УДК [550.42:552.321.1] (571.65./66)

ГЕОХРОНОЛОГИЯ ГРАНИТОИДНЫХ КОМПЛЕКСОВ ГЛАВНОГО КОЛЫМСКОГО БАТОЛИТОВОГО ПОЯСА (СЕВЕРО-ВОСТОК РОССИИ)

Т.Б. Русакова, И.Н. Котляр

Северо-Восточный комплексный научно-исследовательский институт ДВО РАН, г. Магадан

На основе комплексного анализа изотопных (Rb-Sr, K-Ar, ⁴⁰Ar/³⁹Ar, U-Pb методы) и геологических материалов доказывается среднеюрский возраст нера-бохапчинского, басугуньинского и колымского интрузивных комплексов, слагающих Главный Колымский батолитовый пояс. Показано, что изотопные системы гранитоидов были неоднократно нарушены в процессе формирования золото-редкометалльных, золото-кварцевых, оловянных руд, при внедрении поздних интрузий. Предложен новый методический подход к интерпретации изотопных данных.

Ключевые слова: Rb-Sr- и K-Ar-методы, изохроны, гистограммы, реликтовые даты, гранитоиды, Северо-Восток России.

введение

Главный Колымский батолитовый пояс (ГКБП) является составной частью Яно-Колымской складчатой системы (ЯКСС). Он простирается на 1100 км от верховьев р. Колымы до верховьев р. Селеннях (рис. 1) и характеризуется насыщенностью полиформационными магматическими образованиями. В предлагаемой статье приводятся имеющиеся на сегодняшний день результаты Rb-Sr-, K-Ar-, ⁴⁰Ar/³⁹Ar- и U-Pb-датирования по трем ранним и наиболее распространенным интрузивным комплексам пояса: нера-бохапчинскому малых интрузий, басугуньинскому многофазному и колымскому батолитовому. Цель работы – на основе согласования результатов различных изотопных методов между собой и с геологическими данными установить время внедрения интрузий и моменты их термальных постмагматических преобразований.

Представление о наличии в регионе разновозрастных, различающихся между собой по составу интрузивных комплексов впервые было выдвинуто Ю.А. Билибиным. К наиболее древним образованиям он отнес гранитные батолиты, с которыми увязал золотое оруденение. Затем он же [1] и Е.Т. Шаталов [25] выделили в бассейне р. Колымы добатолитовые малые интрузии (позже они стали называться нерабохапчинскими), раннемеловые граниты "колымского типа", а на побережье Охотского моря – позднемеловые гранитоиды "охотского" типа (рис. 2). Е.К. Устиев [21] дайковые свиты, связанное с ними золотое оруденение и батолитовые гранитоидные интрузии отнес к позднеюрской фазе магматизма (рис. 2). Позднее В.Т. Матвеенко [10] в дополнение к колымскому и охотскому комплексам выделил позднеюрский басугуньино-хатыннахский (басугуньинский), следующий за малыми интрузиями, но предшествующий колымским батолитам. Следует специально подчеркнуть, что возраст плутонов определялся, исходя из предположения об их интрузивных соотношениях с келловейскими отложениями, которые в то время относились к верхнему отделу юрской системы.

С середины 50-х годов возраст интрузивных комплексов рассматривался с учетом данных геохронометрии. За более чем 40-летний период изотопного датирования пород региона получен большой массив K-Ar-, Rb-Sr-, ⁴⁰Ar/³⁹Ar-дат, но интерпретация их исследователями проводилась различно.

Л.В. Фирсов, первым проанализировавший результаты изотопных исследований для массивов ГКБП, трактовал К-Аг-даты с позиций длительности становления интрузий [22, 23]. Он использовал только осредненные данные – либо средние арифметические для небольшого количества анализов, либо максимумы на гистограммах (для больших совокупностей), которые и принимал за время проявления отдельных импульсов гранитоидного магматизма. Согласно ему [22], формирование колымских интрузий происходило в интервале 170–125 млн лет. Несколько позже [23] он значительно сузил возраст колымских гранитов (рис. 2).

Рис. 2. Корреляционная схема интрузивных комплексов.

1-5 - комплексы: 1- охотский, 2 - колымский, 3 - басугуньинский, 4 - нера-бохапчинский, 5 - прочие; 6 - возраст, млн лет.

И.А. Загрузиной [6, 7] был применен метод статистической обработки совокупностей К-Аг-дат, полученных для конкретных магматических формаций и комплексов, самостоятельность которых установлена геологически. Исходя из этих постулатов, становление формаций ГКБП происходило в период от 160 до 80 млн лет назад (рис. 2). Более позднее Rb-Sr-изохронное датирование пород ГКБП как будто бы подтвердило наличие в регионе позднеюрских, ранне- и позднемеловых интрузивных комплексов [11].

Начиная с 80-х годов, развитие региона рассматривается многими исследователями с неомобилистских позиций. В зависимости от точки зрения авторов о возрасте массивов и их соотношениях со складчатыми структурами, интрузивные комплексы относились к позднеюрским коллизионным (И.И. Абрамович и др., 2000 г.), позднеюрским-неокомовым постаккреционным [16], позднеюрско-раннемеловым аккреционным [4], неокомовым синаккреционным [26], раннемеловым постаккреционным (коллизионным) [20] образованиям.

МЕТОДИКА ИНТЕРПРЕТАЦИИ ИЗОТОПНЫХ ДАННЫХ

Расчет Rb-Sr-изохрон, построение гистограмм, расчет средних значений возраста магматических комплексов проводились по методике Isoplot [31]. Ошибки в определении концентраций Rb и Sr в таблицах 1 и 2 не превышали 1% ($\pm \sigma$), в соотношении ⁸⁷Sr /⁸⁶Sr – 0,05% ($\pm \sigma$). При значении СКВО* более 1 возраст рассчитывался по третьей модели. Так как в районах с длительной эндогенной активностью геохимическая однородность изотопных систем неоднократно нарушалась [6, 9, 14], наблюдается высокая природная дисперсия концентраций изотопов Rb и Sr. В связи с этим погрешности в определении возраста приводятся с доверительным интервалом 0,67 ($\pm \sigma$). Изложенная методика несколько отличается от принятой в работе [9], в связи с чем значение возрастов и их ошибок незначительно разнятся от ранее опубликованных.

