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Abstract

The vesiculation of the rising magma in a volcanic conduit results in a large change in the viscosity of magma.
Understanding the effect of bubbles on the viscous behavior of bubble^melt mixtures over a wide range of bubble
volume fractions is essential for accurate modeling of the volcanic processes. In this study, new equations for the
relative viscosity of concentrated bubble-bearing suspensions are developed using a differential scheme along with the
solution of an infinitely dilute suspension of bubbles. Out of the four models developed in the paper, two models
predict the relative viscosity to be a function of only two variables: capillary number and volume fraction of bubbles.
There are no adjustable parameters in these models. The remaining two models include an additional parameter, that
is, the maximum packing volume fraction of bubbles. The proposed models are evaluated using published numerical
and experimental data on the relative viscosity of concentrated suspensions of bubbles. The viscosity models for
bubble-bearing suspensions developed in this study are useful in modeling of the volcanic processes.
. 2002 Published by Elsevier Science B.V.
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1. Introduction

Knowledge of the rheological properties of
magmas is required for accurate modeling of the
volcanic processes [1^15]. For instance, rheologi-
cal data are needed to quantify volatile exsolu-
tion, bubble growth rates and explosivity of vol-
canic eruptions [12]. During an eruption, as the
magma rises through a volcanic conduit towards
the Earth’s surface, nucleation and growth of gas
bubbles occur by exsolution of volatiles (mainly
water and carbon dioxide) that were initially dis-
solved in magma at high pressures [16^31]. Sev-
eral experimental studies have been conducted on

bubble growth in natural melts [16^23]. In addi-
tion to experimental studies, many bubble growth
models have been developed [24^29]. Bubble nu-
cleation in volcanic eruptions occurs due to super-
saturation of volatiles during magma ascent. Nu-
cleation of bubbles is greatly enhanced by the
presence of heterogeneities (such as crystals) in
the melt [19]. The level of supersaturation re-
quired to allow bubble nucleation depends on
the presence and abundance of such heterogene-
ities. Once bubbles are formed, their growth in
magma is controlled by decompression and di¡u-
sion processes. Decompressional growth of bub-
bles occurs because of changes in hydrostatic
pressure as the magma rises towards the surface.
Di¡usional growth is due to di¡usion of the vol-
atiles from the melt to the bubbles through the

0012-821X / 02 / $ ^ see front matter . 2002 Published by Elsevier Science B.V.
doi:10.1016/S0012-821X(02)01104-4

E-mail address: rpal@engmail.uwaterloo.ca (R. Pal).

EPSL 6511 10-2-03

Earth and Planetary Science Letters 207 (2003) 165^179

www.elsevier.com/locate/epsl

mailto:rpal@engmail.uwaterloo.ca
http://www.elsevier.com/locate/epsl


melt^vapor interface. Di¡usional growth rates are
governed by factors such as viscosity of melt, sol-
ubilities of volatiles in the melt, concentration of
dissolved volatiles, and the degree of supersatura-
tion of volatiles [28].

Fig. 1 summarizes the main processes occurring
in a volcanic conduit [7]. In the initial portion of
the conduit, there occurs single-phase £ow. After
the initial single-phase £ow region comes the two-
phase ‘bubbly £ow’ region where bubbles nucleate
and grow. At the end of the bubbly section, the
magmatic emulsion fragments and turns into a
gas consisting of small particles (ash), which
may be liquid or partially solid. The size of these
particles varies inversely with the intensity of the
eruption.

Our current understanding of the ‘bubbly’ re-
gion is somewhat limited [7]. In this region, the
vesiculation of the rising magma drastically
changes the physico-chemical properties and
rheology of magma within the conduit, and there-

fore the ascent rate of magma. The viscosity of
bubbly magma (R) is the product of melt viscosity
(Rc) and the relative viscosity of bubble^melt mix-
ture (Rr), that is, R=RcRr. The relative viscosity of
bubbly magma depends on the volume fraction of
bubbles in the magma as well as on the capillary
number. The viscosity of the melt, on the other
hand, is dependent on the volatile content. In ac-
tively vesiculating £ows, as is the situation in vol-
canic conduit, the changes in the magma viscosity
(R) are dominated by massive changes in the melt
viscosity (Rc) ; the melt viscosity is known to in-
crease by several orders of magnitude [8] during
the ascent of magma due to exsolution of vola-
tiles. However, in surface propagation of lava
£ows, viscosity of the bubbly magma is strongly
in£uenced by bubble content and capillary num-
ber.

The viscous behavior of pure melts (without
bubbles) is comparatively well known; the melt
viscosity is known to be a function of its chemical
composition, volatile and crystal contents, tem-
perature and pressure [11]. By contrast, the e¡ects
of bubbles on the viscous properties of magmas
are not well understood. Understanding the e¡ect
of bubbles on the viscosity behavior of bubble^
melt mixtures over a wide range of bubble volume
fractions is essential to better constrain the behav-
ior of magma during decompression, ascent, erup-
tion, and emplacement on Earth and other plan-
etary bodies [15].

