КРАТКИЕ СООБЩЕНИЯ

СОРБЦИОННО-АТОМНО-АБСОРБЦИОННОЕ ОПРЕДЕЛЕНИЕ УЛЬТРАСЛЕДОВ МЕТАЛЛОВ В МОРСКОЙ И РЕЧНОЙ ВЗВЕСИ

© 2003 г. В. Н. Орешкин*, Г. И. Цизин**

*Институт фундаментальных проблем биологии РАН 142290 Московская обл., Пущино **Московский государственный университет им. М.В. Ломоносова Химический факультет 119899 Москва, Воробьевы горы Поступила в редакцию 21.03.2002 г.

В морских и речных водах элементы присутствуют не только в растворенных, но и во взвешенных формах. Поэтому определение металлов в составе взвеси важно для целей геохимических и эколого-геохимических исследований [1–4]. В экспедиционных условиях взвеси обычно выделяют методом мембранной ультрафильтрации сразу после отбора воды. При этом масса морской взвеси на фильтрах ("ядерных" поликарбонатных или мембранных нитроцеллюлозных с размером пор 0.45–1.5 мкм) нередко составляет <1–2 мг [1–4]. Определение следов Ag, Bi, Cd, Tl, Pb и Hg на уровне <1 × 10⁻⁶–1 × 10⁻⁴% в таких малых количествах образцов вызывает большие трудности при использовании любых методов анализа [3–8].

Малые количества элементов определяют высокочувствительными методами, такими как электротермический атомно-абсорбционный (АА) и атомно-флуоресцентный (АФ). Предложены АА и АФ методы определения следов металлов с прямой электротермической атомизацией части фильтра в графитовых тигельных атомизаторах [7, 8]. В тигель при этом помещали части-кружки фильтра диаметром 3.5-5 мм с веществом взвеси. Опыт аналитических работ показал, что не всегда возможно определение следов элементов в образцах, характеризующихся заметным уровнем неселективных помех и матричных эффектов (например, в морских биогенных взвесях, обогащенных Сорг, СаСО_{збиог}, SiO_{2аморфн}, но обедненных литогенными элементами – Al, Fe, Mn [1, 6]). Увеличение массы образца в тигле в этом случае часто не приводило к снижению пределов обнаружения элементов даже при использовании методов фильтрации паров через графит или фракционного испарения с атомизацией конденсата с целью подавления помех [7, 8]. Следует также отметить наблюдаемые при таком определении проблемы с получением градуировочных зависимостей. Для улучшения метрологических характеристик электротермического АА/АФ определения следов элементов необходимо уменьшить (или исключить) роль матричных компонентов вещества взвеси, например, введением стадии концентрирования элементов на подходящей для прямого анализа твердой матрице с предварительным переводом взвеси в раствор. Так, в работе [9] предложен сорбционно- $AA/A\Phi$ метод определения растворенных форм элементов в морских и речных водах, включающий динамическое концентрирование из объемов <5-50 мл непосредственно в тигле-микроколонке на ДЭТАТА-сорбенте (полистирольном сорбенте с конформационно-подвижными аминокарбоксильными группировками [10, 12]), с последующей атомизацией твердого концентрата. Тигель в этом методе выполнял функции как независимо нагреваемой камеры двухкамерного электротермического атомизатора тигель-ячейка, так и микроколонки для динамического концентрирования.

Целью данной работы было изучение возможности сорбционно-АА определения следов элементов (Cd, Pb и Tl) в малых количествах взвеси после перевода образца в небольшой объем раствора и динамического концентрирования элементов на ДЭТАТА-сорбенте в тигле-микроколонке с последующей термообработкой и атомизацией твердого концентрата.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектрофотометры "Сатурн-2" и "Хитачи-518" с дейтериевым корректором фона и экспериментальная АА/АФ установка были оборудованы двухкамерным графитовым электротермическим атомизатором "тигель–ячейка" с независимым нагревом тигля и ячейки [7, 8]. Тигель высотой 7– 12 мм и внутренним диаметром 2–3 мм имел микроотверстия в дне и графитовый фильтр [9]. В тигель помещали 5–10 мг ДЭТАТА-сорбента. Предварительно графитовый атомизатор подвергали обжигу (2200–2400°С) с целью удаления загрязнений. Обычно анализировали 1/8–1/2 (иногда 1/16) часть мембранного фильтра с рабочей поверхностью диаметром 30–47 мм с образцом морской