При интерпретации изотопных данных авторы придерживаются методологии, принципиальные положения которой сводятся к следующему [5, 9]. Основой для интерпретации результатов К-Аг-датирования служат гистограммы распределения дат, построенные для отдельных магматических фаз или интрузий, однородность которых доказана. Истинному возрасту породы отвечают максимальные (реликтовые) К-Аг-даты и наиболее древние Rb-Sr-изохронные, поскольку в одних и тех же массивах (фазах) наблюдается, как правило, совпадение тех и других. Совокупности более молодых дат образуют на гистограммах отчетливо выраженные минимумы и максимумы, которые нередко повторяются в разных массивах. Минимумы, по мнению авторов, указывают на время термальных преобразований, когда ранее накопившийся изотоп либо удалялся, либо был гомогенизирован в породе, а однотипность расположения их на гистограммах самых разных массивов свидетель-

*СКВО – средний квадрат взвешенных отклонений экспериментальных точек от линии наилучшего соответствия изохроны.

ствует, что эти преобразования, скорей всего, обусловлены региональными факторами. Следующие за минимумами даты фиксируют моменты повторных включений изотопных часов в породах.

РЕЗУЛЬТАТЫ ИЗОТОПНОГО ДАТИРОВАНИЯ

Нера-бохапчинский комплекс малых интрузий представлен дайками и небольшими телами порфировых пород среднего состава при подчиненной роли основных и кислых. Наиболее характерны диорит-порфириты, затронутые в разной степени изменениями пропилит-березитового типа, вплоть до образования полнопроявленных метасоматитов. Как правило, дайки образуют протяжённые свиты, реже изометричные поля, локализованы преимущественно в Иньяли-Дебинском мегасинклинории (ИД), в меньшей степени развиты в других структурах (рис. 1). Зачастую к ним приурочены жилы кварцевого, карбонат-кварцевого, хлорит-кварцевого состава с золотой минерализацией. Дайки размещаются среди пермских, триасовых, нижне- и среднеюрских (не моложе бата) отложений, совместно с ними рассланцованы, будинированы.

На гистограммах конкретных дайковых свит выделяются две совокупности дат: 168–150 и 145– 75 млн лет*, разделенные ярко выраженным минимумом в диапазоне 150–145 млн лет (рис. 3). Еще один минимум отмечается в интервале 105–100 млн лет. Вариации К-Аг- дат, кроме того, нередко характерны и для отдельной дайки, породы которой заведомо относятся к единой фазе внедрения. Так, по дайке Среднеканской наряду с древней датой в 162 млн лет ярко выражен интервал 140–135 млн лет, дайке Незаметной (Среднеканская свита) – 165 и 139–138 млн лет, дайке № 13 (Утинская свита) – 167 и 156–152 млн лет.

На северо-западном фланге Тарыно-Детринского синклинория (ТДС) к нера-бохапчинскому комплексу нами отнесены малые тела и дайки гранодиоритов, по которым получены достаточно древние Rb-Sr- и K-Ar-даты. В частности, для малой интрузии Безымянной выявлена Rb-Sr-изохронная дата 170±18 млн лет (табл. 1) и реликтовая K-Ar-дата – 170 млн лет [14].

Реликтовые К-Аг-даты, фиксирующие время формирования малых тел, единичны (рис. 3). Их средний возраст** составляет 167±2; СКВО=1,6.

^{*} Здесь и далее аналитические данные К-Аг-датирования приведены в [8, 9].

^{**}Здесь и далее значение среднего возраста рассчитано по методике "Isoplot" с доверительным интервалом ±2σ [31].

0 80 90 100 110 120 130 140 150 160 170 Возраст, млн лет

Таким образом, внедрение и кристаллизация даек нера-бохапчинского комплекса приходится на интервал 170-165 млн лет. Этапы метаморфизма, сопровождающиеся неоднократными термальными воздействиями, привели к нарушению равновесия изотопных систем в породах и фиксируются отсутствием датировок в интервале 150-145 и минимумом в диапазоне 105-100 млн лет.

Басугуньинский комплекс представлен гипабиссальными многофазными интрузиями переменного состава, размещающимися среди пермских, триасовых и нижне- и среднеюрских (преимущественно аален-байосских, реже батских) отложений. Массивы метаморфизуют дайки нера-бохапчинского комплекса, геологические взаимоотношения с колымским комплексом неясны.

Рис. 3. Распределение К-Аг-дат в породах нера-бохапчинского комплекса. Залитый кружок - Rb-Srизохронный возраст пород.

Отличительные особенности комплекса - небольшие размеры интрузий (менее 120 км²), многофазное их строение (от габбродиоритов и диоритов ранних фаз до гранодиорит-адамеллит-гранитов – поздних), устойчивые минеральные парагенезисы в гранитоидах амфибола с биотитом, андезином, ортоклазом, кварцем, гранатом, ильменитом. Интрузии с этими признаками развиты преимущественно в ИД (массивы Басугуньинской группы -Басугуньинский, Сторожевой, Красивый, Грозовой, Столовый; интрузии Морджот и Тенгкелях), меньше в Аян-Юряхском антиклинории (АЮ) – массив Бургагынский и др. (рис. 1).

На примере изученной нами в 1998 г. Басугуньинской группы интрузий с привлечением данных по массивам Морджот и Бургагынский можно проследить историю формирования комплекса.

Таблица 1. Результаты Rb-Sr-датирования пород.

