
coarse fraction partly resembled single-fraction beha-
viour (the solid line is the same as in Fig. 1a). When both
fractions were freed, the size parameters had a tendency
to independence from o (dashed lines) and varied only
within one order of magnitude for each of the fractions.
Representation of the PSD as several fractions resulted
in lower values of o and better defined size parameters.
This result gives a hope that the several-fraction repre-
sentation of the PSD might be physically determined.

3.2. Number of particles

Knowing the parameters of elementary PSDs and
thus the average grain masses (A4) of soil fractions, the
authors determined the elementary number fractions
(10b), and calculated the overall average mass (8) of
particle and the number of particles (5) in the samples.
The wide single-fraction PSDs that, most likely,
approximated the sums of several fractions were char-
acterised by a high number of particles. When these
wide (0>2) single-fraction approximations were not
considered, the number of particles grew with the num-
ber of elementary fractions by which the PSD was
represented, from ~5x107 (the minimum was 600,000)
particles in a 40 g sample for the single-fraction model
to ~2x10!"! for the 4-fraction representation of the soil.
This increase in the number of particles is because the
more terms that are retained in the representation of soil
as elementary fractions, the better fine classes that con-
trol the number of particles are fitted. The numbers
given by the 4-fraction representation were lower than
the true numbers of particles since this representation
underestimated the clay content. The upper estimate of
the number of particles given by the S5-fraction model
was ~5x10'3. The intentionally wary choice of numeric
value for the colloid border probably resulted in an
underestimation of the number of particles.

The suggested general system of calculations is based
only on the assumption of the applicability of con-
tinuous PSDs to the description of soil properties. By
showing on the example of the Kola soils that the num-
ber of soil particles is huge even for coarse textured soils
the validity of the approach and the applicability of the
general expression (11) for SA to soils has been proved.

The large number of particles means that there is no
alternative to the explicit determination and description
of a continuous PSD when relating soil texture with

other soil properties. While conceptually probably
everybody admits this, quantitatively soils are mostly
analysed into a small number of size classes. The theo-
retical analysis of soil in a few size classes explicitly
contradicts the concept of a huge number of soil parti-
cles. Light scattering methods (Hulst van de, 1957),
giving a (quasi)continuous PSD, become more and more
popular in soil research. A gap between the conceptual
and scattering particle sizing approaches to soil, on the
one hand, and the theoretical understanding of the
relationship between size classes and the SA of the soil,
on the other, becomes clear. Quantitative studies of the
number of soil particles are very rare. Two of the first
detailed investigations by Wu et al. (1993) and Borkovec
et al. (1993) should be noted. However, as they used
fractal approximation, the contributions of individual
soil fractions could not be assessed.

While the number of soil particles is huge for the
whole soil and for fine soil fractions, it is not necessarily
the case for the coarsest fractions. It is the case for the
Kola soils. The number of particles in a soil fraction can
be calculated by multiplying its number fraction (10b)
by the total number of particles. The number of parti-
cles of the coarsest fraction (Table 2) was only ~ 1000
for the samples considered. Consider a monolithic sample,
divided into two parts after sampling. Though both
samples were formed under exactly the same conditions
of formation/deposition of particles, the number of
particles in the same fractions of the two samples must
differ. The inevitable, connected with the discrete char-
acter of PSD, fluctuation in the number of particles is of
the order /Ny (e.g. Reif, 1967), N; being the number of
particles in the fraction considered in each sample (since
/N << Ni, N1 =~ Nia). A rough estimate of the var-
iation AN was also made in the following numerical
experiment concerning the PSDs of spherical particles. A
set of random lognormal distributions with the same
parameters was first computed. Then, for each SD, parti-
cles satisfying truncation limits were added one by one
until the fixed weight was achieved. For PSDs from Table 2
and N =1000-400,000 standard deviation std(N)%\/]V .

Knowing the mean number N, and the dispersion
/Ny of the number of particles, the relative fluctuation
of weight of this fraction can be estimated, connected
with the fluctuation of the number of particles, as
(Mmczm m)/(Mmcan N/c):m/N/(; it is greatest for
the coarsest fraction. As the size parameters of elemen-
tary PSDs notably differ, this value for the coarsest
fraction is much larger than for any other. For the
coarsest fraction of Kola 40 g samples the relative fluc-
tuation of the fraction’s weight was ca. 5%, the absolute
fluctuation was ~1%.

As the space in between particles of the coarsest frac-
tion(s) is filled with finer fractions, variation of the
weight of the fine fractions is controlled by the variation
of weight of the coarsest fraction(s). Assuming that the
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weight content of the coarsest (K-th) fraction is sufficient,
so that the fundamental limit on variation of the frac-
tion’s weight content A3K=f3K~\/N_k/Nk is notably lar-
ger than for the previous size fraction. Then the
variations in the weight content of other fractions are
governed by this fraction. Consider a cavity remaining
in the place of one of the coarsest fraction particles ide-
ally removed from the soil. The free volume will be filled
with particles from its immediate surroundings. As
volumes of the neighbouring particles are on the average
much smaller than the volume of the removed particle,
they can be considered in the first approximation as a
continuous effective medium that is filling in the cavity.
The volume of particles of some fraction filling in the cav-
ity in this approximation is proportional to the volume
content of this fraction in the cavity neighbourhood.
Neglecting the difference between weight and volume
fractions, the additional weight of the k-th fraction
(k=1,2,....,K~") compensating the random change of
weight content A of the coarsest fraction can be assessed
in this approximation as Az, = —f3,Asx. Thus for fractions
for which average weights are equal within an order of
magnitude, variations of weight content are also roughly
equal. For fractions poorly represented in soil, the weight
variation is moderated by the content of the fraction.
This assessment of the fundamental lower limit of
variation in the fraction content, based on the idea of
local flows of particles of fine fractions as a whole, is
limited since it implies that all soil mineral particle frac-
tions were formed in one process of particle breakage/
deposition. Variations in finest fractions of aeolian origin,
deposited on the formed substrate of coarse fractions and
then migrating through it with rainwater flow, will most
likely not follow this assessment; variations of succes-
sively deposited different non-mixing size fractions are
also a subject of separate assessment. This simplest
model of formation of fraction content variations was
used just to show that variations in the weight content of
fine fractions can be of the order of variation of the coar-
sest fraction. As small as this might seem at first glance,
this variation is not negligible, as its role in soil properties
controlled by SA is largely increased (see below).

3.3. Relative contributions

Absolute values of calculated soil SA depend linearly
on the unknown effective SFFs. Relative number, SA
and weight contributions of the elementary fractions
will be considered first, since they are less sensitive to
this factor.