Рис. 1. Аналитические сигналы кадмия (анализ морской биогенной взвеси). Контрольный опыт (матрица ДЭТАТА-сорбент) (а); после динамического концентрирования в тигле-микроколонке (1/8 часть фильтра диаметром 30 мм (б); 1/4 часть (в); 1/2 часть (г); 1/8 часть с добавкой Сd (д); прямая атомизация ≈1/8 части фильтра с пробой (ж).

или речной взвеси. Микропробу разлагали с использованием смеси кислот HF-HNO₃-HCl или HNO₃-HCl в тефлоновых стаканчиках и переводили бидистиллятом в пробирки объемом 5-10 мл по методикам, принятым в химико-океанологических исследованиях [1, 3, 4]. К аликвотной доле раствора добавляли 1 М ацетатный буферный раствор до рН 4-5. Цитрат для связывания алюминия и железа не добавляли, учитывая данные работ [10-13], массу взвеси и низкие содержания этих макрокомпонентов в ее составе (их содержание значительно ниже, чем в донных осадках и почвах) [1, 4]. Анализируемый раствор прокачивали с помощью перистальтического насоса через тигель-микроколонку, установленную в штативе из оргстекла и тефлона, со скоростью 1-2 мл/мин [12]. При определении таллия дополнительно добавляли бромную воду [8, 14]. После завершения концентрирования колонку промывали порцией (0.5 мл) 1 М ацетатного буферного раствора. Контрольный опыт повторял ту же процедуру с частью мембранного фильтра без взвеси.

Тигель с концентратом устанавливали между графитовыми электроконтактами нагревателя. Над тиглем помещали графитовую локализующую ячейку, имеющую собственные электроконтакты, как в [7, 8]. Концентрат подвергали термообработке (100–120°С, 30–60 с), пиролизу (400–500°С, 60–120 с), импульсной атомизации (1800–2400°С, 4–8 с). Испарение проводили в изотермически нагретую зону атомизации-поглощения света в ячейке с целью уменьшения помех.

Образцы сравнения готовили введением аликвотных порций аттестованных растворов металлов в образцы вод, очищенных ДЭТАТА-сорбентом. Использовали следующие аналитические линии: Cd 228.8, Pb 283.3, Tl 276.8 нм.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Анализировали коллекционные образцы морской и речной взвеси, полученные на мембранных фильтрах в различных экспедициях [1, 6, 8]. Эти образцы хранили в герметичных упаковках в специальном лабораторном помещении, и возможность их загрязнения металлами была исключена. Ранее те же образцы анализировали АА и $A\Phi$ методами, но Cd, Pb и Tl в большинстве из них не были количественно определены как с прямой атомизацией фильтра с пробой, так и с атомизацией растворов в графитовой печи. Например, при прямом АА/АФ анализе в графитовый тигельный атомизатор помещали до 6-8 кружков фильтра (диаметром 3.5–5 мм) [7, 8], однако высокие неселективные помехи и матричные эффекты обеспечивали неблагоприятное отношение сигнал/шум.