Номер	Порода, минерал	⁸⁷ Rb,	⁸⁶ Sr,	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁷ Sr	Параметры				
пробы		мкг/г	мкг/г	-	51, 51	изохроны				
I	2	3	4	5	6	7				
Пака Голович										
пера-доланчинский комплекс										
Массив Безымянный										
2050	5	Аналитичес	ские данны	е по [14]	0.5050					
a-2850	I ранодиорит	32,45	22,55	1,42	0,7070	T 170+10				
a-2740	Гранодиорит	30,10 25,20	22,45	1,59	0,7077	$I = 1 / 0 \pm 18$ MJH JIET				
a-2729	Гранодиорит	33,30	21,28	1,04	0,7073	$I_0=0, /0.035\pm 0,0005$				
a-2800 a-2745	Гранодиорит	35,70	19,04	2,01	0,7079	СКВО-1,0				
a-2/+3	Транодиорит	55,74	11,55	5,14	0,7112					
Басугуньинский комплекс										
		Macc	ив Красивь	ій						
		Коллекци	ия Н.А. Гор	ячева						
Б-15-г*	Биотит из гранита (II фаза)	149,79	0,51	290,68	1,3080	T=145±1 млн лет				
Б-15-г*	Гранит (II фаза)	34,83	15,31	2,25	0,7128	I ₀ =0,7081±0,0004				
Б-15-4*	Диорит (I фаза)	21,31	19,78	1,07	0,7103	СКВО=0,01				
		Macc	ив Красивь	ій						
		Коллекци	ия Т.Б. Руса	ковой						
82	Гранит (III фаза)	41,36	9,97	4,10	0,7181					
83	Гранит-порфир (III фаза)	43,12	8,41	5,07	0,7203	Т=146+7 млн лет				
84	Гранодиорит (II фаза)	32,12	14,89	2,13	0,7140	$I_0=0.7097+0.0004$				
69	Диорит (I фаза)	8,20	17,02	0,48	0,7104	СКВО=0 42				
78	Диорит-порфирит (І фаза)	19,56	18,01	1,07	0,7123					
66	Кварцевыи диорит (1 фаза)	13,89	22,35	0,61	0,/110					
	Maco	Сив Басугун	ынский (се	верная часть)						
5-52-1	Гранит (II фаза)	36.24	ия п.н. гор 14 49	оячева 2 47	0.7186					
Б-6	Гранит (II фаза)	66 91	3 77	17 55	0,7461	Т=128+4 млн лет				
Б-8	Гранит (II фаза)	58 39	3,30	17,55	0,7466	$I_{a}=0.7141\pm0.0011$				
Б-10	Гранит (II фаза)	46.92	9.46	4.90	0.7231	CKBO=0.83				
Б-10а	Гранит (ІІ фаза)	45,76	2,8	16,17	0,7431	011110 0,00				
	Mac	сив Басугун	инский (за	падная часть)	,					
		Коллекци	ия Н.А. Гор	ячева						
Б-12*	Лейкогранит (III фаза)	45,08	11,74	3,80	0,7149	T=126±5 млн лет				
Б-12А*	Лейкогранит (III фаза)	50,97	2,39	21,05	0,7457	$I_0=0,7080\pm0,0012$				
Б-13*	Гранит (II фаза)	36,52	15,92	2,27	0,7120	СКВО=0,1				
		Macc	ив Столовь	ІЙ						
10	Колл	екции Т.Б. Р	усаковой, l	Н.А. Горячева						
19	Аплит (III фаза)	47,34	1,54	30,39	0,7635	T=126±2 млн лет				
1085	Гранодиорит (П фаза)	43,15	16,13	2,64	0,7129	$I_0=0,7086\pm0,0005$				
1085	I ранодиорит, биотит (II фаза)	141,40	0,29	484,16	1,5766	CKBO=0,9				
Массив Столовый Коллекция Т.Б. Русаковой										
14	Гранодиорит (II фаза)	39.20	13.42	2.89	0.7117	T=142+3 мпн пет				
17	Гранодиорит (ІІ фаза)	41.11	12.43	3,27	0,7124	$I_0=0.7058+0.0001$				
4	Диорит (І фаза)	10,80	26,71	0,40	0,7066	CKBO=0.01				
	· · · · · · · · · · · · · · · · · · ·	Macc	ив Столовь	ІЙ	, .	0,01				
		Коллекци	ия Т.Б. Руса	ковой						
22	Гранит-порфир (III фаза)	31,22	7,78	3,97	0,7177	Т-166+? или тот				
13	Гранодиорит (II фаза)	40,36	13,43	2,97	0,7152	$I = 100 \pm 3$ MJH JUT $I_{-} = 0.7082 \pm 0.0001$				
16	Гранодиорит (II фаза)	43,92	13,18	3,29	0,7161	CKBO-0.06				
7	Диорит кварцевый (I фаза)	20,00	19,05	1,04	0,7107	CKB0-0,00				

Таблица 1. (Продолжение).

