
Russian Geology Geologiya
and Geophysics i Geofizika
Vol. 44, No. 9, pp. 953-959, 2003 UDC 550.834
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Elastic moduli are controlled mainly by the viscoelastic and microplastic behavior of rocks
if stress and strain remain below the proportionality limit. Differences between measured
static and dynamic elastic moduli are caused by different inelastic contributions to
stress-strain relationships which behave as a function of strain amplitude and frequency
(energy and strain rate). Static and dynamic elastic moduli can be appropriately compared
at equal strain amplitudes and frequencies and at identical physical properties of solids.
Nonlinear seismics, inelastic behavior, hysteresis, strain amplitude dependence of wave
velocities and attenuation, static and dynamic elastic moduli

INTRODUCTION

Discrepancy between elastic moduli obtained from static and dynamic measurements is observed at different
frequencies and levels of applied strain. (“Quasistatic” moduli are hereafter called “static” for short.) Numerous
experiments show that dynamic moduli are consistently greater than static moduli, up to 4–8 times for Young’s
moduli [1–4], at least at confining pressures below 60 MPa. However, the physical causes of this empirically
known inequality remain unclear, though its understanding is essential in many theoretical and practical applications
(e.g., developing techniques to predict hard-to-measure static moduli from easier-to-measure dynamic moduli, such
as in hydraulic fracturing problems, etc.) [2, 5, 6].

The empirically observed differences between static and dynamic moduli (or velocities) can be explained by
differences in frequency and strain amplitudes used in measurements [4]. Young’s moduli obtained from ultrasonic
laboratory measurements at 100 kHz–1 MHz are higher than log-derived moduli measured at 10–20 kHz, and
these are higher than low-frequency (acoustic and seismic bandwidths) and static moduli: Eultrasonic > Elog >
Elowfreq > Estatic.

Frequency (time) dependence is related to strain rate (ε′ ) dependence. Rocks become stiffer as the frequency
of the applied strain is increased, which calls for a modulus increase. Strain amplitudes applied in dynamic (wave
propagation) measurements are kept small, within the porportionality limit, which corresponds to viscoelastic
behavior of velocity dispersion and energy dissipation. This behavior has been explained by Biot’s global fluid-flow
mechanism or local mechanisms like squirt flow, stick-slip sliding, etc. [4, 7, 8].

Unlike quasistatic measurements taken at low strain rates (ε′ ), strain amplitudes in dynamic experiments can
be above critical (εcr) and give rise to irreversible inelastic processes [9, 10]. In this case the effect of strain

amplitude is especially well pronounced, as well as at low frequencies when viscoelastic mechanisms are restricted
to effective viscosity and no local effects are observed [4, 7].

Thus the existing views of viscoelastic mechanisms responsible for the differences between static and dynamic
moduli appear generally reasonable but the effect of strain amplitude requires further investigation, as it is not as
simple (modulus decrease with strain) as is commonly believed [4, 11–13]. The physical mechanisms of deformation
are thus to be studied with a special focus on plastic effects of rock microstructure and strain amplitude dependence
of elastic moduli.

The objective of this research is to develop a better understanding of physical mechanisms responsible for
the difference between static and dynamic moduli. For this, an irreversible mechanism of microplasticity, most
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often neglected at the mesoscopic level, is investigated in addition to viscoelastic behavior of rocks. The effect of
microplasticity has been tested by quasistatic and dynamic measurements of Young’s moduli which are likewise
applicable to wave dynamics. Although the experiments addressed only Young’s modulus, the same idea can be
applied to shear strain, as shear velocity measurements reported in [4, 14] demonstrated strain amplitude dependence
of S velocities and attenuation.

FORMATION OF ELASTIC MODULI

Elastic moduli represent the strain response or stiffness of material and can be found from the stress–strain
diagram σ(ε) as a ratio of the applied stress to the strain it produces. Instantaneous Young’s modulus (within
∆σ stresses) in the stress-strain curve is given by

Ei = 
∆σi

∆εi
 . (1)

For appropriate comparison, the static and dynamic moduli should be determined within the same range of ∆σ, i.e.,
at ∆static = ∆σdyn. However, the moduli remain different even under identical stress conditions [4]. This difference

can be understood if we consider the process of deformation in more detail and analyze the constituents of the
measured static and dynamic strain ∆εi.