Для улучшения метрологических характеристик AA определения Cd, Pb и Tl фильтры с веществом взвеси растворяли, а элементы концентрировали в динамических условиях на ДЭТАТАсорбенте, помещенном в графитовый атомизатор тигель-микроколонку [9] для отделения от матричных компонентов пробы [10–12]. Применяемые графитовые электротермические двухкамерные атомизаторы твердых проб "тигель-ячейка" с независимым регулируемым нагревом (для уменьшения помех) зоны испарения (тигель с концентратом) и зоны атомизации – поглощения света (ячейка) описаны в работах [7, 8]. Модификация графитового тигля с пористым графитовым фильтром и микроотверстиями в дне для динамического концентрирования элементов на ДЭТАТАсорбенте рассмотрена в [9]. Следует отметить, что чувствительность определения элементов при таком способе дозирования пробы легко регулируется изменением объема раствора, пропущенного через тигель-микроколонку. Очевидно, что максимальная чувствительность достигается после переведения в раствор всего образца взвеси на фильтре и пропускания этого раствора через тигель-микроколонку.

На рис. 1 приведены аналитические сигналы кадмия (сигналы свинца и таллия аналогичны) при оптимальных условиях термообработки концентрата и атомизации в электротермическом атомизаторе тигель-ячейка. Из рисунка видно, что сигнал формируется на фоне помех. Увеличение массы пробы (площади фильтра) приводит к возрастанию аналитического сигнала, в то время как уровень помех практически не меняется. Аналитический сигнал возрастает и при введении в пробу добавки элемента. На рисунке для сопоставления приведена регистрограмма испарения элемента при нагреве и прямой атомизации в тигле 7 кружков (диаметр 4 мм) того же образца морской биогенной взвеси (≈1/8 часть фильтра диа-

ГЕОХИМИЯ № 3 2003

Ofpapeu	Cd			Pb			Tl		
Образец	1	2	3	1	2	3	1	2	3
Тихий океан. Юго-восточная часть [1]	0.029	< 0.05	< 0.3	3.3	5	<10	0.17	_	<1
Перуанский апвеллинг	0.080	≤0.1	0.2	10	≈5	<20	0.06	< 0.2	<1
Центральная часть, экваториальная зона	0.010	< 0.05	< 0.2	2	<5	<30	0.20	< 0.3	<1
Балтийское море	0.42	0.30	< 0.5	1.5	<5	<20	0.77	0.6	_
Аральское море	0.05	< 0.05	< 0.5	0.9	<8	_	0.10	< 0.3	_
Устьевая зона р. Амазонки [6]	0.25	0.28	<0.5	6	10	<25	0.085	< 0.2	<1
Атлантический океан, вблизи от устья р. Амазонки [6]	0.072	<0.1	<0.5	7.5	8.5	<20	0.11	< 0.2	<1

Таблица 1. Некоторые результаты определения (10⁻⁴%) Cd, Pb, Tl в морской биогенной и речной взвеси из поверхностного слоя воды

Примечание. 1 – сорбционно-АА метод, 2 – прямое АА или АФ определение [7, 8], 3 – АА определение с введением раствора (без концентрирования) в графитовую печь [6].

метром 30 мм). В этом случае шумовые эффекты выше, они маскируют аналитический сигнал, кроме того, величина аналитического сигнала уменьшается (рис. 16 и 1ж), вследствие, по-видимому, как изменения кинетики испарения элемента из твердой фазы взвеси, так и возможного подавления сигнала в присутствии матричных элементов. Эксперименты показали, что дальнейшее увеличение массы подобных образцов в тигле (числа кружков) с последующей прямой атомизацией не приводит к возрастанию отношения сигнал/шум, т.е. к снижению предела обнаружения элементов. Отношение сигнал/шум легко регулируется с концентрированием элементов из различных навесок образцов взвеси при сорбционно-АА определении. При увеличении объема прокачиваемого через тигель-микроколонку раствора в фазе сорбента возрастает содержание определяемого элемента без увеличения концентрации мешающих компонентов, следствием является снижение пределов обнаружения Cd, Pb, Tl. Haпример, оценки предела АА обнаружения элементов с прямой атомизацией "шумящих" образцов показали, что его величина составляет (в пересчете на относительное содержание) для Cd 5 \times $\times 10^{-6}$ -3 $\times 10^{-5}$ %, Pb и Tl 5 $\times 10^{-5}$ -5 $\times 10^{-4}$ % [7, 8]. С применением предлагаемого подхода элементы могут быть определены в этих образцах взвеси, на уровне концентраций в 5-10 раз ниже (для Cd $1-5 \times 10^{-6}$ %; Pb, Tl $5 \times 10^{-6}-5 \times 10^{-5}$ %). Пределы обнаружения элементов сорбционно-АА методом ограничены флуктуациями остаточных паров матрицы и содержания элементов (особенно Cd, Pb) в контрольном опыте.