1	2	3	4	5	6	7			
Колымский комплекс Массив Чьорго									
Коллекция П.П. Колесниченко									
75/6	Адамеллит	53,42	10,46	5,05	0,7160				
76/1	Адамеллит	38,65	11,67	3,27	0,7113	T=160±7 млн лет			
76/7	Лейкогранит	44,00	3,68	11,81	0,7310	I ₀ =0,7037±0,0006			
77/3	Адамеллит	51,60	14,33	3,56	0,7114	СКВО=2,9			
78/11	Лейкогранит	40,08	4,44	8,91	0,7234				
Macour Mage									
Массив Маяк Коллекция Н. А. Гордиера									
1213	Гранит	91.07	2.28	39 47	0 7992				
1217	Гранит	58.88	4.22	13.81	0.7402	T=163±3 млн лет			
1219	Гранит	47,12	4,25	10,96	0,7339	$I_0 = 0.7081 \pm 0.0011$			
1221	Гранит	51,36	5,16	9,84	0,7293	СКВО=5,3			
1223	Гранит	56,54	6,42	8,70	0,7289	,			
	 1	Массив Бол	ьшой Анна	чаг (юг)					
		Коллекци	1я H.A. Гор	ячева					
14	Гранит	33,55	5,17	6,42	0,7241				
16	Лейкогранит	56,63	3,25	17,21	0,7492	T=166±7 млн лет			
19	Лейкогранит	69,13	4,66	14,68	0,7426	$I_0=0,7079\pm0,0015$			
20	Лейкогранит	96,51	2,65	36,03	0,7925	СКВО=6,5			
23	Гранит	58,07	5,77	9,96	0,7300				
		Mac	сив Каньон	I					
510.0	F	Коллекция	і Е.Ф. Дыле	вского	0.72.42	T 164-1			
510-8	Гранит	49,39	/,13	6,93	0,7242	1=164±1 млн лет			
514-7	Гранит	38,30	20,75	1,80	0,7124	$I_0 = 0,7081 \pm 0,0003$			
521-1	1 ранит	40,20 Maaaaa	13,04	2,92	0,/149	CKBO=0,003			
		Массив	Чиоагалахо	скии					
1070/2		лллекция 47.20	7 %	б 02	0 7224				
10/9/2	Биотитовый гранит	47,39	12.48	0,03	0,7224				
2086	Гранодиориї Биотитов ій гранит	57,08 63.06	0.12	5,02	0,7107	T=168±8 млн лет			
2640-72	Аппит	7 23	20.74	0,91	0,7203	I ₀ =0,7092±0,0013			
2645	Гранит двуслюдяной	71 54	20,74 4 43	16.15	0 7481	СКВО=3,2			
3040/1a	Аплитовилный гранит	53.68	2.71	19.80	0.7564				
		Масси	в Чалбинск	ий	•,•••				
Коллекция Ю И Сенотрусова									
3339	Гранит	100,40	5,02	19,98	0,7567				
3343/17	Гранит	113,40	2,77	40,97	0,8081	T=167±5 млн лет			
3350/3	Гранит	85,06	6,60	12,90	0,7408	I ₀ =0,7098±0,0015			
3370/2	Гранит	100,50	5,51	18,23	0,7534	CKBO=0,86			
3372	Лейкогранит	81,09	2,82	28,81	0,7779				
Массив Порожноцепинский									
Аналитические данные по [27]									
Н.д.	Гранит	59,66	8,11	7,27	0,7280	T=162±7 млн лет			
Н.д.	I ранит	60,26	7,38	8,07	0,7304	$I_0 = 0.7112 \pm 0.0010$			
Н.д.	I ранит Гланит	63,53	5,09	12,33	0,7393	СКВО=1.9			
Н.Д.	1 ранит	55,50	10,67	5,14	0,7226	- 2-			

Примечание. * – анализы выполнены в лаборатории ГИ ЯФ СО РАН.

Rb-Sr-изохронное датирование выявило ряд дат: наиболее древнюю – 166 млн лет (массив Столовый) и еще две группы в диапазоне 146–142 и 128–126 млн лет (рис. 4, табл. 1). При этом просматривается отсутствие корреляции дат с фазами внедрения: в массиве Столовый на изохрону в 166 млн лет укладываются образцы, отобранные из первой, второй и третьей фаз, в 142 млн лет – породы первой и второй фаз (рис. 5), аналогичная картина наблюдается по массиву Красивый (табл. 1).

154

СКВО=4,1

Массивы

1 – Ко-S1-изохронный возраст наложенных процессов, 2– 3 – возраст пород: 2 – Rb-Sr-изохронный, 3 – Rb-Sr-рассчитанный.

$$\begin{bmatrix} J_{2}bj-bt & 1 \\ & \times \\ & & \times \end{bmatrix} 2 \xrightarrow{\times} \gamma \delta_{2} 3$$

$$\begin{bmatrix} a \\ \gamma \pi_{3} \\ \bullet \\ & \gamma \pi_{3} \end{bmatrix} 4 \xrightarrow{\delta \pi} 5 \xrightarrow{\bullet} 6$$

$$\boxed{7 \\ \bullet 14 \\ \hline 157 } 8 0 \\ 250$$

Рис. 5. Схема опробования гранитоидов массива Столовый.

1 – байос-батские отложения: алевролиты, глинистые сланцы; 2–4 – гранитоиды басугуньинского комплекса:
 2 – кварцевые диориты и диориты первой фазы, 3 – гранодиориты второй фазы, 4 – гранит-порфиры (а), аплиты (б) третьей фазы; 5 – диоритпорфириты нера-бохапчинского комплекса; 6 – ороговикование; 7 – геологические границы; 8 – местоположение и номер пробы с выявленным возрастом, млн лет: в числителе – Rb-Sг-изохронный, в знаменателе – К-Аг.

Порода	Номер ⁸⁷ Rb, пробы мкг/г	⁸⁷ Rb.	⁸⁶ Sr, мкг/г	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	Дата, млн лет, при I ₀ =				
		мкг/г				0,708	0,710	0,712	0,714	
Массив Басугуньинский										
Лейкогранит	Б-12	186,43	0,85	216,03	1,0810	121±1,2	121	120		
Гранит	Б-13	189,99	1,28	147,22	0,9300	107±1,1	106	105		
Лейкогранит	Б-12А-1	71,41	0,88	79,96	0,8700	143±1,5			138	
Лейкогранит	Б-12Б	41,62	1,11	37,03	0,7950	166±2			154	
Массив Красивый										
Гранит	Б-15г	149,79	0,51	290,68	1,3080	145±1,4	145	144		
Гранодиорит	К-18	86,52	1,10	77,44	0,8840	160±1,6	158	156		
Массив Столовый										
Гранодиорит	1085	141,40	0,29	484,16	1,5770	126±1,3	126	126		
Диорит	1085/1	99,08	6,00	16,52	0,7380	129±2,5	120	111		
Массив Сторожевой										
Гранодиорит	3-2a	114,89	0,68	166,29	1,0440	142±1,5	141	140		
Гранит	3-1a	104,75	0,79	131,85	0,9590	134±1,4	133	132		
Массив Грозовой										
Гранит	40-Г-85	130,61	1,35	95,75	0,8700	119±1,1	117	116		
Массив Бургагынский										
Гранит	100 кол.88	81,38	0,77	104,74	0,8900	122±1,2	121	119		
Гранит	99 кол.88	107,68	0,63	168,34	1,0660	149±1,6	149	148		

Таблица 2. Рассчитанные Rb-Sr-даты по биотитам и породе.*

Примечание. * – анализы выполнены в лаборатории ГИ ЯФ СО РАН; жирный шрифт – расчёт по породе. Коллекция Н.А. Горячева.