2. Brief background

The viscosity of suspensions of two immiscible
£uids generally depends on the following factors:
(a) particle Reynolds number (NRe), de¢ned as
the ratio of inertial force to viscous force [32] ;
(b) ratio of dispersed-phase viscosity to continu-
ous-phase viscosity, V [33^36] ; (c) capillary num-
ber (NCa), de¢ned as the ratio of shear stress to
interfacial stress [5,6,10,11,37] ; (d) volume frac-
tion of dispersed particles, P [5,6,10,11,33^37];
(e) rheology of continuous-phase £uid [38] ; (f)
particle size distribution [39] ; and (g) concentra-
tion of surfactant, if present [40]. In bubbly mag-
matic £ows, some of these factors are not impor-

Fig. 1. Schematic representation of the di¡erent parts of the
volcanic conduit [7].
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tant. For instance, the viscosity ratio V is essen-
tially zero; the bubble Reynolds number is virtu-
ally always I1 [15] ; the continuous-phase £uid is
generally Newtonian over a wide range of stresses
and strain rates [37], and there are no surfactants
present in the system. Thus, the viscosity of bub-
ble-bearing magmas is expected to be a function
of the following three variables : capillary number,
volume fraction of bubbles, and bubble size dis-
tribution.

The capillary number (NCa) in natural mag-
matic £ows spans a broad range of 1032^103

due to large variations in melt viscosity and shear
rates [10,15]. Bubble volume fraction (P) can
range from 0 to V0.9 [37]. The increase in P

can increase or decrease the viscosity of bubble^
melt mixture depending upon the capillary num-
ber. Furthermore, in bubbly magmatic £ows, bub-
bles are rarely of uniform size. Studies of natural
pumice clasts show a broad range of bubble sizes
[20,26^37,39]. The bubble size distribution can
have a signi¢cant e¡ect on the viscosity of bub-
ble^melt mixtures, especially at high volume frac-
tions of bubbles [11,26,39].

Despite the importance of the problem, there
are no commonly accepted theoretical or empiri-
cal models available in the literature to describe
the viscous behavior of concentrated bubbly sus-
pensions. In a recent publication, Llewellin et al.
[37] have proposed a semi-empirical constitutive
equation for bubbly suspensions with gas volume
fractions P6 0.5. In the limit of NCaC0, their
equation gives:

d ij ¼ R cð1þ 9P Þ _QQ ij ð1Þ

where dij is the deviatoric stress tensor, Rc is the
continuous-phase viscosity, and _QQ ij is the strain
rate tensor. The term (1+9P) in Eq. 1 was arrived
at on the basis of oscillatory shear data obtained
experimentally on bubbly suspensions in a parallel
plate geometry. One problem with Llewellin et
al.’s equation (Eq. 1) is that it fails to obey the
well-known Taylor’s Law [41] for dilute emul-
sions. According to Taylor’s Law, the viscosity
of a dilute bubbly suspension (R) is given by:

R ¼ R cð1þ P Þ ð2Þ

Several factors could be responsible for the high

values of viscosity obtained by Llewellin et al. ;
one of them is the ‘creaming/bubble-rise e¡ect’
in bubbly suspensions. Pal [42] found that the
rheological properties of oil-in-water emulsions
can be strongly in£uenced by creaming of oil
droplets in viscometers such as the parallel plate
type used by Llewellin et al. Further discussion on
anomalous behavior of Llewellin et al.’s [37] bub-
bly suspensions is given in Section 4 of this paper.

Clearly, there is a need to develop models for
the viscosity of concentrated bubbly suspensions.
In this article, new viscosity models for concen-
trated bubbly suspensions are developed. The
models developed are consistent with the exact
theories of Taylor [41] and Frankel and Acrivos
[43] for dilute systems. Although the models de-
veloped are independent of any experimental mea-
surements, they are quite capable of describing
the available numerical and experimental data
on bubbly suspensions.

3. New viscosity equations for concentrated bubbly
suspensions

New viscosity equations for concentrated bub-
bly suspensions are derived using the di¡erential
scheme originally proposed by Brinkman [44] and
Roscoe [45] to derive the viscosity equations for
concentrated suspensions of rigid spherical par-
ticles. According to this approach, a concentrated
suspension is considered to be obtained from an
initial continuous phase by successively adding
in¢nitesimally small quantities of particles to the
system while the ¢nal volume fraction of the dis-
persed phase is reached. At any arbitrary stage (i)
of the process, the addition of an in¢nitesimal
amount of particles leads to the next stage (i+1).
The suspension of stage (i) is then treated as an
equivalent ‘e¡ective medium’ which is homogene-
ous with respect to the new set of particles added
to reach stage (i+1). The solution of a dilute sus-
pension system is applied to determine the incre-
mental increase in viscosity in going from stage (i)
to stage (i+1). Brinkman [44] and Roscoe [45]
utilized the celebrated Einstein equation [46,47]
for the viscosity of dilute suspension of rigid
spherical particles, as a solution for the dilute
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suspension system. The di¡erential equation de-
rived in this manner is integrated to obtain the
¢nal solution. In the present work, the Brink-
man^Roscoe di¡erential scheme is applied to the
Frankel and Acrivos equation (discussed below)
in order to derive the viscosity equations for con-
centrated suspensions of deformable bubbles.