Достоинством сорбционно-АА метода по сравнению с прямым АА методом является также построение градуировочных зависимостей по единому комплекту образцов сравнения для проб взвеси разного состава благодаря однородности матрицы ДЭТАТА-сорбента и отделению макрокомпонентов на стадии концентрирования.

347

В табл. 1 приведены некоторые результаты определения элементов в образцах морской и речной взвеси. АА анализ этих образцов с прямой электротермической атомизацией твердых проб или растворов (без концентрирования) лишь в нескольких случаях позволил получить количественную оценку содержания того или иного элемента [6, 8]. Сорбционно-АА методом обнаружены низкие содержания Cd, Pb, Tl в морской и речной взвеси. Однако в образце взвеси Балтийского моря этим методом определено более высокое содержание Cd, чем прямым AA методом (табл. 1). По-видимому, на стадии термообработки реальной пробы в тигле в процессе прямого АА анализа произошли некоторые потери летучего кадмия.

Всего комбинированным сорбционно-АА методом проанализировано 26 образцов морской и речной взвеси. При использовании 1/8-1/2 части фильтра Cd не был определен в 2, а Pb и Tl в 3 и 5 образцах соответственно. Величина относительного стандартного отклонения (S_r) единичного определения элементов составляла обычно 0.1–0.3, что вполне удовлетворительно для целей геохимических и экологических исследований.

Для проверки правильности определения элементов предложенным методом проанализиро-

ГЕОХИМИЯ № 3 2003

Таблица	2.	Результаты	определения	элементов	вс
взвеси Ат	лан	тического ок	кеана (10 ⁻⁴ %, <i>п</i>	i = 3-4	

Элемент	Сорбционно-АА метод	Прямой АА метод [6]	
Cd	0.14 ± 0.03	0.10	
Cd*	0.61 ± 0.2	_	
Pb	7 ± 3	9	
Pb*	15 ± 3	_	
Tl	0.08 ± 0.020	≤0.2	
Tl*	0.65 ± 0.15	_	

* В образец введены добавки элементов: $0.5\times 10^{-4}\%$ (Cd, Tl), $5\times 10^{-4}\%$ (Pb).

ван образец (с добавками элементов) взвеси из вод Атлантического океана (вдали от устья р. Амазонки) [6]. Ранее в этом образце элементы были определены прямыми АА/АФ методами. Полученные результаты показали отсутствие систематической погрешности (табл. 2). Можно также отметить удовлетворительное согласие нескольких результатов определений элементов прямыми АА/АФ и сорбционно-АА методом в других образцах взвеси (табл. 1).

Предложенный метод эффективен для определения элементов в малых количествах взвеси, приведем пример его использования. Так, ранее показана значительная роль органического вещества в концентрировании Tl в составе взвеси усть-

Рис. 2. Соотношение содержания Tl с содержанием С_{орг} в речной и морской взвеси. *I* – речная взвесь [15]; 2 – морская взвесь.

евых зон рек [15]. Единичные определения Tl прямыми AA/A Φ методами в микропробах морской взвеси не позволяли сделать какой-либо вывод. Результаты анализа образцов морской биогенной взвеси [6] комбинированным сорбционно-AA методом нанесены на график (рис. 2), взятый из работы [15]. Наблюдаемая прямая связь между Tl и С_{орг}, по-видимому, характерна и для морской взвеси. Видно также, что морская взвесь в сравнении с речной может быть более обогащена таллием.