С древней изохроной согласуются и даты, полученные путем расчета Rb-Sr-модельного возраста пород, 166 и 160 млн лет (табл. 2). Средний Rb-Srизохронный возраст гранитоидов Басугуньинской группы – 164±3,5 млн лет, СКВО=1,3.

В блоке К-Аг-датировок выявились реликтовые даты в 170–160 млн лет. Рассчитанный по ним воз-

раст, отражающий момент внедрения и кристаллизации пород, составил 165±2 млн лет, СКВО=4,1 (рис. 4) и тождественен Rb-Sr-изохронному возрасту.

Из изложенного следует, что гранитоиды внедрялись и кристаллизовались 167–163 млн лет тому назад; какие-либо геохронологические свидетельства разного времени формирования пород I, II и III фаз отсутствуют. В конце юрского периода (155-150 млн лет тому назад) происходило событие, нарушившее первичные изотопные системы. Оно фиксируется, во-первых, практически полным отсутствием К-Аг-датировок в интервале 155-150 млн лет (рис. 4), во-вторых, включением К-Аг-часов (в том числе и в ⁴⁰Ar/³⁹Ar-модификации [2]) 148–149 млн лет тому назад, в-третьих, включением Rb-Srчасов 146-142 млн лет тому назад (шесть дат в массивах Красивый, Басугуньинский, Столовый, Сторожевой) и, наконец, началом функционирования 150 млн лет тому назад U-Pb-часов в цирконах из гранитоидов Бургагынского массива [32]. Другими словами, после крупного термального события, происходившего 155-150 млн лет тому назад, в гранитоидах басугуньинского комплекса 150-145 млн лет тому назад практически одновременно включились K-Ar, Rb-Sr и U-Pb часы. Ещё одно термальное событие происходило 140-130 млн лет тому назад.

А 164±1,8 млн лет 166±7,3 млн лет СКВО=0,2 СКВО=0.17 190 млн лет (Т±σ) 185 180 175 170 Rb-Sr-изохронные даты, 165 160 Большой Анначаг (юг) Hopro Торожноцепинский Иаяк Чибагалахский Чалбинский Каньон 155 150 145 140 164±2 млн лет, СКВО=0,2 135 Массивы 165±1 млн лет, СКВО=5 165±2 млн лет Б 165±3 млн лет CKBO=7 -СКВО=3,9 К-Аг-реликтовые даты, млн лет (Т±о) 172 Чьорго Чугулук 167 Чибагалахский Большие Пороги 162 Порожноцепинский Чибагалахский Оханджа Малыйй Анначаг Большой Анначаг Hbopro 157 Туонах **Г** 152 Массивы

Рис. 6. Средний возраст гранитоидов колымского комплекса.

А – Rb-Sr-изохронный, Б – K-Ar.

Оно зафиксировано в Rb-Sr-системах, а также в К-Аг-системах массивов Басугуньинский, Столовый, Бургагынский (рис. 4).

Колымский комплекс. К нему относят интрузии гранитов значительных размеров (до нескольких тысяч км², в частности, Чибагалахский – 7000 км²). Обычны конформное расположение относительно складчатых структур, простое, чаще всего двухфазное строение, однообразный и довольно постоянный состав: биотитовые и двуслюдяные граниты, лейкограниты и адамеллиты, аплиты. Характерны магматический гранат, кордиерит, мусковит, ильменит [3, 17].

Массивы прорывают и метаморфизуют пермские, триасовые, нижне- и среднеюрские (байос-батские) отложения. Келловейские толщи, как правило, развиты на значительном удалении и контактовым метаморфизмом не затронуты. В результате исследований последних лет в центральной и юго-восточной частях ИД отложения, вмещающие массивы Чьорго, Оханджа и показанные на геологических картах келловей-оксфордскими [15, 18, 19], переведены в аален-байосские, байосские и батские. Так, массив Чьорго располагается в ядре горст-антиклинали (Шишкин, 2002 г.), сложенной тоар-ааленскими (в ядре) и байосскими и батскими толщами на флангах структуры, массив Оханджинский прорывает аален-байосские слои, в то время как батские толщи развиты на значительном удалении, вне зон контактового метаморфизма.

Данными исследований последних лет по северо-западному флангу ИД (Якутия) авторы не располагают. Но следует заметить, что и там в результате более детальных исследований (устные сообщения) возраст "келловей-оксфордских", по [18], отложений удревнен до аален-байосских и батских.

Породы комплекса охарактеризованы значительным массивом Rb-Sr- и K-Ar-датировок, полученных в лабораториях СВКНИИ ДВО и ГИ ЯФ СО [9, 12, 13, 14, 24, 27], а также ⁴⁰Ar/³⁹Ar-датами [30].

В массивах юго-восточной части ИД и Омулевского поднятия (Чьорго, Маяк, Большой Анначаг, Каньон) определены Rb-Sr-изохронные даты от 166±7 млн лет до 160±7 млн лет (см. табл. 1). Средний возраст плутонов составляет 164±1,8 млн лет, СКВО=0,17 (рис. 6А, табл. 1). К-Аг-датировки по этим объектам колеблются в интервале 169–95 млн лет, при этом средний возраст, полученный по реликтовым датам из вышеперечисленных интрузий, а также из массивов Оханджа, Малый Анначаг, Большие Пороги определен в 165±3 млн лет, СКВО=3,9 (рис. 6Б, 7), т.е. согласуются с Rb-Sr-

изохронным возрастом. Термальные события, отраженные распределением К-Аг дат, приходились на интервалы 145–140 и 135–130 млн лет (рис. 7)

Для плутонов северо-западного фланга ИД (Чибагалахский, Чалбинский, Порожноцепинский) выявлены сопоставимые Rb-Sr-изохронные даты (табл. 1): от 168±8 до 162±7 млн лет, по которым определен средний Rb-Sr-изохронный возраст 166±7 млн лет, СКВО=0,21 (рис. 6А). В большом блоке K-Ar-датировок вышеперечисленных массивов,

Чибагалахский (16 проб)

Рис. 7. Распределение К-Аг- и Rb-Sr-дат в породах колымского комплекса.