3.1. Frankel and Acrivos’s exact theory for dilute
bubbly suspensions

Frankel and Acrivos [43] derived an exact rheo-
logical constitutive equation for a dilute emulsion
of uniform (same size) droplets of a Newtonian
£uid in another such £uid of di¡erent viscosity.
As creeping £ow equations were used in the der-
ivation, the constitutive equation of Frankel and
Acrivos is valid for particle Reynolds number
(NRe) I1. For bubbly suspensions (magmatic
emulsions), where the ratio of dispersed-phase vis-
cosity to continuous-phase viscosity is essentially
zero, the Frankel and Acrivos equation (equation
3.12 on p. 73 of their paper) becomes:

d þ 1
Dd

Dt
¼ 2R cð1þ P Þ d þ 1

Dd
Dt

� �
þ R

2
cR
c

� �

P
332
5

� �
Dd
Dt

þ 24
35

� ��

ðd WdÞ þ ðdTWdTÞ32
3
trðd WdÞN

� �
g ð3Þ

where d is the deviatoric stress tensor, d is rate of
deformation tensor, N is unit tensor, dT is trans-
pose of d, tr refers to trace of a tensor, Rc is
continuous-phase (matrix) viscosity, R is bubble
radius, c is interfacial tension between the two
phases, P is volume fraction of bubbles, 1 is equal
to (6RcR/5c), and D/Dt is the Jaumann derivative.
Eq. 3 is applicable for steady or for weakly time-
dependent £ows.

The viscosity of materials, by de¢nition, is the
ratio of shear stress to shear rate when the mate-
rial is subjected to steady viscometric £ow (simple
shear £ow). When a bubbly suspension is sub-
jected to steady viscometric £ow, Eq. 3 gives the
following expression for the viscosity of bubbly
magmas (see Appendix A):

R r ¼
R

R c
¼ 1þ P

13
12
5

� �
N2

Ca

1þ 6
5
NCa

� �2

2
6664

3
7775 ð4Þ

where Rr is the relative viscosity, de¢ned as the
ratio of suspension viscosity (R) to matrix viscos-
ity (Rc), and NCa is the capillary number, de¢ned
as:

NCa ¼
RR c _QQ

c

ð5Þ

In Eq. 5, _QQ is the shear rate. Strictly speaking, the
Frankel and Acrivos equations (Eqs. 3 and 4) are
applicable for small deformations. Because of the
mathematical complexities involved, the theoreti-
cal studies published on emulsion rheology gener-
ally assume small deformation of droplets. Never-
theless, Eq. 4 can be applied to high capillary
numbers as an approximation provided that the
bubbles do not rupture. The experimental data of
Rust and Manga [10] on steady shear viscosity of
dilute bubbly suspensions clearly demonstrates
the applicability of Eq. 4 to high capillary num-
bers as an approximation. As the ratio of dis-
persed-phase viscosity to continuous-phase viscos-
ity for bubble-bearing magmas is very small,
bubbles with such low viscosity ratios are ex-
pected to reach a stable shape rather than rupture
in steady shear £ow up to capillary number as
high as 103 [23].

In the limit NCaCr, the Frankel and Acrivos
equation (Eq. 4) gives :

R r ¼ 13
5
3
P ð6Þ

Eq. 6 indicates that at high capillary numbers, Rr

decreases with the increase in P. This trend is
observed in several numerical and experimental
studies published in the literature [1,6,10,15]. It
should also be noted that Eq. 6 can be derived
directly from the shear modulus equation for di-
lute bubbly suspension, using the analogy between
shear viscosity and shear modulus [37,48^49]. In
the limit of NCaC0, Eq. 4 gives the well-known
Taylor’s Law [41], that is, Eq. 2. According to
Taylor’s Law, the viscosity of a suspension in-
creases with the increase in P.
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3.2. New viscosity equations for concentrated
bubbly suspensions

The Frankel and Acrivos viscosity equation
(Eq. 4) cannot be applied at ¢nite concentrations
of dispersed phase (bubbles) as the hydrodynamic
interaction between the bubbles is ignored in its
derivation. Eq. 4 is probably valid for P less than
about 0.05 (especially in the limit of NCaC0). In
order to derive the viscosity equations for concen-
trated suspensions of bubbles, the Brinkman^Ros-
coe di¡erential scheme is applied to the Frankel
and Acrivos equation (Eq. 4).