Bulk strain includes a reversible and irreversible components:

εi = εe + εr . (2)

Reversible strain, in turn, consists of ideally elastic (εi − e) and viscoelastic (ευ − e) components

εe = εi − e + ευ − e . (3)

Strictly speaking, irreversible strain includes a viscoplastic (ευ − p) and a microplastic (εµ) components and strain

associated with frictional sliding of rock particles during closure of voids and macrocracks (εsl). However, the

components responsible for plastic and viscoplastic processes may be neglected in our case of small and medium
strain (low-amplitude waves), when stress and strain remain below the yield point. The εsl strain is also neglected

as we deal with consolidated rocks under overburden pressure having microcracks but no large open cracks [2].
Then bulk strain includes three main components:

εi = εi − e + ευ − e + εµ . (4)

The component ευ − e represents an ideally elastic Young’s modulus Ei − e = ∆σi/∆ευ − e corresponding to strain

response of monocrystalline grains and rock skeleton as a whole. Two latter terms in (4) represent the inelastic
component responsible for nonlinear departure from the Hooke’s law and from Ei–e, respectively. The strain
ευ − e corresponds to viscoelastic behavior of rocks dependent on the magnitude and time of stress [1]. The presence

of the viscoelastic component εε − e leads to hysteresis, i.e., incoincidence of loading and unloading arms of

stress–strain, σ(ε), diagrams and the appearance of quasistatic and dynamic residual strain. Once a deformation
cycle is completed, residual strain relaxes with time and decreases to zero. As a result, the system returns to the
initial stress-strain state.

In a rheological model for a Maxwell body, viscoelastic strain at σ = const is controlled by time (tσ) and

effective viscosity (ηef) related with Young’s modulus and relaxation time Trel = ηef/Ei [3] as

ευ − e = 
σtσ
ηef

 = 
εi Ei tσ

ηef
 = 

εi tσ
Trel

 . (5)

It follows from (5) that the strain ευ − e of rocks with invariable viscosity, Young’s modulus (Trel = const), and

applied stress depends on time which must differ in quasistatic and dynamic measurements. If the above conditions

are satisfied, viscoelastic strain in the quasistatic state is higher than dynamic strain (ευ − e
st  > ευ − e

dyn ) at the account

of a longer time tσ. Shorter time thus corresponds to a greater strain rate ε′  (or frequency) and lower ευ − e. Then,

the effect of frequency on the difference between static and dynamic moduli manifests itself in the changes of
viscoelastic strain leading to changes in Young’s modulus. Normally the time of quasistatic measurements is 1–10
s, and the half-periods of compression-extension cycles in dynamic measurements are orders of magnitude shorter.

Russian Geology
and Geophysics Vol. 44, No. 9

917



On the contrary, dynamic stress is much greater than static stress. Therefore, the static and dynamic moduli will
differ because of different contributions of the viscoelastic component (Ei – dyn > Ei – st) even if quasistatic and
quasidynamic stresses are assumed equal.

Instantaneous (local) Young’s modulus with regard to (1) and (4) is given by

Ei = 
∆σi

∆εi − e + ∆ευ − e (tσ) + ∆εµ(|ε|)
 , (6)

where ∆ευ − e (tσ) is the time-dependent viscoelastic component and ∆εµ(|ε|) is the strain amplitude dependent

microplastic component (with variable sign) of bulk strain.
Thus, the viscoelastic effect is related to time and the microplastic effect to strain amplitude, or applied

energy.
The effect of the microplastic component of bulk strain is indicated by residual strain which does not disappear

with time and is observed below critical strain (proportionality limit). This effect is due to irreversible reorganization
of rock microstructure during deformation. Microplasticicity differs from viscoelasticity as it is associated with the

critical strain εcr (∼10−6, for the used measurement accuracy) and the effect is jump-like. At strain below εcr,

microplasticity is absent and viscoplastic strain alone influences the elastic moduli.
Microplastic effects generally increase bulk strain and decrease Young’s modulus but are often more complex

being dependent on strain amplitude and rock physics, which is reflected in the behavior of elastic moduli. The
σ(ε) relationships for microplastic rocks may be nonmonotone or even jump-like, which is impossible for the
viscoelastic response.