Условные обозначения см. на рис. 4.

а также интрузии Чугулуг, имеются реликтовые даты, средний возраст по которым составил 165±2 млн лет, СКВО=7 (рис. 6Б). Нетрудно видеть, что он не отличается от Rb-Sr-изохронного возраста. Термальные события в этой группе интрузий фиксируются в интервалах 150–145 и 135–125 млн лет (рис. 7). ⁴⁰Ar/³⁹Arдаты, полученные P.W. Layer et al. [30] (рис. 7), колеблются от 144 до 135 млн лет и отражают лишь моменты переустановки изотопных часов.

Средний Rb-Sr-изохронный возраст колымских гранитов составляет 164±2 млн лет, СКВО=0,2. Он в точности соответствует среднему возрасту, рассчитанному по реликтовым К-Аг-датам – 165±1 млн лет, СКВО=5 (рис. 6).

Таким образом, внедрение и кристаллизация интрузий колымского комплекса происходили 166–162 млн лет тому назад. Колымские батолиты в течение поздней юры-мела подвергались неоднократным термальным воздействиям. Наиболее интенсивно такие события происходили в юго-восточной части ИД 145–140 и 135–130 млн лет тому назад, на его северозападном фланге – 150–145 и 135–125 млн лет тому назад.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Последовательность становления гранитоидов Главного Колымского батолитового пояса, установленная по геологическим данным [3], подтверждается геохронометрическими материалами: нера-бохапчинский комплекс формировался в интервале 170-165 млн лет назад, басугуньинский и колымский внедрялись несколько позже и практически одновременно – в диапазоне 167-162 млн лет назад. Важно, что геохронометрическая информация, лежащая в основе этого вывода, получена в разных лабораториях и различными методами. Полное совпадение возрастов, установленных изохронным Rb-Sr-методом и определенных по реликтовым К-Ar-датам, является весомым аргументом в пользу примененной методологии интерпретации изотопных данных. Следует особо подчеркнуть, что согласованность Rb-Sr- и К-Аг-возрастов однозначно свидетельствует об отсутствии в изученных интрузивных образованиях избыточного ⁴⁰Ar. Этот вывод, ранее сформулированный из общегеологических соображений [6, 13], теперь получил подтверждение прямыми изотопными методами. Кроме того, наличие избыточного ⁴⁰Ar предполагает обратную корреляцию между К-Аг-возрастом пород и концентрацией в них калия. Как видно из рис. 8, ни в одном из комплексов такой связи не установлено.

Выше было показано, что интрузии нера-бохапчинского и басугуньинского комплексов не проникают в отложения, моложе батских. Для массивов колымского комплекса нельзя полностью отрицать их интрузивных контактов с осадками келловейского возраста. При обсуждении соответствия геологических и изотопных данных необходимо учитывать фундаментальную проблему соотношения общей стратиграфической ("палеонтологической") и геохронометрической шкал.

Рис. 8. Соотношение К-Аг-возраста пород с концентрацией К (%).

Из рис. 2 видно, что, помимо широко распространенной геохронологической шкалы W.B. Harland et al. [29], существуют более поздние разработки G.S. Odin, C. Odin [33] и F.M. Gradstein et al. [28]. Все они существенно различаются между собой. Полученные нами экспериментальные данные наиболее непротиворечиво соответствуют шкале [28], согласно которой малые тела нера-бохапчинского комплекса внедрялись в батское время, а интрузии басугуньинского и колымского комплексов - в баткелловейское. Но, по всей видимости, и схема [28] далека от совершенства. Опираясь на фактические данные, приведенные в [28], можно предположить, что батский век продолжался в рамках временных реперов с 173 до 169 млн лет назад, а келловейский - со 169 до 162. В этом случае ГКБП формировался в келловейское время.

Породы исследованных комплексов претерпевали термальные воздействия, приводящие к перестройке их изотопных систем. Прежде чем приступить к дальнейшему изложению этого положения, сделаем некоторые пояснения. Следует четко представлять, что, когда мы говорим, например, о внедрении и кристаллизации интрузии 140-135 млн лет тому назад, мы подразумеваем время ее застывания и, соответственно, включения изотопных часов. Термальный же прогрев, приводящий к перестройке изотопных систем в окружающих породах, происходил раньше (например 145-140 млн лет тому назад). Именно его отражают минимумы на гистограммах распределения изотопных дат. То же самое относится к рудогенезу, где отложению руд предшествовала гидротермальная проработка вмещающих пород. И только следующие за минимумами даты (моменты повторных включений изотопных часов) совпадают со временем застывания интрузии или формирования руд.

Интервал пе- рестройки изо- топных систем (млн лет)	Время вторич- ного включе- ния изотопных часов (млн лет)	Комплексы	Изотопные системы	Причины перестройки изотопных систем
155–150	150-145	басугуньинский	K-Ar, Rb-Sr, U-Pb	Формирование золото- редкометалльных руд
150–145	145–140	нера-бохапчинский, колымский (СЗ ветвь ИД)	K-Ar	Формирование золото-кварцевых и оловянных руд
145–140	140–135	колымский (ЮВ ветвь ИД)	K-Ar	Внедрение интрузий сибердыкского и негаяхского комплексов
135–125	130–120	все комплексы	K-Ar, Rb-Sr	Рифтогенез

Таблица 3. Время перестройки и вторичного включений изотопных систем.

Время перестройки и вторичного включения изотопных систем приведено в таблице 3. На первый взгляд, мы как будто имеем непрерывный цифровой ряд, геологическая интерпретация которого затруднительна. Однако более тщательный анализ устанавливает причины, обусловившие наблюдаемую картину.