Let us now consider a suspension of bubbles
with a volume fraction of bubbles P. Into this
suspension, an in¢nitesimally small amount of
new bubbles is added. The increment change in
viscosity dR resulting from the addition of the
new bubbles can be calculated from the solution
of a dilute system, that is, Eq. 4, by treating the
suspension into which new bubbles are added as
an equivalent e¡ective medium of viscosity R.
Thus:

dR ¼ R

13
12
5

_QQ RR
c

� �2

1þ 6
5

_QQ RR
c

� �2

2
6664

3
7775dP ð7Þ

This equation can be rewritten as:

dR

R 13
12
5

_QQ RR
c

� �2
" #þ

6
5
_QQ RR
c

� �2
" #

R 13
12
5

_QQ RR
c

� �2
" #dR ¼ dP ð8Þ

Upon integration with the limit RCRc at PC0,
Eq. 8 gives:

R r

13
12
5
R

2
rN

2
Ca

13
12
5
N2

Ca

2
64

3
7534=5 ¼ expðP Þ ð9Þ

Eq. 9, referred to as ‘model 1’ in the remainder of
the paper, reduces to the following equations:

NCa ! 0; R r ¼ expðP Þ ¼ 1þ P þ P
2

2
þ T

ð10Þ

NCa ! r; R r ¼ exp
35
3
P

� �
¼ 13

5
3
P þ 25

18
P
2 þ T ð11Þ

Thus, model 1 is consistent with the results for a
dilute system.

Model 1 is expected to describe the viscosity of
bubbly suspensions at low to moderate values of P
(P9 0.20). At high P, model 1 is expected to
underpredict Rr at low NCa and overpredict Rr

at high NCa. This is because in the derivation of
the di¡erential equation (Eq. 7) leading to model
1 (Eq. 9), it is assumed that the whole volume of
the suspension before new bubbles are added is
available as free volume to the new bubbles. In
reality, the free volume available to disperse the
new bubbles is signi¢cantly less, due to the vol-
ume pre-empted by the bubbles already present.
The increase in the actual volume fraction of bub-
bles when new bubbles are added to the suspen-
sion is dP/(13P). Thus:

dR ¼ R

13
12
5

_QQ RR
c

� �2

1þ 6
5

_QQ RR
c

� �2

2
6664

3
7775 dP
13P

ð12Þ

Upon integration with the limit RCRc at PC0,
Eq. 12 gives:

R r

13
12
5
R

2
rN

2
Ca

13
12
5
N2

Ca

2
64

3
75
34=5

¼ ð13P Þ31 ð13Þ

This equation, referred to as ‘model 2’ in the re-
mainder of the paper, reduces to the following
equations:

NCa ! 0; R r ¼ ð13P Þ31 ¼ 1þ P þ P
2

2
þ T

ð14Þ

NCa ! r; R r ¼ ð13P Þ5=3 ¼ 13
5
3
P þ 5

9
P
2 þ T ð15Þ

Thus, model 2 is consistent with the results for a
dilute system.

One limitation of models 1 and 2 is that they
fail to account for the so-called ‘crowding e¡ect’
caused by packing di⁄culty of bubbles at high P

[50^52]. Due to immobilization of some of the
continuous-phase £uid in the voids between the
existing bubbles, the free volume of the continu-
ous-phase £uid available when new bubbles are
added is signi¢cantly less than (13P). Accord-
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ingly, Mooney [50], in the derivation of his well-
known equation for the viscosity of concentrated
suspensions of rigid particles, contended that the
incremental increase in the volume fraction of the
dispersed phase when in¢nitesimal amounts of
new particles are added to an existing suspension
of dispersed phase volume fraction P, is d[P/(13P/
Pm)] rather than dP/(13P) as used in the deriva-
tion of model 2 (Eq. 13). Note that Pm is the
maximum packing volume fraction of unde-
formed spherical bubbles; for random close pack-
ing of monosized spherical bubbles, Pm is 0.637.
Thus, Eq. 7 becomes:

dR ¼ R

13
12
5

_QQ RR
c

� �2

1þ 6
5

_QQ RR
c

� �2

2
6664

3
7775d P

13
P

Pm

0
BB@

1
CCA ð16Þ

Upon integration, Eq. 16 gives:

R r

13
12
5
R

2
rN

2
Ca

13
12
5
N2

Ca

2
64

3
75
34=5

¼ exp
P

13
P

Pm

2
664

3
775 ð17Þ

This equation, referred to as ‘model 3’ in the re-
mainder of the paper, reduces to the following
equations:

NCa ! 0; R r ¼ exp
P

13
P

Pm

0
BB@

1
CCA ð18Þ

NCa ! r; R r ¼ exp
35P =3

13
P

Pm

0
BB@

1
CCA ð19Þ

Krieger and Dougherty [52], in the derivation of
their well-known equation for the viscosity of
concentrated suspensions of rigid particles, argued
that the incremental increase in the volume frac-
tion of the dispersed phase when a small amount
of new particles is added to an existing suspension
of concentration P, is dP/(13P/Pm) rather than
d[P/(13P/Pm)] as thought by Mooney [50]. Hence,
Eq. 7 becomes:

dR ¼ R

13
12
5

_QQ RR
c

� �2

1þ 6
5

_QQ RR
c

� �2

2
6664

3
7775 dP

13
P

Pm

0
BB@

1
CCA ð20Þ

Upon integration with the limit RCRc at P=0,
Eq. 20 gives:

R r

13
12
5
R

2
rN

2
Ca

13
12
5
N2

Ca

2
64

3
75
34=5

¼ 13
P

Pm

� �3Pm

ð21Þ

This equation, referred to as ‘model 4’ in the re-
mainder of the paper, reduces to the following
equations:

NCa ! 0 R r ¼ 13
P

Pm

� �3Pm

ð22Þ

NCa ! r R r ¼ 13
P

Pm

� �
5Pm=3

ð23Þ

As Pm, the maximum packing volume fraction of
undeformed bubbles, is sensitive to the bubble
size distribution, models 3 and 4 are capable of
taking into account the e¡ect of the bubble size
distribution on the viscosity of suspensions. An
increase in Pm occurs when a monodisperse sus-
pension is changed to a polydisperse suspension.

Fig. 2 shows the relative viscosities predicted
from models 1^4. All models predict that the rel-
ative viscosity at any given value of bubble vol-
ume fraction P decreases with the increase in the
capillary number, NCa. At low capillary numbers
(NCa 6 0.645), the relative viscosity increases with
the increase in bubble volume fraction. At high
capillary numbers (NCa s 0.645), an opposite ef-
fect is observed, that is, the relative viscosity de-
creases with the increase in P. At a capillary num-
ber of 0.645, the relative viscosity is independent
of P ; the relative viscosity is 1 for all values of P.

4. Comparison of new viscosity equations with
literature data

Seven sets of literature data on relative viscosity
of bubbly suspensions are considered to evaluate
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the models developed in this paper. The data are
described only brie£y here; further details about
these data can be found in the original references.
Lejeune et al. [1] measured the relative viscosities
of bubble-bearing calcium aluminosilicate melts at
di¡erent temperatures. The experiments were con-
ducted in the high NCa regime. The bubble vol-
ume fractions were P=0, 0.06, 0.13, 0.32, 0.41 and

0.47. At any given P, the relative viscosity used in
our analysis covers the temperature range of
1160^1220 K. Manga and Loewenberg [6] deter-
mined the relative viscosities of bubbly suspen-
sions at high NCa (NCaCr) using a numerical
approach. Numerical calculations were performed
using the boundary integral method. The bubble
volume fraction was varied from 0 to 0.40. Rust

Fig. 2. Relative viscosity (Rr) as a function of capillary number (NCa) predicted by the proposed models. The predictions are
shown for various values of bubble volume fraction (P).
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and Manga [10] measured the relative viscosity of
dilute bubbly suspensions with a rotating cylinder
viscometer. Corn syrup of high viscosity (180 Pa s
at 22‡C) was used as the continuous phase and air
bubbles as the dispersed phase. The relative vis-
cosity measurements were limited to NCa 6 3.
Stein and Spera [15] measured the viscosities of
rhyolite melt^bubble emulsions at temperatures in
the range 925^1150‡C. The bubble volume frac-
tion was varied from 0.29 to 0.55. The experi-
ments were conducted in the high NCa range of
30^925. Pal [53,54] studied the rheology of oil-in-
water type emulsions consisting of low viscosity
droplets suspended in a high viscosity matrix.
Two sets of Pal’s data are considered in our anal-
ysis ; in one set [53], the ratio of dispersed phase
viscosity to continuous phase viscosity was ap-
proximately 4.15U1033 and in the other set [54],
the ratio of dispersed phase viscosity to continu-
ous phase viscosity was about 3.9U1034. As the
viscosity ratio for these emulsions is very small,
they can be regarded as bubbly suspensions; only
the zero-shear relative viscosity data (NCaC0) are
considered in our analysis. Llewellin et al. [37]
measured the linear viscoelastic properties of sus-
pensions of nitrogen bubbles in a Newtonian liq-
uid (golden syrup). The data were obtained using

a parallel plate geometry in oscillatory mode. The
volume fraction of bubbles was varied from 0 to
0.461. Their complex viscosity data at low oscil-
lation frequency (NCaC0) of imposed shear stress
(amplitude well within the linear viscoelastic re-
gion) are considered in our analysis.

Fig. 3 shows a comparison between the pub-
lished data and predictions of various models de-
veloped in the paper. The capillary number is
large (NCaCr) in this case. Model 1 (Eq. 9) de-
scribes the data reasonably well only at low to
moderate values of P (P6 0.30); at higher values
of P, model 1 tends to overpredict the relative
viscosity Rr, as expected. Model 2 (Eq. 13) is an
improvement over model 1; it does a reasonable
job in predicting the relative viscosity up to a P

value of 0.40. Note that there are no adjustable
parameters in models 1 and 2. The predictions of
models 3 (Eq. 17) and 4 (Eq. 21) are also shown
in Fig. 3. These models contain Pm, the maximum
packing volume fraction of undeformed bubbles.
Model 4 (Eq. 21) does a reasonable job over the
full P range covered by the published data, pro-
vided that a Pm value of 0.7 is used. Model 3 (Eq.
17), however, underpredicts the relative viscosity
for most of the P range (Ps 0.1) when the same
value of Pm (= 0.70) is used. The Pm value of 0.70
is physically realistic and is close to the body-cen-
tered cubic packing of uniform spheres, i.e.
Pm =0.68.