The probability density functions (13) of a single ele-
mentary fraction for number, SA and weight SD, are
shown (Fig. 2) for a typical single-fraction width para-
meter o =0.7; the effective weight diameter is chosen to

be small enough (Dy,, =2, Dl(,l,léa)n=5.3 pm) to show
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Fig. 2. Probability density functions of an elementary mineral
fraction for number (N), surface area (A4) and weight (W) of
particles classified by their sizes (6=0.7, Dw, =2 pm,
DY =53 um, D.,=0.2 pm). Diamonds mark medians of
distributions.
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graphically the colloid border of the SDs. This PSD was
explained by 15 wt.% of clay, the remaining 85% of the
weight belonging to the silt class (in both International
and USDA classifications). Note that for a single PSD
the probability density function for the SA does not
depend on its effective SFF. Each of the 3 functions is
asymmetric, with their medians (marked with dia-
monds) shifted to the right of the most probable dia-
meter, and is similar to the classical lognormal
distribution. The dependence of all 3 functions (13) on
the effective diameter of the particle is similar: this is
determined by the common exponential multiplier
exp(—In((D/Do)*)/(20%)), that sharply decreases in
both tails of the SD (when D¢, <D << Dy and
D >> Dy), and a slowly changing power function of the
diameter, which modifies the behaviour of the probability
density in the range of significant nonzero values of the
multiplier. Though the 3 functions (13) depend on the
diameter in a similar fashion, conceptually it is sig-
nificant that only one of them can be viewed as being
independent; the two others can be obtained by multi-
plication by some power of D and renormalization.
The similarity of dependencies appears in the excel-
lent approximation of any of them by a lognormal dis-
tribution [or equivalently, by the common multiplier of
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(13)] with the same width parameter o and a changed
Dy. The maximal difference between the actual prob-
ability density and the function approximating it within
the domain of single-fraction parameters (Fig. 1) is several
(~7-10) orders of magnitude smaller than the greatest
probability density. Such a small difference, much less
than experimental errors, means that the suggested form
of distribution and the lognormal, previously used to fit
weights of soil size classes, should agree in goodness of
fit. Thus, the two forms of weight SDs can be trans-
formed into one another without any loss of experi-
mental information.

Physically it is significant that the probability func-
tion for SA is shifted towards smaller diameters than the
probability function for weights and is characterised by
a sharper maximum (Fig. 2). The probability function
for the number of particles is further shifted towards
smaller diameters and is the sharpest. As a result of
these shifts, the abrupt step in number SD at D= D,
can not be noticed for the SA and weight SDs at the
chosen graphical scale. The notable shift of the number
SD to the left is the physical cause of the weight SD
characteristics: the effective weight diameter is more
than two times smaller than the weight median dia-
meter. Both the shift and the sharpening of SDs are
highly sensitive to the dimensionless width parameter o.
The ratios of the characteristic diameters and widths
of PSDs, defined by the mean-square-root deviation
from the average value, for the number, SA and
weight SDs are approximately equal to 1:exp(202):
exp(3 o?) (exact expressions are given in the Appendix).
For wide SDs (o> 1.2) these changes are drastic, and all
3 probability densities can be shown only with nonlinearly
compressed (say, logarithmically transformed) axes.

For a mixture of elementary fractions probability
densities are typically distributed in a wider range of
diameters. As a result, the relocation of the probability
densities of the number, SA and weight of particles
along the diameter axis is even more striking. Effective
weight diameters for the two elementary fractions,
presented in Fig. 3, equal 5 and 50 pm (D,(I{?zn =13 and
130 pm), o =0.7 for both PSDs; SFF's of the distributions
are taken as equal. Solid lines show total probability
densities; dotted lines represent the contributions of ele-
mentary SDs to them. At small diameters the total
probabilities coincide with the corresponding contribu-
tions of the fine fraction, while at large diameters they
are completely controlled by the coarse fraction. The
change in the size parameter of elementary PSDs by
only one order of magnitude results in the transforma-
tion of the 4% contribution of the fine fraction to total
weight to its 30% contribution to SA, and to its 98%
contribution to number of particles (Fig. 3). The coarse
fraction is shown in the number probability function as
a slight, indistinguishable to the eye, change in the

shoulder line; to visualise the contribution, it is also
shown in the insertion as a 20 times amplified curve.
The redistribution of probability densities can be
illustrated at the qualitative level. The dependence of the
SA and weight probability densities on particle size dif-
fer from the number probability density by the D?
(A(D)) and D3 (M(D)) multipliers, respectively [see Egs.
(4) and (12). Thus, in the vicinity of the density peaks at
D = Dyexp((n —1)0?), the ratios of the probability
densities of the coarse (index 2) to fine (1) fractions for
the SA and weight SDs are larger by (Doz/Dol)2 and
(Do, /001)3 times than for the number SD (for equal
width parameters of the two PSDs). This simple assess-
ment of coarse to fine fraction ratios works for narrow
well-resolved fractions (with the accuracy of 4 sig-
nificant digits in the example of Fig. 3, when both PSDs
are far from the truncation borders). The SA and weight
SDs differ by the 1/D multiplier, causing the SA to
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Fig. 3. Probability density functions of a mixture of two
mineral fractions for number (upper curve), surface area (mid-
dle curve) and weight (lower curve) of particles classified by
their sizes. Contributions of elementary fractions (0=0.7,
Dy, =35, D, =50 um, Do =0.2 pm) are shown by dotted
curves.
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weight fraction ratio to decrease approximately as
Dy, /Dy, for coarse to fine fractions. Thus, the redis-
tribution of probability densities is notably increased
when the ratio of size parameters Dy increases. By particle
sizing with the weight SD, inevitably more attention is
paid to coarse fractions while when studying soil SA
consideration should be given to fine fractions. The
drastic transfer of probability density within the range
of particle sizes when moving from one SD to another
suggests that all of these 3 SDs should be experimentally
measured. Reconstruction of two SDs from one might
cause significant errors in the tails of the SDs. The
drastic changes within the SD stress the necessity of
averaging particle properties with the number SD and
not with the weight SD.

The contributions of elementary fractions fitted to
real PSDs to the number of particles, SA and weight
vary within a wide range. To bridge the gap between the
representation of soil as the sum of continuous fractions
not bounded by artificial size class limits and the tradi-
tional representation as size classes, the fitted number,
SA and weight fractions are presented in both ways in
Table 3 for two samples. One sample is represented by a
single fraction, one by two elementary fractions. The 4
size classes are the same as will be used in the empirical
Eq. (15); the SFFs are assumed equal. The elementary
PSDs, fitted to measured size classes (index"), are pre-
sented in the upper sub-rows for each type of SD. The
extremely small, immeasurable, calculated classes are
retained in the table to illustrate changes between the 3

Table 3
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SDs. Both continuous weight SDs describe the observed
weights of size classes highly significantly: the squared
coefficients of correlation (%) between the fitted and
observed classes are larger than 0.99 for the samples.
For the two-fraction sample the approximately equal
weight fractions are transformed to a 97% contribution
of the finer elementary fraction to the SA and a 100%
contribution (with 5 significant digits) to the number of
particles. In the traditional representation of soil this
behaviour is exhibited as a 6 times increase in the ratio
SA:weight and a 2 times increase of the ratio num-
ber:SA for the silt class. For the clay class the increase
of the ratios is more than 100 and 300 times, respec-
tively.

Though all measured size classes (the M-rows for the
two PSDs in Table 3) were characterised by a low, but
non-zero, clay content, this could not be explained as
the tails of the fitted coarse SDs. Within the model
considered here, this implies a small admixture of ele-
mentary fraction(s) of smaller size to be present in the
soils. The existence of the third, clay-sized, fraction is
conceptually significant to understand soil SA.