Интервал нарушения изотопных систем 155-150 млн лет фиксируется в интрузиях басугуньинского комплекса. Во многих из них локализованы золоторедкометалльные руды (интрузии Басугуньинской группы – см. [4], рис. 61; Бургагынский шток и др.). ⁴⁰Ar/³⁹Ar-датирование биотитов и мусковитов из рудных тел установило их возраст в 149-147 млн лет (проявления Чепак, Малыш, Школьное [4], Рыжий [2]). Интересные результаты получены по проявлению Рыжий, расположенному в одноименном штоке гранодиоритов басугуньинского комплекса (Ат-Юряхско-Штурмовской район). Шток прорывает аален-байосские отложения моржовской свиты средней юры (176 млн лет, по [29]), на удалении 500-600 м от его контактов обнажена раннеюрская бюченнахская свита тоарского возраста (190-180 млн лет, по [28]). Ее K-Ar-возраст определен в185±0,4 млн лет и в точности совпадает с геологическим возрастом. В экзоконтакте штока в роговиках по алевропесчаникам моржовской свиты определена дата 165±1,5 млн лет (оба определения из коллекции А.В. Альшевского). Она не согласуется с геологическим возрастом аален-байосских отложений, а фиксирует время внедрения интрузии. В то же время, биотиты из гранодиоритов штока имеют ⁴⁰Ar/³⁹Ar-возраст 148 млн лет [2], такой же, как и возраст золоторедкометалльных руд. Этот пример является яркой иллюстрацией причины, вызвавшей преобразование изотопных системы в гранитоидах басугуньинского

комплекса 155–150 млн лет тому назад – это гидротермальный прогрев, предшествовавший формированию золото-редкометалльных руд.

Интервал 150–145 ярко проявлен в дайках нера-бохапчинского комплекса, вмещающих руды золото-кварцевой формации, возраст которых составляет 145–140 млн лет [9, 20]. В колымских гранитах северо-западной части ИД золотые руды отсутствуют, но здесь вдоль юго-западных контактов интрузий формировалась Чибагалахская зона касситерит-кварцевых и касситерит-вольфрамит-кварцевых месторождений позднеюрско-ранненеокомового возраста [20]. Таким образом, как и в предыдущем возрастном интервале, нарушение изотопных систем 150–145 млн лет тому назад было связано с гидротермальным прогревом, предшествовавшим формированию руд (в данном случае золото-кварцевых и оловянных).

Интервал 145–140 млн лет проявлен в тех плутонах колымского комплекса, которые пространственно совмещены с более поздними интрузиями сибердыкского и негаяхского комплексов (рис. 1), внедрявшихся 147–136 млн лет тому назад [9]. В данном случае нарушение изотопных систем связано с тепловым воздействием от более молодых магматических тел.

Интервал 135–125 млн лет в той или иной мере проявлен в породах всех магматических комплексов. Он фиксирует региональный процесс тектонической перестройки территории – возникновение рифтов и рифтогенных структур (Омсукчанская, Нявленгинская, Тарынская и др.,), в пределах которых 130–125 млн лет тому назад широко проявился трахибазальтовый – щелочносалический вулканизм и оруденение серебряного и олово-серебряного типов [9, 20].

ЗАКЛЮЧЕНИЕ

Внедрение интрузий ГКБП происходило в узком временном диапазоне, 170–160 млн лет назад, в бат-келловейский или келловейский век средней юры. Этот вывод расходится с господствующими сегодня представлениями об их позднеюрском–раннемеловом или раннемеловом возрасте [4, 16, 20, 26], основанными, главным образом, на результатах ⁴⁰Ar/³⁹Ar-датирования [30]. Как показано в настоящей работе, ⁴⁰Ar/³⁹Ar-даты, так же как К-Аг-вые, в большинстве случаев фиксируют не время внедрения интрузий, а моменты нарушения их изотопных систем. Следует еще раз напомнить, что достоверные геологические соотношения массивов ГКБП с верхнеюрскими толщами не установлены.

Приведенные материалы показывают необычайную чувствительность изотопных систем к термальным преобразованиям. Принципиально важно, что использованная нами методика анализа гистограмм распределения изотопных дат позволяет выявлять время переустановки изотопных часов. Оно может быть обусловлено различными, но всегда геологически значимыми и достоверно устанавливаемыми причинами. В нашем случае – формированием руд, внедрением более поздних магматических масс, общетектоническими перестройками. Выявление временных интервалов таких преобразований, а значит и термальной истории как отдельных объектов, так и крупных тектонических структур особенно эффективно К-Аг-методом. Это следует подчеркнуть, учитывая сложившееся скептическое к нему отношение. Очевидно, К-Аг-геохронометры, особенно в сочетании с другими изотопными методами, далеко не исчерпали свой прикладной ресурс.

ЛИТЕРАТУРА

- Билибин Ю.А. О роли батолитов в золотом оруденении в СССР // Докл. АН СССР. 1945. Т. 50. С. 367–370.
- Ворошин С.В., Ньюберри Р.Дж. ⁴⁰Аг/³⁹Аг датировки золотого оруденения в Штурмовском рудном районе // Проблемы геологии и металлогении Северо-Востока Азии на рубеже тысячелетий. Билибинские чтения. Т.2. Металлогения. Магадан, 2001. С. 159–162.
- Гельман М.Л. Геолого-петрологические аспекты связи золотого оруденения и магматизма в гранитоидных петрографических провинциях Северо-Востока Азии // Золотое оруденение и гранитоидный магматизм Северной Пацифики. Магадан: СВКНИИ ДВО РАН, 2000. Т. 2. С. 5–79.
- Горячев Н.А. Геология мезозойских золото-кварцевых жильных поясов Северо-Востока Азии. Магадан: СВКНИИ ДВО РАН, 1998. 210 с.
- Жуланова И.Л., Котляр И.Н. К методике интерпретации результатов изотопного датирования в областях длительной эндогенной активности // Проблемы геологии и ме-

таллогении Северо-Востока Азии на рубеже тысячелетий. Билибинские чтения. Т.1. Региональная геология, петрология и геофизика. Магадан, 2001. С. 146–148.