It is worthwhile to point out that some of the
scatter in published data shown in Fig. 3 could be
due to lack of steady state in some of these experi-
ments [37]. Strictly speaking, the suspension
should be subjected to shear for a duration larger
than the relaxation time of bubbles L, de¢ned as:

L ¼ R cR
c

ð24Þ

When the measurement time is larger than the
bubble relaxation time L, the bubble deformation
becomes constant. For some of the suspensions
shown in Fig. 3, the bubble relaxation time was
higher than the measurement time [37]. For exam-
ple, the bubble relaxation time for porous glasses
used by Lejeune et al. [1] is of the order of 50 min
whereas their experiments ran for ‘tens of min-
utes’.

Figs. 4 and 5 show the experimental data of

Fig. 3. Comparison between published data and predictions
of various models at high NCa. Pm is taken to be 0.70 for
models 3 and 4. The numbers shown in the ¢gure refer to
model numbers.
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Rust and Manga [10] for suspensions with bubble
volume fractions of 0.163 and 0.115, respectively.
The data are plotted as relative viscosity versus
capillary number. As the suspensions were poly-

disperse, an average bubble radius was used in the
calculation of capillary number. The experimental
data cover a broad range of NCa. The predictions
of the models developed in the paper are also
shown. For models 3 and 4, the Pm value of
0.70 (the same as that used before in Fig. 3) was
utilized. The trends exhibited by all four models
are in good agreement with the experimental data.
At low values of NCa, model 1 underpredicts Rr

whereas model 3 overpredicts Rr. The predictions
of models 2 and 4 are similar and are in good
agreement with the experimental data over a
wide range of NCa. It is interesting to note that
the experimental measurements give Rr of approx-
imately 1 at a NCa value of 0.645, as predicted by
the models.

Fig. 6 shows a comparison between the exper-
imental data of Pal [53,54] and predictions of var-
ious models. The capillary number is small
(NCaC0) in this case. As can be seen, the exper-
imental data can be described reasonably well
with model 4 (Eq. 21) using a Pm value of 0.54.
The Pm value of 0.54 is close to simple cubic pack-
ing of monodisperse spheres, i.e. Pm =0.52. For
the same Pm value, model 3 (Eq. 17) overpredicts
the relative viscosity, especially when Ps 0.20.

Fig. 6. Comparison between experimental data of Pal [53,54]
and predictions of various models at low NCa (NCaC0). Pm
is taken to be 0.54 for models 3 and 4. The numbers shown
in the ¢gure refer to model numbers.

Fig. 5. Comparison between experimental data of Rust and
Manga [10] and predictions of various models for P=0.115.
Pm is taken to be 0.70 for models 3 and 4.

Fig. 4. Comparison between experimental data of Rust and
Manga [10] and predictions of various models for P=0.163.
Pm is taken to be 0.70 for models 3 and 4.
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Models 1 (Eq. 9) and 2 (Eq. 13) underpredict Rr

when Ps 0.20.
Fig. 7 shows the experimental data of Llewellin

et al. [37] at low oscillation frequency of imposed
shear stress. The predictions of models 1^4 are
also shown; the Pm value for models 3 and 4 is
taken to be 0.54 (the same as that used for Pal’s
data, Fig. 6). The solids-in-liquid suspension
curve [55], in terms of relative viscosity versus
volume fraction of solids, is shown as well for
comparison purposes. Clearly, the proposed mod-
els (models 1^4) do not describe Llewellin et al.’s
data satisfactorily. However, it should be noted
that the relative viscosities of bubbly suspensions
studied by Llewellin et al. are even higher than
those of solids-in-liquid suspensions in the P range
of 0.1^0.3. This is physically unrealistic. Several
factors could be responsible for the anomalous
behavior exhibited by Llewellin et al.’s bubbly
suspensions; they are summarized as follows:
(1) They utilized the parallel plate geometry which
does not impart uniform shear rate to the sample.
Extraction of the rheological parameters from the

raw data obtained from this technique is not triv-
ial as the strain varies with the radius. The au-
thors do not address this issue in their paper;
(2) The measurements were a¡ected by bubble-
rise/creaming e¡ect, as the authors freely admit
in their paper. The bubble-rise e¡ect would render
the suspension sample non-homogeneous;
(3) There were uncertainties in the value of the
continuous-phase (syrup) viscosity, used in their
calculation of relative viscosity. The continuous-
phase viscosity changed during the aeration pro-
cess ; (4) Slip e¡ects [56] have not been considered
in their work. Slip is well known to occur during
the £ow of suspensions between smooth solid
boundaries with narrow gaps. The only way to
check if slip e¡ects are absent is to obtain data
from di¡erent gap widths. In the absence of slip
e¡ects, the data are independent of the gap width;
and (5) Their complex viscosity data do not ex-
hibit a plateau at low frequencies, as assumed in
their curve ¢tting exercise. At high values of P,
their measured complex viscosity continues to in-
crease with the decrease in frequency. Thus, their
low frequency limiting values of relative viscosity,
shown in Fig. 7, are questionable.