Analysis of measured cumulative curves (Wu et al.,
1993) has shown that weight fractions, determined for
the same samples with different physical methods, dis-
agree by several percent; the methodological errors
increase for small particles due to the hydration effect.
While analysing the number of soil particles the authors
showed that the physical limit on the fluctuations of
fraction contents for coarse textured soils might be close

Calculated number, surface area and weight fractions and size classes for two one-two fraction samples from the Kola Peninsula

Parameters and type of distribution

Elementary fractions (%)

Contributions (%) of size classes (pm)

S S S <2 2-63 63-250  250-2000 2000-5000
Dy, pm — 1 39 2400
Number F# 0 100° 7.39E-4  1.12 95.5 3.36 0.0266 1.11E-4
A 99.9 0.0604 4.47E-7 98.1 1.92 0.00203  1.61E-5  6.73E-08
0=0.84 Surface area F 0 97.3 2.74 0.0036 54.4 39.3 4.26 2.03
A 539 448 1.26 38 41 18.1 1.96 0.935
Weight F 0 36.5 63.5 2.87E-5 8.95 21.3 10.6 59.1
A 1 36.1 62.9 0.385 9.47 21.1 10.5 58.5
M 1.3 6.6 21.7 11.1 59.3
Dy, um — 1 380
Number F 0 100 - 1.20E-28  0.0247  38.1 61.9 3.43E-4
A 100 1.84E-4 — 98.8 1.22 7.00E-5 1.14E-4  6.31E-10
0=0.43 Surface area F 0 100 - 3.78E-33  6.79E-4 12.1 87.9 0.0141
A 79.2 208 - 72.6 6.59 2.52 18.2 0.00293
Weight F 0 100 - 1.60E-35  8.60E-5  5.46 94.5 0.0692
A 1 99 - 0.829 0.171 5.40 93.5 0.0685
M 1.2 0.2 32 92.1 33

2 A, F, M. The fitted (F) distributions of measured size classes (M) and the fitted distributions with the artificial addition (A) of 1

wt.% of clay fraction.

® Contributions are presented with 3 significant digits accuracy. This and similar values are smaller than the true 100%.
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by an order of magnitude to this value. One per cent of
the total weight was taken as the lower limit of the
typical accuracy of the experimental determination of
weight fractions. One wt.% of the clay-sized hypothe-
tical fraction, with Dy, =1 pm and breadth the same as
for coarse fractions, was artificially mixed with the fitted
PSDs (lower sub-rows (*) in Table 3). The clay contents,
produced by the mixture, were even smaller than those
observed. While the weight fractions and classes
remained practically unchanged, the SA and number
SDs changed drastically: more than 50% of the soil SA
and 99.9% of the number of particles originated from
this “small” admixture. A notably higher occurrence of
layered minerals in the clay classes (Koptsik and Tevel-
dal, 1995) is typical for soils (Buol et al., 1973). It is
confirmed by direct analysis of particle forms (Wu et al.,
1993, Hodson et al., 1998). Based on these observations
of forms, the SFFs for clay-sized layered particles might
be expected to be an order of magnitude larger than for
coarse fractions. When the added fraction is layered, the
same SA changes are characteristic for ~0.1% weight
content, or if the added fraction is more diffuse and/or
coarse. Thus, a small change in clay content, of the
order of the experimental error, might bring about a
notable change in the SA of coarse textured soils.

Fine particles can be revealed more clearly with X-ray
measurements. Berezin and Voronin (1981) and Buchan
et al. (1993) noticed that the content of fine particles
inferred from X-ray absorption significantly over-
estimated the result compared with classical weight
measurements. As absorption of X-rays is controlled
(e.g. Kitaigorodskii, 1950) by the sum of particle sizes in
the beam, this fact is naturally explained within the
developed approach. Properties of the integral thickness
SD (13, n=1) are between those of SA and number
SDs. This explains why all soils, including coarse-tex-
tured, are characterised by the pronounced peak for the
clay-sized components in the probability density func-
tion determined from X-ray attenuation (Berezin and
Voronin, 1983).

The authors complete consideration of the relative
contributions by illustrating differences (Fig. 4) in the
number, SA, and weight probability densities using data
for one of the Kola soils, for which weights of classes
were represented as 4 elementary fractions (Table 2). To
reflect a wide range of differences, the logarithmic-loga-
rithmic scale is chosen. The vertical lines at both sides of
the SDs are truncation steps to zero (zero to be plotted
at minus infinity on the logarithmic scale). This realistic
case summarises all main features of the SDs that were
discussed with simple examples in this section. The
positions of fraction probability peaks are gradually
shifted to smaller sizes from weight (Fig. 4i, W) to SA
(A), then to integral thickness (not shown) and to num-
ber (N) SD. These shifts (positions of weight peaks are
marked with arrows on the number SD) are visually less

impressive than those in Figs. 2 and 3. This is a com-
bined effect of the narrower PSDs and of the chosen
compressed scale. The redistribution of probability
densities, when going from weight to SA and then to
number SD, are, on the other hand, much more
impressive. As can be seen from Fig. 4i, the difference of
maximum probabilities of the finest and coarsest frac-
tions increased from 2 orders of magnitude for weight to
5 (note, 5-2=3; Dy, /Do, =10%) for SA and to 11 (11—
2=3%) orders of magnitude for the number SD. The
area under a fraction’s probability density curve (plot-
ted on the linear-linear scale) determines contribution of
this fraction to the property. The relative enhancements
of the number and SA contributions of 4 size fractions
are shown in relation to the coarsest fraction (Fig. 4ii).
The differently hatched left and right half of a bar
represents respectively the exact ratio of the contribu-
tion and its simple approximation (the ratio Dy, /D, for
SA and (D04/D0,\,)3 for number of particles). The differ-
ences, hardly noticeable on a logarithmic scale, are
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Fig. 4. Probability density functions (i) for the number (N),
surface area (A) and weight (W) distributions separated into 4
size fractions (Table 2) and relative to weight enhancements (ii)
of the number and surface area elementary fractions for one of
the Kola samples. Parameters of the elementary fractions are
given in Table 2.



644 S. Koptsik et al. | Applied Geochemistry 18 (2003) 629651

controlled by truncation corrections. The contribution
of the finest determined fraction (dominated by silt-size
particles, Table 2) to SA is more than 3 orders of mag-
nitude larger than to weight. The relative significance
for SA of the clay-sized fraction, for which parameters
were not determined due to its minor weight percentage,
must be significantly larger.

A relatively minor, linear, alteration of the SFFs
influences the redistribution of the probability density
between the SA peaks. The difference in the effective
SFFs, that in most situations for coarse textured soils
can not be notably higher than the average value 1< 4
(estimated in the next subsection), may result in less
than an order of magnitude change in the contributions
of the elementary fractions to the total SA. On the other
hand, alteration of the size parameters, which change
for the several-fraction representation of PSDs by 3
orders of magnitude, results in a change in the con-
tribution of the finest grain size fraction to the SA by 3
orders of magnitude. Thus, the conclusion is that the
consistent consideration of PSD is more significant for
calculation of the soil SA than consistent estimation of
particle forms.

This conclusion is based on analysis of relatively
unweathered coarse textured soils, in which the
observed clay class mainly originates as tails of coarser
fractions. For more highly weathered ancient soils,
developed on silt and clay deposits, the clay-sized grain
fraction might be expected to dominate the PSD. In this
case the influence of SFF on SA, though remaining
smaller than the influence of PSD, might be notably
more significant than for coarse textured soils. However,
highly weathered soils are a subject for separate investi-
gation.