It is also essential that microplasticity is independent of time (at least for metallic and other polycrystals
below ∼1 MHz) [15], but strong energy dependence leads to strain amplitude dependence of elastic moduli [10].
This can be illustrated by static Young’s modulus plots for some rocks from deposits in West Siberia (Fig. 1)
where the strain amplitude dependence is clearly nonlinear. The modulus may either increase or decrease, which
causes ambiguity in its static estimates if the strain range is not specified.

In addition to energy, elastic moduli are affected by the physical state of rocks associated with overburden
pressure and fluid saturation. Microplastic effects are stronger in fluid-saturated than in dry rocks. Young’s modulus
decreases on transition from dry to saturated state and shows oscillatory changes with increasing strain (Fig. 2).
Therefore, comparison of moduli, even in quasistatic measurements, is incorrect if the conditions are not specified.

Static Young’s modulus may either decrease or increase with strain, as follows from positive and negative
curvatures of σ(ε) plots (Fig. 3) [9, 10, 14]. Positive curvature is typical of less consolidated or highly porous

Fig. 1. Behavior of Young’s modulus as a function of strain amplitude. 1 —
marl; 2 — bituminous mudstone; 3 — fine-grained sandstone; 4 — dolomite;
5 — coarse-grained sandstone; 6 — brittle sandstone. Depth 2100–2800 m.
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rocks, such as sandstones, and negative curvature is more often encountered in higher consolidated low-porosity
rocks, such as dolomites. The latter (Fig. 4) is of special interest for our study as the respective strain amplitude
dependence of moduli causes P velocity increase with amplitude.

The above considerations are illustrated by laboratory measurements of static and dynamic moduli in
low-porous dolomites (Yurubchen and Madra fields) which show a hysteretic behavior. Figure 5 demonstrates the
behavior of static (Estatic) and dynamic (Edyn and Gdyn) moduli as a function of overburden pressure. All moduli
increase with pressure. The dynamic moduli increase by 20% (Edyn) and 18% (Gdyn) from 2 to 60 MPa and make
very narrow hysteresis loops in the 2 → 60 → 2 MPa cycle which record a vanishing inelastic contribution. The
static modulus Estatic becomes times as high and approaches Edyn at 60 MPa. The increase in static moduli may
be due to higher strength and stiffness typical of rocks that show negative curvature of the σ(ε) diagram (Fig. 4).
On unloading the modulus increases abruptly three-fold on the end point of the hysteresis loop and decreases along
the unloading arm which is above the loading arm (Fig. 4). A similar jump of Young’s modulus on the end point
of hysteresis loops was predicted [16] and experimentally observed [4, 17] earlier. Note that in our experiment,
the static modulus Estatic is higher than the dynamic modulus Edyn at a certain range of overburden pressures. The

Fig. 2. Behavior of Young’s modulus as a function of strain
amplitude in Omba sandstone (2400 m). 1 — dry; 2 —
partially saturated; 3 — fully saturated.

Fig. 3. Stress–strain diagrams. 1 — decreasing Young’s
modulus (positive curvature); 2 — increasing Young’s
modulus (negative curvature).
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dynamic moduli follow the static behavior at all pressures: Edyn and Gdyn increase with the amplitude of acoustic
signals like the static modulus that increases with strain.

DISCUSSION

Analysis of mechanisms associated with Young’s modulus shows that the empirically observed differences
between static and dynamic moduli are due to different contributions of inelastic processes in static and dynamic
deformation and different strain amplitudes. In the conditions we assume, the moduli are influenced by the
viscoelastic and microplastic behavior of rocks which is rather complicated and depends on rocks’ physical
properties and applied energy.