In summary, model 4 (Eq. 21) appears to be
somewhat superior to other models (models 1^3)
developed in the paper when comparisons are
made with the limited amount of experimental
and numerical data available in the published lit-
erature. Furthermore, model 4 is quite capable of
predicting the e¡ect of bubble size distribution on
the viscosity of bubble-bearing suspensions, as
discussed in the following section.

5. E¡ect of bubble size distribution on the viscosity
of suspensions

The e¡ect of bubble size distribution on the
relative viscosity of bubbly suspensions can be
predicted from model 4 (Eq. 21). Model 4 con-
tains Pm, the maximum packing volume fraction
of bubbles, which is known to be sensitive to
bubble/particle size distribution; Pm for suspen-
sions of uniform bubbles is expected to be signi¢-
cantly smaller as compared with the Pm value for
polydisperse suspensions. Note that Pm in model 4

Fig. 7. Comparison between experimental data of Llewellin
et al. [37] and predictions of various models at low NCa

(NCaC0). Pm is taken to be 0.54 for models 3 and 4. The
numbers shown in the ¢gure refer to model numbers. The
solids-in-liquid suspension curve [55] is also shown for com-
parison purposes.
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(and model 3) refers to the initial undeformed
state of the suspension, just like R refers to the
radius of undeformed bubbles in the initial unde-
formed state of the suspension. The e¡ect of bub-
ble deformation on the viscosity of suspension is
accounted for by the capillary number alone.
Thus, Pm depends only on the size distribution
of initial undeformed bubbles.

It is well known that polydispersity tends to
increase Pm. Ouchiyama and Tanaka [57^59]
have published a series of articles aimed at esti-
mating the porosity (13Pm) of random packings
of spherical particles having various sizes. Ac-
cording to Ouchiyama and Tanaka’s theory [57^
59], the maximum packing volume fraction is giv-
en by:

Pm ¼
P
D3
i f iP

ðDiVDÞ3f i þ
1
K

P
½ðDi þDÞ33ðDiVDÞ3�f i

ð25Þ

where:

K ¼ 1þ 4
13

ð8P o
m31ÞD

P
ðDi þDÞ2 13

ð3=8ÞD
ðDi þDÞ

� �
f iP

½D3
i3ðDiVDÞ3�f i

ð26Þ

D ¼
P
Dif i ð27Þ

Here P
o
m is the maximum packing concentration

of a monodisperse suspension, fi is the number
fraction of droplets of diameter Di, D is the num-
ber-average diameter of the suspension, and the
abbreviation (DiVD) is de¢ned as:

ðDiVDÞ ¼ 0 for Di9D ð28Þ

¼ Di3D for DisD ð29Þ

To calculate Pm for polydisperse suspensions us-
ing the Ouchiyama and Tanaka theory (Eqs. 25^
29), the value of the maximum packing concen-

Fig. 8. The e¡ect of bubble size distribution on the relative viscosity of bimodal suspensions, as predicted from model 4. The
bubble size ratio between large and small bubbles is 5:1.
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tration of the monodisperse suspension (Pom) is
required.

We utilized Eqs. 25^29 to predict Pm values for
bimodal suspensions of bubbles, that is, mixtures
of two bubble sizes: large and small. The bubble
size ratio was taken to be 5:1. The Pm value for
monodisperse suspension (Pom) was taken to be
0.637, corresponding to random close packing of
spheres.

With the increase in the proportion of ¢ne bub-
bles in a bimodal suspension, the value of Pm in-
creased initially, reached a maximum value of ap-
proximately 0.76 at a ¢ne bubble proportion of
about 10%, and then decreased. The Pm values,
calculated for di¡erent proportions of ¢ne bub-
bles using Eqs. 25^29, were used to calculate the
relative viscosities from model 4.