3.4. Absolute values of surface area

As a first step, total SA (14) was calculated supposing
a spherical form for all particles (p,=1). As the exact
SA was not measured, the area assessed was chosen with
an empirical equation (Sverdrup and Warfvinge, 1995;
Sverdrup, 1996)

4 ..
Aemp = (Zm) Pl (15)
Tl Lo

as a reference value. Eq. (15) gives the SA of soil in a
unit volume, pyji is soil density, po=1 g/cm? is a refer-
ence density. Here &, are weight fractions, the upper
borders of 4 size classes equal to 2, 60, 250 and 2000 um,
the corresponding coefficients P, equal to 8, 2.2, 0.3,
0.05 (m?*/cm? soil). Bach of the weight fractions &
entering into this equation was calculated as the differ-
ence of the k- and (k—1)-th cumulative fractions (9, ele-
mentary cumulative fractions by (A7), n=23). Dividing

(15) by psoir (1.2-1.4 g/cm? for the Kola soils) units of
measurement are converted to those in which SA (14)
was calculated.

It was decided to use (15) since the Kola soils are
close in age and are derived on similar bedrock and in
similar climatic conditions. It is presumed that this
equation, first derived for southern Swedish soils, has a
wider range of applicability and describes the SA of
coarse textured northern soils reasonably well (Sverdrup
et al.,, 1990; Sverdrup and Warfvinge, 1995). Applic-
ability of this equation to Scottish soils was opposed by
Hodson et al. (1998). However, Koptsik et al. (2002)
argue that the data of Hodson et al. (1998) satisfy the
empirical equation after exclusion of outliers. The aver-
age absolute value of the deviation of the measured SA
from the empirical is ca. 30%; even for outliers it is only
110-140%. It should be remembered that the divergence
between the present theoretical explanation of geometric
SA [size class assessment (1)] and the measured SA of
coarse textured soils is 1-2 orders of magnitude. Taking
into account the poor present theoretical understanding
of the SA, the SA, calculated with the correlation Eq.
(15), is sufficient when trying to understand its origin, to
explain it, say, within a factor of 2; this is termed refer-
ence area below.

It appeared that the colloid correction should be
taken into account in two cases: firstly, for fine mineral
particle fractions (clay-sized and fine silt-sized), and
secondly, when the entire observed PSD can be fitted by
a wide single lognormal curve. Physically the latter case
means that in some situations the actual sum of a large
number of elementary PSDs can be approximated with
reasonable accuracy by a single lognormal distribution.
In both cases the scope of the colloid correction is the
same—to remove from consideration super-fine parti-
cles that can not be retained in soil at the predicted fre-
quencies. The finest particles contribute noticeably to
the SA and colloid truncation prevents overestimation
of the total SA. In all other cases the influence of colloid
correction is negligible.

SA (14), calculated within single- and two-fraction
representations of soil, notably fits the reference area
better than it does size class assessment (1). However,
both these representations, leading to zero clay classes,
notably underestimate SA.

First consider soil particles to be spherical. The 4- and
S5-fraction representations of soil gave lower and upper
estimates of the SA of spherical particles that were the
same as for soil PSD. The average ratio of the reference
SA (15) to the calculated (14) equalled 4 for the 4-frac-
tion representation of soil (Fig. 5, data set 1, r>=0.75).
In the case of the upper estimate (5 fractions) the value
of the calculated SA almost coincided with that of the
reference one; however its relative variation was larger
(r>=0.45). These results agree well with those of Wu et al.
(1993) and Borkovec et al. (1993), obtained with an entirely
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different approximation of PSD. Thus, a conceptually
simple account of SD alone, without consideration of
particle form or surface roughness, immediately decrea-
ses the discrepancy between the calculated and reference
SAs by one order of magnitude. The consistent descrip-
tion of soil particles, continuously changing in size, is
thus quite important to explain geometric SA.

It is stressed that the SAs were assessed from the dis-
tribution of particle weight by size of particle, or inde-
pendently from SA measurements. No surface specific
parameters were considered. Compared with the alter-
native of ab initio calculation—sieve class assessment,
the coincidence between the calculated and reference
values is quite impressive. The discrepancy for the 4-
fraction representation of the soil can be explained by 3
factors: (i) non-sphericity of particle forms, (ii) surface
roughness and (iii) the contribution of the clay fraction.

Treatment of the ratio of the two areas as uniformly
controlled by the 4 PSDs suggests that effective SFFs
are to the same extent larger than for a sphere, n~4. The
SFFs correspond to particle flakiness of ca. 30; such a
large flakiness could hardly remain unnoticed with the
naked eye for the prevailing coarse sand fractions.
However, as the amount of layered particles increases
with decrease of particle size, the effect of the particle
form of the fine fractions is important in interpreting the
discrepancy. The particle flakiness observed by Hodson
et al. (1998) for similar coarse textured soils, also devel-
oped on granitic bedrock, equalled 80 and 15 within the
clay and silt classes. The corresponding SFFs n were 8
and 3, respectively; it was assumed that these values are
characteristic also for the Kola soils. The elementary
PSDs of the 4- and 5-fraction representations were well
resolved, and the clay and silt classes were dominated by
fractions with the corresponding size parameter. As a
result, these SFFs characterised the finest fractions and
not the entire clay and silt classes, as was interpreted by
Hodson et al. (1998). Assigning the silt SFF (n=3) to
the finest fraction of the 4-fraction representation and
assuming particles of other fractions to be spherical,
resulted in the growth of the SA by 2.5 times. Thus the
flakiness of particles, independently measured for simi-
lar soils, allowed SA to be explained geometrically
within a factor of two on average.

The remaining discrepancy (~SA) between the cal-
culated and reference areas was the maximum that
could be attributed to surface roughness. As the effect of
the true clay fraction was not considered in the assess-
ment, the contribution of surface roughness was in all
probability smaller. This conclusion about the relatively
minor effect of surface roughness agrees with micro-
morphological, including atomic force microscopic,
observations and simple geometric expectations (see
Introduction).

Note that clay could not be reliably determined in the
S-fraction model. That was because the size parameter

of the finest fraction was practically unrestricted by the
silt and sand fractions and became unreasonably small
for covering variation in the observed clay weights. By
considering both the SA and weights of classes in the fit
the parameters of the two finest fractions were refined.
The SFFs of the two fractions were fixed in line with
particle form observations by Hodson et al. (1998). The
size parameters were Dy, = 0.82 and Dy, = 4.9 um; the
width parameter and size parameters of the 3 coarsest
fractions practically coincided with those of the 4-frac-
tion representation (Table 2). The calculated SA (14) is
shown in Fig. 5 (data set 2, ¥>=0.55). As should be
expected for fitted data, the trend line (dashed) coincides
with the 45° line for equal calculated and reference SAs.
This refinement stresses the high sensitivity of the SA to
the content of fine soil fractions. On average, 2 wt.% of
the clay fraction controlled 80% of the SA (~0.5 m?/g).
As surface roughness was not considered, the ‘“‘true”
size parameter of the first fraction is, most probably,
larger and that of the second fraction smaller than
obtained in the representation. Note also that the con-
tribution of the clay-sized fraction is not outstanding.
The SA of a hypothetical soil with the same density
consisting of the clay fraction only is ca. 20 m?/g, more
then an order of magnitude smaller than for layered
minerals (Greenland and Mott, 1978). Thus, the SA of
coarse textured soils is highly sensitive to the clay con-
tent. Spatial variations in the weight content of the fin-
est elementary fraction, about equal to an experimental
error or fundamental limit of weight variation, result in

=

Acalc; m2;g

Fig. 5. Surface area (14, Ac.c) vs. calculated with the corre-
lation according to Eq. (15, Acor). 1. 4 fractions, spherical par-
ticles; 2. 5 fractions, =8, 1,=3, nz_s,=1, other parameters
of the distributions from Table 2.
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variation of the SA close to its value by an order of
magnitude.