The observed decrease in Young’s modulus at lower frequencies (Eultrasonic > Elog > Elowfreq > Estatic) [4,
12, 17] is consistent with the idea of a higher viscoelastic contribution at lower strain rates ε′ . Transition from
ultrasonic to acoustic and lower frequencies (under identical stress conditions) is accompanied by a decrease in
strain rate ε′  and effective viscosity (ηef), which increases viscoelastic deformation and decreases the Young’s

modulus of rocks. Effective viscosity is meant as measured viscosity that includes global viscosity, responsible for
the rock macrostructure, and local viscosity. Effective viscosity is small at low frequencies and at low strain rates
when local and global (Biot’s) flow mechanisms are weak [7]. Therefore, global viscosity provides relaxed state
at low frequencies and unrelaxed behavior and higher stiffness of rocks at higher frequencies.

The effect of strain amplitude is related to energy. The strain amplitude dependence of elastic moduli at

Fig. 4. Stress-strain diagram for dolomite (Madra field).
H = 2480 m, Kp = 2.4%.

Fig. 5. Behavior of static (Est) and dynamic (Edyn, Gdyn)
elastic moduli as a function of overburden pressure.
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εi > εcr can be attributed to microplasticity. However, strain amplitude dependence of velocities (moduli) was

observed also at εi < εcr at frequencies below 1 Hz when frequency dependence is vanishing [4]. Therefore, there

may exist critical strains εcr (1 − n) much below the known values.

The strain amplitude dependence of elastic moduli at εi > εcr, i.e., in the presence of microplastic behavior,

manifests itself in diverse ways. Strain amplitude is obviously the key parameter responsible for the difference
between static and dynamic moduli, as this difference remains even after correcting for frequency effects. However,
the effect of strain amplitude is more complex and is not restricted to modulus decrease with strain. Elastic moduli
behave in different ways in different stress-strain diagrams: The static Young’s modulus decreases with strain in
positive-curvature dσ/dε derivative (curve 1 in Fig. 3) but increases in negative-curvature plots with increasing
derivative dσ/dε (curve 2 in Fig. 3). In S-shaped σ(ε) diagrams Young modulus may both increase and decrease
at certain strain ranges. Therefore, the range of strain amplitudes at which elastic moduli are measured is essential,
at least in quasistatic experiments or at weak oscillations.

In this respect it is pertinent to note the limitations of the theoretical explanation for the differences between
static and dynamic moduli based on inappropriate initial strain amplitudes and frequencies. For instance, the
Preisach-Mayergoyz (P-M) model of hysteretic systems is based on the initial σ(ε) relationship obtained near the
source [16, 18]. The time-dependent stress function was defined so that pressure was raised slowly from zero to
maximum and then lowered back to zero imitating a quasistatic behavior, and small rapid pressure excursions
corresponded to dynamic conditions. The reported stress-strain diagram was a large hysteresis loop for quasistatic
pressure enclosing small but steeper loops for dynamic stress (wave propagation), and it was concluded that a
modulus measured dynamically was larger than that measured quasistatically [16]. However, the difference between
static and dynamic moduli was due not only to the choice of the P-M space but also to different loading rates in
the quasistatic and dynamic measurements dσdyn /dt > dσst /dt, which is equivalent to frequency changes (though

frequency effects were declared negligible).
On the other hand, the P-M modelling of rocks by an effective set of hysteretic mesoscopic elastic units

(HMEU) [16] predicts stress-strain relationships with both positive and negative curvatures (as in Fig. 3)
corresponding to moduli decreasing and increasing with strain amplitude, which is consistent with our results.

CONCLUSIONS

1. Static and dynamic Young’s moduli are mostly controlled by viscoelastic and microplastic behavior of
rocks at stresses and strains below critical values (within the conventional proportionality limit).

2. The differences between static and dynamic moduli observed in experiments are caused by different
contributions of inelastic mechanisms at quasistatic and dynamic loading as a function of frequency and amplitude
(strain rate and energy).

3. Appropriate comparison of static and dynamic moduli is possible only under identical strain rate and energy
conditions.

I wish to thank S.V. Gol’din for discussions and constructive criticism.
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