- 6. Загрузина И.А. Геохронология мезозойских гранитоидов Северо-Востока СССР. М.: Наука, 1977. 279 с.
- Загрузина И.А., Матвеенко В.Т. Верхояно-Чукотская мезозойская складчатая область // Геохронология СССР. Т.2. Фанерозой. Л.: Недра, 1974. С. 249–259.
- Каталог определений возраста горных пород СССР радиологическими методами. Северо-Восток СССР. Л.: ВСЕ-ГЕИ, 1975. 547 с.
- Котляр И.Н., Жуланова И.Л., Русакова Т.Б., Гагиева А.М. Изотопные системы магматических и метаморфических комплексов Северо-Востока России. Магадан: СВКНИИ ДВО РАН, 2001. 316 с.
- Матвеенко В.Т. Петрология и общие черты металлогении Омсукчанского рудного узла (Северо-Восток СССР) // Труды ВНИИ-1. Разд. 2. Геол. 1957. Вып. 31. С. 1–73.
- Милов А.П. Результаты геохронологических исследований изверженных и метаморфических пород // Геология зоны перехода континент-океан на Северо-Востоке Азии (реферативное изложение важнейших исследований 1986-1990 гг.). Магадан: СВКНИИ ДВО АН СССР, 1991. С. 171–176.
- Ненашев Н.И. Время образования изверженных пород в "продольных" и "поперечных" зонах западной части Верхояно-Колымской складчатой области // Труды десятой сессии Комиссии по определению абсолютного возраста геологических формаций. М.; Л.: Изд-во АН СССР, 1962. С. 252–267.
- Ненашев Н.И., Зайцев А.И. Геохронология и проблема генезиса гранитоидов Восточной Якутии. Новосибирск: Наука, 1980. 238 с.
- Ненашев Н.И., Зайцев А.И. Эволюция гранитоидного магматизма в Яно-Колымской складчатой области. Якутск: ЯФ СО АН СССР, 1985. 176 с.
- Омиров О.Н., Лычагин П.П. Геологическая карта СССР. 1:200000. Серия Верхне-Колымская. Лист P-55-IV. М., 1967.
- 16. Парфенов Л.М. Террейны и история формирования мезозойских орогенных поясов Восточной Якутии // Тихоокеан. геология. 1995. № 6. С. 32–43.
- 17. Серебряков В.А. Постмагматическая история гранитов. М.: Недра, 1972. 160 с.
- Сурмилова Е.П., Максимова Г.А. Натапов Л.М. Геологическая карта СССР (новая серия). 1:1000 000. Карта дочетвертичных образований. Листы Q-54, 55 (Хонуу). Л., 1985.
- Сурмилова Е.П., Корольков В.Г. Геологическая карта Российской Федерации (новая серия). 1:1000 000. Карта дочетвертичных образований. Листы Р-54, 55; О-55. СПб., 1999.
- Тектоника, геодинамика и металлогения территории Республики Саха (Якутия) / Отв. ред. Л.М. Парфенов, М.И. Кузьмин. М.: МАИК "Наука/Интерпериодика", 2001. 571 с.
- Устиев Е.К. Мезозойский и кайнозойский магматизм Северо-Востока СССР // Материалы по геологии и полезным ископаемым Северо-Востока СССР. Магадан: Кн. изд-во, 1949. Вып. 4. С. 3–49.

- 22. Фирсов Л.В. О мезозойском магматизме Северо-Востока СССР в свете определений абсолютного возраста // Изв. ВУЗов. Сер. геология и разведка. 1960. № 10. С. 12–20.
- Фирсов Л.В. О позднемезозойских магматических фазах Северо-Востока СССР // Докл. АН СССР. 1962. Т. 142. № 6. С. 1381–1383.
- 24. Флеров Б.Л., Трунилина В.А., Яковлев Я.В. Оловянновольфрамовое оруденение и магматизм Якутии. М.: Наука, 1979. 274 с.
- Шаталов Е.Т. Интрузивные породы Охотско-Колымского края // Материалы по изучению Охотско-Колымского края. Магадан, 1937. Вып.8. С. 5–140.
- 26. Шпикерман В.И. Домеловая минерагения Северо-Востока Азии. Магадан: СВКНИИ ДВО РАН, 1998. 333 с.
- Шкодзинский В.С., Недосекин Ю.Д., Сурнин А.А. Петрология позднемезозойских магматических пород Восточной Якутии. Новосибирск, 1992. 238 с.
- Gradstein F.M., Agterberg F.P., Ogg J.C. et al. A Triasic, Jurasic and Cretaceous time scale // Geochronology time scale

Поступила в редакцию 10 сентября 2002 г.

and global stratigraphic correlation. 1995. V. SEMP Special Publication N 54 (54). P. 95–128.

- 29. Harland W.I., Armstrong R.L., Cox A.V., Graig L.E., Smith D.G. A geologic time scale 1989. Cambridge Univ. Press, 1990. 263 p.
- 30. Layer P.W., Newberry r., Fujita K., Parfenov L.M. et al. Tectonic setting of the plutonic belts of Yakutia, Norhteast Russia, based on ⁴⁰Ar/³⁹Ar and trace element geochemistry // Geology. 2001. V. 29. P. 167–170.
- Ludwig K.R. User's Manual for Isoplot/Ex version 2.01. Berkeley Geochronology Center. 1999. 47 p.
- 32. Moll-Stalcup, E.J., Krough, T.E., Kamo, S., Lane, L.S., Cecile, M.P., and Gorodinsky, M.E. Geochemistry and U-Pb geochronology of arc-related magmatic rocks, NE Russia // Geological Society of America Abstracts with Programs. 1995. V. 27, N. 5. P. 65.
- Odin G.S., Odin C. Echelle Numerique des Temps Geologiques // Geochronologie. 1990. V. 35. P. 12–20.

Рекомендована к печати Л.П. Карсаковым

T.B.Rusakova, and I.N. Kotlyar

Geochronology of granitoid intrusion complexes of the Main Kolyma Batholith Belt (Northeastern Russia)

The Middle Jurassic age of the Nera-Bokhapchinskiy, Basugun'inskiy and Kolyma intrusion complexes composing the Main Kolyma Batholith Belt has been proved on the basis of analyses of isotopic data (Rb-Sr, K-Ar, ⁴⁰Ar/³⁹Ar, U-Pb-methods) and geological relationships. It is demonstrated that isotopic systems of granitoids were repeatedly disturbed during the process of gold-rare metal, gold-quartz, and tin ore formation, and during emplacement of late intrusions. A new methodological approach to isotopic data interpretation is suggested.