While the conclusion about the fundamental limit of
SA variation was made while considering the geometric
SA of mineral particles, the methodological value of its
derivation is notably wider. This conclusion depends on
only two assumptions—on the existence of several nat-
ural fractions within one of the soil components and on
the low number of elementary units of the coarsest
fractions. It may be hypothesised that a low number of
large macromolecular aggregates in the organic covering
of mineral particles is important for the SA of native
soils, especially for fine-textured soils.

Though, with the data considered here, the authors
could not determine all the above-mentioned contribu-
tions to the SA in a unique way, by comparing these 3
cases ranges were determined for the contributions of
surface roughness and clay-sized particles to the SA of
the Kola soils. The realistic coincidence of the calculated
and reference SAs implies that the SA of coarse textured
soils can be reasonably explained as a geometric SA.

3.5. Relationships with simple assessments

Now, when reasonable values for SA have been
obtained, it becomes clear why the simple Eq. (1) for SA
fails when estimating SA within broad size classes. The
problem is that calculation of the SA could have been
started from the continuous analogy of this equation,
obtained at the limit of infinitely decreasing size of clas-
ses. It can be shown that the result would be exactly the
same—the main Eq. (11) for the SA obtained by super-
position of soil fractions. Thus, Eq. (1) for a geometric
SA is simply a numerical assessment within a finite set
of size classes of the soil SA, as calculated in the pre-
vious subsection. The cause of the failure is very simple:
the crude size classes. Below imperfections in size
separation, such as minor weight admixture of fine par-
ticles, which can also notably increase the SA of coarse
classes are not considered.

Consider a 4-fraction hypothetical soil with PSDs
characteristic for Kola soils, but with spherical particles.
The exact SA of each size class of this medium can be
calculated as described above (setting the colloid and
gravel borders to size class limits) and compared with
the corresponding term of Eq. (1). For the size classes of
Eq. (15) the difference is most pronounced for silt. The
problem is that the size classes are too broad in com-
parison with the characteristic widths of the elementary
PSDs contributing to them. This is why particles can
not be viewed as identical within size classes. As result,
the calculated SA (1) for the hypothetical soils is sig-
nificantly smaller than the true one. The difference is
most pronounced for the silt class, the most extensive on
the logarithmic scale, for which the ratio of the two
areas for the 4-fraction soil is typically about 10 and

reaches 35. Recalculating the SAs (1) with an increased
number of size classes, it is seen that to assess the SA
with 1% accuracy the silt class should be subdivided
into 8 and the clay class into 5 subclasses. On the whole,
soil should be divided into at least 22 size classes of
equal breadth on the logarithmic scale. When the size
classes used are fine enough to properly assess the SA of
spherical particles, Eq. (1) (applied by Hodson et al.
(1998) to only 4 classes) can be used. Only then can
SFFs be introduced for individual classes and applied to
(1) to real soils. The estimate of the required number of
size classes depends mostly on the breadth of the ele-
mentary fractions constituting soil and the rough size
classification used. However, the quasi-continuous
measurement of the weight SD of young Modesto soils,
developed on similar bedrock (White et al., 1996, Fig. 9),
exhibited well-resolved peaks, seen with the naked eye.
Simulation of these peaks showed similar widths, thus
confirming the conclusion about the required number of
size classes.

To relate the SA and SD of soil with an equation like
(1) requires a large increase of the number of soil clas-
ses. This increase implies a significant expansion of
experimental work, including direct observations of
particle forms and measuring the SAs of classes. From
this point of view, the suggested decomposition of soil
into elementary fractions is an alternative that simplifies
the task.

The parameters of elementary PSDs should certainly
depend on the soil type and region studied. In line with
the opinion that initial conditions at the site of deposi-
tion exert the main control on the PSD, let us assume
that this dependence is not too rigid. Then, the range of
applicability of the elementary fractions determined is
wider than for the Kola soils. Close PSDs can be
expected for the widespread soils developed after the
last glaciation on sandy and sandy-loam moraines. For
such soils the authors suggest the use in independent
research of the PSDs determined as the first approx-
imation. Then, the time-consuming task of the decom-
position of the weight SD into elementary fractions
(requiring some grounding in programming) can be
reduced to a much simpler task. Weights of classes can
be decomposed in least square means into a basic 4 cal-
culated fractions (Table 2). This task can be solved by
methods of linear algebra in many packages, including
electronic worksheets, such as Excel. One should only
remember that elementary PSDs do not form a com-
plete orthonormal basis; thus, perfect coincidence
between observed and calculated values can not be
expected. Constraints not considered within linear
methods (2f;, = 1, f3, > 0) should be applied manually
for solution.

The authors applied this simplified procedure to the
data of Hodson et al. (1998). Since no information on
the gravel fraction was available and thus the coarsest
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fraction could not be determined, 4 fine fractions of the
S-fraction model was used in the decomposition. The
calculated SA of spherical particles was only 3.5 times
smaller than the measured soil SA and the correlation
coefficient was twice as large as for empirical Eq. (15)
applied to the whole set. These results are in line with
the results discussed above.

The 4-member model might be viewed as a founda-
tion of the empirical Eq. (15). Indeed, the calculated
weights of 4 classes are expressed as linear combinations
of 4 elementary fractions f3,. Solving this system of
equations, f3, can be expressed as linear combinations
of sieved fractions &;. Inserting the solution in the main
equation, Eq. (14), for the SA we get a linear equation
similar to the empirical one; its coefficients B; depend
only on the parameters of elementary fractions. Using
the parameters of the 4 fine fractions of the 5-fraction
representation, the coefficients B; for clay and silt, that
determine SA, agree within a factor of 3 with the corre-
sponding coefficients P; of Eq. (15). However, the
agreement is only semi-quantitative: the two other coef-
ficients significantly underestimate the coefficients of the
empirical equation.

By this treatment the authors also show that the high
sensitivity of soil SA to the content of fine fractions is
the main cause of its high spatial variability. The cloud-
like character of the SA dependence on soil texture
seems to be one of the main background points that
caused the recent discussion (Hodson, 2002; Koptsik et
al., 2002). The authors stated in the discussion that Eq.
(15) for SA should be better interpreted in terms of sta-
tistical physics: relatively unweathered soils that devel-
oped on granitic parent material in a cool humid climate
for a large collection of soils should be described by Eq.
(15). It is not reasonable to view (15) as applicable to an
exact sample as it assesses the SA in a statistical sense
only. The present considerations provide a theoretical
basis for this statement. It is the dispersed and multi-
particulate character of a soil that is the physical origin
of the stochastic contribution to the soil SA.