В заключение следует отметить, что предложенный сорбционно-АА метод определения следов металлов в малых количествах морской и речной взвеси дополняет существующий комплекс аналитических методов исследования этих объектов. С его помощью может быть получена новая аналитическая информация о распространении следов токсичных тяжелых металлов, особенно в слабоизученной океанской взвеси. Для анализа, в частности, целесообразно использование коллекций уникальных образцов, полученных в экспедициях прошлых лет в различных районах Мирового океана.

Авторы благодарны Г.Л. Внуковской и Н.И. Сухомлиновой за помощь в проведении экспериментов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Лисицын А.П., Демина Л.Л., Гордеев В.В. Геохимический барьер река-море и его роль в осадочном процессе // Биогеохимия океана. М.: Наука, 1983. С. 32–38.
- 2. Савенко В.С. Элементарный химический состав океанского планктона // Геохимия. 1988. № 8. С. 1084–1089.
- 3. Демина Л.Л., Тамбиев С.Б. Геохимические аномалии в придонных водах рифовой зоны Таджура (Аденский залив) // Изв. АН СССР. Сер. геол. 1987. № 4. С. 110–119.
- Исследования по химии моря / Под ред. Гордеева В.В., Брюгманна Л.Н. М.: ИО РАН, 1991. 194 с.
- 5. *Кузъмин Н.М., Золотов Ю.А.* Концентрирование следов элементов. М.: Наука, 1988. 286 с.
- 6. Гордеев В.В., Орешкин В.Н. Серебро, кадмий и свинец в водах реки Амазонки, ее притоков и эстуария // Геохимия. 1990. № 2. С. 244–256.
- Орешкин В.Н., Беляев Ю.И., Внуковская Г.Л. Атомизаторы порошков геохимических проб и объектов окружающей среды для прямого атомно-абсорбционного анализа // Завод. лаборатория. 1990. № 12. С. 50–53.
- Орешкин В.Н., Внуковская Г.Л., Цизин Г.И. Улучшение метрологических характеристик прямого АА и АФ определения Ад, Вi, Cd, Tl в морской и речной взвеси и концентратах (после сорбции из вод) // Геохимия. 1998. № 1. С. 108–111.

348

ГЕОХИМИЯ № 3 2003

- 9. Орешкин В.Н., Цизин Г.И., Внуковская Г.Л. Атомно-абсорбционное/атомно-флуоресцентное определение следов элементов в природных водах с использованием атомизатора-микроколонки для концентрирования // Журн. аналит. химии. 1999. Т. 54. № 7. С. 1163–1166.
- Цизин Г.И. Динамическое сорбционное концентрирование микроэлементов в неорганическом анализе. Автореф. дисс. докт. хим. наук. М.: МГУ, 2000. 50 с.
- Пантелев Г.П., Цизин Г.И., Формановский А.А., Старшинова Н.Л., Седых Э.М., Кузьмин Н.М., Золотов Ю.А. Сорбционно-атомно-эмиссионное определение металлов в высокоминерализованных природных водах // Журн. аналит. химии. 1991. Т. 46. № 2. С. 355–360.
- Венецианов Е.В., Ковалев И.А., Цизин Г.И. Оптимизация динамического сорбционного концентрирования в аналитической химии // В сб.: Теория и практика сорбционных процессов. Вып. 23. Воронеж: Воронежск. гос. университет, 1998. С. 24–40.
- Сорокина Н.М., Похлебкина Л.П., Логинов Ю.М., Цизин Г.И., Золотов Ю.А. Сорбционно-атомноабсорбционное определение кадмия и свинца в почвах // Почвоведение. 1997. № 9. С. 1101–1106.
- Riley I.P., Siddigui S.A. The determination of thallium in sediments and natural waters // Anal. Chem. Acta. 1986.
 V. 187. P. 117–123.
- 15. Орешкин В.Н., Гурвич Е.Г. Таллий в материале взвеси устьевых районов рек бассейнов Северного Ледовитого океана и Черного моря // Океанология. 1994. № 6. С. 842–848.