The different scales of description—the macroscopic
field scale and the scale of a sample—should not be
mixed up. A correlation relationship observed on the
landscape scale is of statistical type, while dynamical
laws govern a sample. The complementary character of
the two scales and types of laws is typical for complex
systems (Pattee, 2000). The principal qualitative dis-
tinction between dynamical and statistical laws is not
unique for soil science; Planck (1960) and Schrédinger
(1944) discussed it for physics and biology. The appli-
cation by Hodson et al. (1998) of the statistical corre-
lation Eq. (15) to individual soil samples is
methodologically erroneous. The observed differences in
the SA are neither large nor strange—the spatial varia-
bility is just the same as is given by nature. If mechan-
isms of SA formation, if individual samples, are the

focus of investigation, as far as can be seen, the general
approach discussed above is the only valid one. This is
just the consequence of the huge number of soil parti-
cles. On the other hand, if properties of a macroscopic
soil object (polypedon, soil within catchment or region)
are in focus and samples are studied only as a means of
assessment, then the use of Eq. (15) seems reasonable.
That is the main field of applicability of empirical mod-
els (e.g. Hoosbeek et al., 2000); such usage was implied
by the authors of the equation when suggesting it for
critical loads assessment (Sverdrup et al., 1990).

The approach to calculation of the SA developed here
does not remove the problem of its spatial variability
(compare e.g. the present Fig. 5 and Fig. 1 in the paper
by Koptsik et al., 2002). Within the macroscopic
approach, the highly variable component of the mineral
particle SA can be viewed as random in the same sense
as flipping a coin is usually viewed as a random event
rather than as the deterministic result of detailed
knowledge of the initial conditions of the coin. The
conclusion about the relative contributions of the sto-
chastic and deterministic components of the SA for
coarse-textured soils agrees with simple assessments.
Using the correlation SA (15) as an environmental gra-
dient, it may be inferred (see Fig. 1 in Koptsik et al.,
2002) that the inherent uncertainty in the soil SA is
about its average value by an order of magnitude. This
conclusion is also confirmed for boreal forest soils by
direct observation of spatial variability of soil SA within
a uniform unit, the polypedon (Oreshkina, 1983).

Soil scientists seem to come very close to the hypoth-
esis about the fundamental limits of variation when
studying soils with geostatistical methods. However, the
nonzero nugget variances of semivariograms, observed
for the majority of soil properties, are usually connected
with measurement errors (e.g. Hoosbeek et al., 2000).
While relating the nuggets with processes inherent in the
soil itself, with the soil fundamental limits, influences the
paradigm of soil description. If fluctuations in proper-
ties are inevitable, natural characteristics of single soil
samples, then a deterministic description of soil is pos-
sible only in the statistical sense and a description of
individual samples can be probabilistic only.

4. Conclusions

A so-called superposition model capable of account-
ing for the contributions of soil fractions of distinct sizes
to SA is introduced and theoretically considered. Three
physically most important distributions, number, SA
and weight of soil particles, classified by their sizes, are
discussed. The authors are not aware of other super-
position models of PSD which explain additive soil
properties. When no assumptions are made about the
SD, the SA relationships obtained provide a theory of
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the geometric SA of mineral particles. By showing that
the number of soil particles is huge, even for coarse
textured soils, the validity of this general approach is
demonstrated. To get practical results, size fractions are
described by truncated lognormal distributions that can
be theoretically viewed as controlled by physical weath-
ering. Relationships obtained within this approximation
are presented at a level needed for quantitative estima-
tions, and allow independent SA assessment. The intro-
duced model was applied to soil texture data for sandy
podzols developed on tills and glaciofluvial deposits
after the last glaciation in the Kola Peninsula. The cal-
culated SA was compared with that given by a corre-
lation equation (Sverdrup, 1990) in giving the best
description of the measured values. The SA of coarse
textured soils was explained as a geometric SA, as the
area of a hypothetical smooth surface enveloping the
actual soil particles. Taking into account continuous
particle size and form distributions reduced by nearly
two orders of magnitude the gap between measured
and calculated SAs, assuming identity of particles
within soil texture size classes. The failure of the last
assessment to give a geometric SA, is connected with the
use of crude size classes that are insufficient to reflect the
continuous variation in sizes of soil particles, and with
the imperfection of size separation procedures. To ade-
quately assess a geometric SA with ca. 1% accuracy the
number of size classes should be increased by at least 5
times. The choice of a physically based continuous PSD
simplifies the description of a soil because a noticeably
lower number of components is needed to compare with
the number of size classes representing a soil.

Parameters of elementary PSDs, determined by con-
sidering weights of size classes, agree with those that can
be derived from the literature. The reduction of para-
meter variation, when soil is decomposed into several
fractions, is incredibly great; it reaches ~10%° compared
with that of a single-fraction model. The size parameters
are within the size limits of soil grains and are robust to
the addition of a new fraction except in the vicinity of its
size parameter. The physically determined reduction of
the parameter range suggests that several-fraction
decompositions can adequately explain integral soil
properties.

PSD is the main factor that controls the SA of coarse
textured soils. By taking into account the particle forms
for clay-sized layered minerals that were poorly repre-
sented in soils, the SA increased by 2-3 times. The
effective SFFs of particles of coarse textured soils are
only several times larger than for spheres. The span of
particle sizes through several orders of magnitude causes
crucial, also several orders of magnitude, changes in the
contributions that size fractions make to the integral soil
properties. The radical changes in the SDs of weight, SA
and number of particles suggest that the SDs should be
simultaneously measured.

The model semi-quantitatively supports the corre-
lation Eq. (15) that relates SA and soil texture. The
equation seems to be a reasonable way of relating SA to
limited data on soil texture. However, the equation
should be interpreted in a statistical physics sense: it is
applicable only to macroscopic soil objects or to a col-
lection of samples but not to the individual samples
themselves. The high sensitivity to the fine fraction con-
tent can be viewed at a more general, environmental
level of knowledge as a physical cause of the inherent in
SA stochastic component, which is averaged by the
correlation equation.

The number of particles of the coarsest fraction that
is countable contributes noticeably to variations of soil
properties. The fundamental lower limit of variation of
weight, controlled by the discrete nature of soil, may be
~1% for coarse textured soils, i.e. of the order of
experimental error. The SA is highly sensitive to the
content of small-sized mineral fractions; on average, 2
wt.% of the clay fraction contributed 80% of the SA.
While the variation in weight of the finest mineral frac-
tion may seem small, within experimental error and the
fundamental limit of variation, the corresponding var-
iation in SA is quite significant. For coarse textured soils
the variation is close to the average value by an order of
magnitude. The high variability of many surface-con-
trolled properties of soils is believed to be related to the
fundamental limit of variation of soil that is controlled
by the number of particles of the coarsest fractions
(mineral or organic) of the soil.
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Appendix. Truncated lognormal distribution

The authors consider the properties of an ensemble of
uniform particles without inner cavities. Probability
density functions for the distribution of number, SA,
and weight of particles classified by their sizes (n=0, 2
and 3, respectively), are given by Eq. (13). The normal-
ising multipliers equal

_ exp(—20?) (AD)
" \/EO’D(’;C" (o, Dy, Dol Dgr) '

]

where functions
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1 <£> — no?
1 Dy
Cu(0, Do, Deot, Dr) = serf| ——L

The expressions for E, are exact expressions for the
classical lognormal distribution except for the factors
C,, which are caused by the colloid and gravel border
correction; erf(x) is the error function. Each of the cor-
rection functions C,, is the difference between the corre-
sponding cumulative probability functions (A6D) of the
corresponding non-truncated basis distribution at Dy,
and D.y. In the limiting case, when D, approaches
zero and Dy, is infinitely increased, each of the sum-
mands in (A2) approaches % and C,=1.

For an ensemble of particles with density p and
effective surface form-factor n, the average SA

&) (O‘, Dy, Do, Dgr)

Amean = nDexp(207)- , A3
men o Xp( ’ ) C()(O‘, DO, Dcol, Dgr) ( )
and the mass of a particle
4 9 G (Cr» Dy Do, Dgr)
M mean = P—D3eXP <_ 02> ' : . (A4)
6 0 2 CO(O’, Dy, Deol,s Dgr)

The effective weight diameter, or the diameter of a
sphere, made of material with the same density p, for
which the mass equals M can,

3 Cs(o, Dy, Deot, D
DWeff — Doexp _02 3 3(0 05 Heol gr). (AS)
2 CO(‘L D, DcolyDgr)

The weight average diameter, or the diameter averaged
with the weight distribution p3(D),

D) = Dyexp (Z o2 (A6)

>.C4(O‘, Dy, Do, Dgr)
2

C3(G, D(), Dcol, Dgr) '

In all the examples, these values were used instead of D
as they can be more easily “felt” by soil scientists,
accustomed to the distribution of weight of particles by
their size. Eqs. (A5) and (A6) relate Dy, and Dgggn
with Dy in a unique fashion. Characteristic diameters—
the most probable (Dpode), average (Dmean) and root-
mean-square deviation (Dgg)—are summarised in
Table A1 for these 3 distributions.

Cumulative probability functions for the distribution
of number, SA and weight of particles by their sizes are
given by

CH(O', Dy, Deol, D)
C,,(U, Dy, Deol, Dgr)

Fn(D; o, Dy, Deol, Dgr) = s (A7)

where C,, are correction functions (A2). In the limiting
case of the basic non-truncated distribution this expres-
sion simplifies to

1 In(D/Dp) — no? 1
FYD; o, D) = 56&(%) +3- (A7)
o}

Relationship with the traditional lognormal fit of weight
distribution

The classical lognormal distribution

1 InX — InXp)?
Pwlo, Xo; X) = mGXexp(—( ) 0)) (A8)

has been rather often used to fit the observed weights of
size classes, and its parameters X, and o can be found in
the literature. The authors intentionally changed the
notion of particle diameter to X in order to stress the
conceptual difference between this distribution and the
number distribution (formally, this equation coincides
(neglecting the colloid and gravel border corrections)
with (13) when n=0). Conceptually, this distribution is
only effective, and it can not be used for the determina-
tion of macroscopic soil physical properties. However, it
can approximate the true weight distribution (13, n=23)
very closely. The relationship between the parameters of

Eal‘ll:llreazelristic diameters for distributions of number, surface area, and weight of particles classified by their size

Distribution Dirode® Diyean Dyq

.03 ) Doso(=r) Dosolde) Desplio’) fepion & (&)
p2(0. D0 D) Doexp(?) Doexp(3e?) & Duexpe?) Jexpion &~ ()’
pa(o, Dy; D) Doexp(20?) Doexp(30?) g—‘: Doexp(Z0?),/exp(o?) g—; - (%)2

2 When maximums are reached between the two outer borders of particle size distribution (Do < Do exp (—0?), Dy exp (202) < Dy,).
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coinciding effective and true weight distributions can be
found by equating their mode diameters (Table Al):

Dy = Xoexp(—3az); (A9)

the width parameters o coincide for both distributions.
Therefore, the parameters of the number distribution
(13, n=0) might be assessed from an available log-
normal fit.

References

Abramowitz, M., Stegun, [.A., 1964. Handbook of mathema-
tical functions. National Bureau of Standards, Washington.
Allen, T., 1968. Particle size measurement. Chapman and Hall

Ltd, London.

Anbeek, C., 1992. Surface roughness of minerals and implica-
tions for dissolution studies. Geochim. Cosmochim. Acta 56,
1461-1469.

April, R., Newton, R., 1992. Mineralogy and mineral weathering.
In: Johnson, D.E., Lindberg, S.E. (Eds.), Atmospheric Deposi-
tion and Forest Nutrient Cycling. A Synthesis of the integrated
Forest Study. Springer-Verlag, Berlin, pp. 379-425.

Berezin, P.N., Voronin, A.D., 1981. Use of sedigraph for the
granulometric analysis of soils. Eurasian Soil Sci. 14, 56-63.

Berezin, P.N., Voronin, A.D., 1983. Soils and parent rocks
granulometric fractions distribution. Eurasian Soil Sci. 16,
64-72.

Bickel, P.J., Doksum, K.A., 1976. Mathematical Statistics.
Basic Ideas and Selected Topics. Holden-Day, Inc, San
Francisco.

Blum, A.E., 1994. Feldspars in weathering. In: Parsons, I.
(Ed.), Feldspars and Their Reactions. Kluwer Academic
Publishers, Dordrecht, pp. 595-629.

Borkovec, M.O., Wu, Q., Degovics, P., Laggner, P., Sticher,
H., 1993. Surface area and size distribution of soil particles.
Colloids Surf. A 73, 65-76.

Born, M., Wolf, E., 1964. Principles of optics. Pergamon Press,
Oxford.

Brantley, S.L., White, A.F., Hodson, M.E., 1999. Surface area
of primary silicate minerals. In: Jamtveit, B., Meakin, P.
(Eds.), Growth and Dissolution in Geosystems. Kluwer
Academic Publishers, Dordrecht, pp. 291-326. (chapter 14).

Buchan, G.D., 1989. Applicability of the simple lognormal model
to particle-size distribution in soils. Soil Sci. 147, 155-161.

Buchan, G.D., Grewal, K.S., Robson, A.B., 1993. Improved
models of particle-size distribution: an illustration of model
comparison techniques. Soil Sci. Soc. Am. J. 57, 901-908.

Buol, S.W., Hole, F.D., McCracken, R.J., 1973. Soil Genesis
and Classification. The Jova State University Press, Ames.

Clow, D.W., Drever, J.I., 1996. Weathering rates as a function
of flow through an alpine soil. Chem. Geol 132, 131-141.

Dapples, E.C., 1975. Laws of distribution applied to sand sizes.
Geol. Soc. Am., Memoir 142, 37-61.

Gardner, R.W., 1956. Representation of soil aggregate-size
distribution by a logarithmic-normal distribution. Soil Sci.
Soc. Am. Proc. 20, 151-153.

Gedroits, K.K., 1975. Doctrine about soil absorption capa-

cities. In: Gedroits, K.K. (Ed.), Selected Scientific Works.
Nauka Publ. Co, Moscow, pp. 394-557. (in Russian).

Glazovskaya, M.A. and Dmitriev, E.A. (Eds.), 1970. Spatial
Variation Patterns of Soil Properties and Informational-Sta-
tistical Methods of their Investigation. Nauka, Moscow (in
Russian).

Greenland, D.J., Mott, C.J.B., 1978. Surface of soil particles.
In: Greenland, D.J., Hayes, M.H.B. (Eds.), The Chemistry of
Soil Constituents. John Wiley & Sons, New York, pp. 321-
354. (Chapter 4).

Griffiths, J.J., 1967. Scientific methods in analysis of sediments.
McGraw-Hill Book Co, New York.

Herdan, G., 1953. Small Particle Statistics. Elsevier Publ. Co,
Amsterdam.

Hodson, M.E., Langan, S.J., Wilson, M.J., 1996. A sensitivity
analysis of the PROFILE model in relation to the calculation
of soil weathering rates. Appl. Geochem. 11, 835-844.

Hodson, M.E., Langan, S.J., Meriau, S., 1998. Determination
of mineral surface area in relation to calculation of weath-
ering rates. Geoderma 83, 35-54.

Hodson, M.E., 2002. Comments on ‘“Calculations of weath-
ering rate and soil solution chemistry for forest soils in the
Norwegian-Russian border area with the PROFILE model”
by G. Koptsik, S. Tevedal, D. Aamlid and K. Venn. Appl.
Geochem., 17, 117-121.

Hoosbeek, M.R., Amundson, R.G., Bryant, R.B., 2000. Pedo-
logical modeling. In: Summer, M.E. (Ed.), Handbook of Soil
Science. CRC Press LLC, Florida, pp. E77-E116.

Hulst van de, H.C., 1957. Light Scattering by Small Particles.
John Willey & Sons, New York.

Hurlbut, C.S. Klein, C., 1977. Manual of Mineralogy (after
James D. Dana). John Wiley & Sons, New York.

Kitaigorodskii, A.I., 1950. X-ray Analysis. National publishing
House for Technical and Theoretical Literature, Moscow (in
Russian).

Kolmogoroff, A.N., 1941. Uber das logarithmisch normale
verteilungsgesetz der dimensionen der teilchen dei zerstuck-
elung. Dokl. Akad. Nauk SSSR 39, 99-101.

Koptsik, G., Teveldal, S., 1995. The Main Mineralogy in 9
Profiles from Kola (6) and Finnmark (3). NISK report. As,
Norway.

Koptsik, G., Teveldal, S., Aamlid, D., Venn, K., 1999. Calcu-
lation of weathering rate and soil solution chemistry for for-
est soils in the Norwegian—Russian border area with the
PROFILE model. Appl. Geochem. 14, 173-185.

Koptsik, G., Teveldal, S., Koptsik, S., Strand, L., 2002. Cal-
culation of weathering rate and soil solution chemistry in the
Norwegian—Russian border area with the PROFILE model.
A Reply to the comment by M.E. Hodson. Appl. Geochem.
17, 123-127.

Korn, G.A., Korn, T.M., 1961. Mathematical Handbook for
Scientists and Engineers. McGraw-Hill Book Co, New York.

Langan, S.J., Reynolds, B., Bain, D.C., 1996. The calculation
of base cation release from mineral weathering in soils
derived from Paleozoic greywackes and shales in upland UK.
Geoderma 69, 275-285.

Levin, S.A., 1992. The problem of scale and pattern in ecology.
Ecol. 73, 1943-1967.

Mallows, C.L., 1973. Some comments on C,. Technometrics
15, 661-675.



S. Koptsik et al. | Applied Geochemistry 18 (2003) 629651 651

Matsushita, M., 1985. Fractal viewpoint of fracture and accre-
tion. J. Phys. Soc. Japan 54, 857-860.

Mayer, L.M., Rossi, P.M., 1982. Specific surface areas in
coastal sediments: relationship with other textural factors.
Mar. Geol 45, 241-252.

Middleton, G.V., 1970. Generation of the lognormal frequency
distributions in sediments. In: Romanova, M.A., Sarmanov,
0.V. (Eds.), Topics in Mathematical Geology. Consultants
Bureau, New York, pp. 34-42.

Nelder, J.A., Mead, R., 1964. A simplex method for function
minimization. Computer J. 7, 308-313.

Oreshkina, N.S., 1983. Statistical Assessments of Spatial
Variability of Soil Properties. Moscow University Press,
Moscow. (in Russian).

Pattee, H.H., 2000. Causation, control, and the evolution of
complexity. In: Anderson, P.B., Christiansen, P.V.,
Emmeche, C., Finnemann, N.O. (Eds.), Downward Causa-
tion. Aarhus University Press, Aarhus, pp. 63-77.

Planck, M., 1960. A Survey of Physical Theory. Dover, New
York. (Dynamische und statistische Gesetzmaigkeit, first
published in 1914).

Reif, F., 1967. Statistical Physics. Berkeley Physics Course,
Vol. 5. McGraw-Hill Book Co, New York.

Rieu, M., Sposito, G., 1991. Fractal fragmentation, soil poros-
ity, and soil water properties: 1. Theory; II. Applications.
Soil Sci. Soc. Am. J. 55, 1231-1244.

Schnoor, J.L., 1996. Environmental Modeling. John Wiley &
Sons, New York.

Schrodinger, E., 1944. What is Life? The Physical Aspect of the
Living Cell. Cambridge University Press, Cambridge.

Shiozawa, S., Campbell, G.S., 1991. On the calculation of
mean particle diameter and standard deviation from sand,
silt and clay fractions. Soil Sci. 152, 427-431.

Shirazi, M.A., Boersma, L., 1984. A unifying analysis of soil
texture. Soil Sci. Soc. Am. J. 48, 142-147.

Shirazi, M.A., Boersma, L., Hart, JJW., 1988. A unifying
quantitative analysis of soil texture: improvement of preci-
sion and extension of scale. Soil Sci. Soc. Am. J. 52, 181-190.

Snedecor, G.W., Cohran, W.G., 1989. Statistical Methods.
Towa State Univ. Press, Ames.

Soil Survey Manual, 1993. Soil Survey Division Staff. United
States Department of Agriculture, Handbook No. 18.

Sverdrup, H., 1990. The Kinetics of Base Cation Release Due
to Chemical Weathering. Lund University Press, Lund.

Sverdrup, H., Warfvinge, P., 1995. Estimating field weathering
rates using laboratory kinetics. In: White, A., Brantley, S. (Eds.),
Weathering Kinetics of Silicate Minerals. Reviews in Miner-
alogy, 31. Min. Soc. of America, pp. 485-541 (chapter 11).

Sverdrup, H., 1996. Geochemistry, the key to understanding
environmental chemistry. Sci. Total. Environ. 183, 67-87.

Sverdrup, H., de Vries, W., Henriksen, A., 1990. Mapping
Critical Loads. A Guidance to the Criteria, Calculations,
Data Collection and Mapping of Critical Loads. Nordic
Council of Ministers, Copenhagen.

Vadunina, A.F., Korchagina, Z.A., 1973. Methods for Investi-
gation of Physical Properties of Soils and Subsoils. High
School Publ. Co, Moscow (in Russian).

Wilson, M.J., 1986. Mineral weathering processes in podzolic
soil on granitic materials and their implications for surface
and water acidification. J. Geol. Soc., London 143, 691-697.

White, A.F., Blum, A.E., Schulz, M.S., Bullen, T.D., Harden,
J.W., Peterson, M.L., 1996. Chemical weathering rates of a
soil chronosequence on granitic alluvium: I. Quantification
of mineralogical and surface area changes and calculation of
primary silicate reaction rates. Geochim. Cosmochim. Acta
60, 2533-2550.

Wu, Q., Borkovec, M., Sticher, H., 1993. On particle size dis-
tributions in soils. Soil Sci. Soc. Am. J. 57, 883-890.

Zeeman, E.C., 1977. Catastrophe Theory. Addison Wesley,
Reading, MA.



	On the calculation of the surface area of different soil size fractions
	Introduction
	Geometric surface area: theoretical treatment
	General relationships
	Superposition model
	Separation of the particle form
	Elementary distributions
	Example of calculation

	Application of the model: results and discussion
	Parameters of distributions
	Number of particles
	Relative contributions
	Absolute values of surface area
	Relationships with simple assessments

	Conclusions
	Acknowledgements
	Appendix. Truncated lognormal distribution
	Relationship with the traditional lognormal fit of weight distribution

	References