Fig. 8 shows the e¡ect of bubble size distribu-
tion on the relative viscosity of bimodal suspen-
sions at two di¡erent values of capillary number,
NCa : NCa = 0 and NCa =r. The relative viscosities
predicted from model 4 are plotted as a function
of the volume fraction of ¢ne bubbles present in a
bimodal suspension, with total volume fraction
as a parameter. At low NCa, Fig. 8 reveals the
following information: (a) a large reduction in
relative viscosity occurs when a concentrated
(Pv 0.55) monodisperse suspension is changed
to a bimodal suspension; this e¡ect is negligible
when P9 0.40; (b) at high values of P, the plots of
relative viscosity vs. volume fraction of ¢ne bub-
bles exhibit a minimum at a ¢ne bubble volume
fraction of about 0.1 (where a maximum in Pm

occurs). At high NCa, Fig. 8 shows a very di¡erent
behavior: (a) the relative viscosity now exhibits an
opposite e¡ect, that is, it increases when a con-
centrated (Pv 0.55) monodisperse suspension is
changed to a bimodal suspension; this e¡ect is
negligible when P9 0.40; (b) the plots of relative
viscosity vs. volume fraction of ¢ne bubbles, at
high values of P, exhibit a maximum at a ¢ne
bubble volume fraction of about 0.1.

6. Concluding remarks

Starting from the relative viscosity equation of

dilute suspension of bubbles, four new equations
are developed for concentrated bubbly suspen-
sions using a di¡erential scheme. According to
the proposed equations, the relative viscosity
(Rr) versus capillary number (NCa) plots exhibit
three distinct regions: constant Rr region at low
values of NCa, decreasing Rr region at inter-
mediate values of NCa, and, ¢nally, constant Rr

region at high values of NCa. The relative viscosity
is greater than unity at low NCa (NCa 6 0.645)
and is less than unity at high NCa (NCa s 0.645).
With the increase in the bubble volume fraction
(P), Rr increases at low NCa and decreases at
high NCa. At NCa = 0.645, Rr is unity independent
of P. Out of the four models developed in the
paper, two models (models 1 and 2) predict Rr

to be a function of only two variables : NCa and
P ; these models do not contain any adjustable
parameters. The remaining two models (models
3 and 4) contain an additional parameter, that
is, the maximum packing volume fraction of bub-
bles (Pm).

Model 4 (Eq. 21) appears to be somewhat supe-
rior to other models (models 1^3) developed in
the paper when comparisons are made with the
limited amount of experimental and numerical
data available in the literature. Furthermore,
model 4 is quite capable of predicting the e¡ect
of bubble size distribution on the viscosity of bub-
ble-bearing magmas. At low NCa, a large reduc-
tion in relative viscosity occurs when a concen-
trated (Pv 0.55) monodisperse suspension is
changed to a bimodal suspension. At high NCa,
an opposite e¡ect is observed, that is, a large in-
crease in relative viscosity occurs when a concen-
trated monodisperse suspension is changed to a
bimodal suspension.

The viscosity models for bubble-bearing sus-
pensions developed in this study are useful in
modeling of the volcanic processes.
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Appendix A. Derivation of Eq. 4 from Eq. 3

In steady viscometric £ow, the velocity is given
by VŒ = ( _QQ x2,0,0), where _QQ is the shear rate. In this
case,

9 V̂V ¼
0 0 0
1 0 0
0 0 0

0
@

1
A _QQ ; ð9 V̂VÞT ¼

0 1 0
0 0 0
0 0 0

0
@

1
A _QQ ðA1Þ

d ¼def1
2
½ð9 V̂VÞ þ ð9 V̂VÞT� ¼

_QQ

2

0 1 0
1 0 0
0 0 0

0
@

1
A ðA2Þ

g ¼def1
2
½ð9 V̂VÞ3ð9 V̂VÞT� ¼

_QQ

2

0 31 0
1 0 0
0 0 0

0
@

1
A ðA3Þ

Here d is the rate of deformation tensor and g is
the vorticity tensor. The Jaumann derivatives in
Eq. 3 for viscometric £ows are:

Dd
Dt

¼def D d
D t

þ V̂V W9 d þ g Wd3d Wg ¼

_QQ 2

2

31 0 0
0 1 0
0 0 0

0
@

1
A ðA4Þ

Dd

Dt
¼defD d
D t

þ V̂V W9 d þ g Wd3d Wg ¼

_QQ

2

32d 12 d 113d 22 0
d 113d 22 2d 12 0

0 0 0

0
@

1
A ðA5Þ

The term [dWd+dTWdT3(2/3)tr(dWd)N] in Eq. 3 re-
duces to:

d Wd þ dTWdT32
3
trðd WdÞN ¼

_QQ 2

6

1 0 0
0 1 0
0 0 32

0
@

1
A ðA6Þ

Thus, Eq. 3 can be written as:

d 11 d 12 0
d 21 d 22 0
0 0 d 33

0
@

1
Aþ 1 _QQ

2

32d 12 d 113d 22 0
d 113d 22 2d 12 0

0 0 0

0
@

1
A

¼ 2R cð1þ P Þ
_QQ

2

0 1 0
1 0 0
0 0 0

0
@

1
A

2
4

þ1 _QQ 2

2

31 0 0
0 1 0
0 0 0

0
@

1
A
3
5

þ R
2
cR
c

P

� �
3
16
5
_QQ 2

31 0 0
0 1 0
0 0 0

0
@

1
A

2
4

þ 4
35

_QQ 2
1 0 0
0 1 0
0 0 32

0
@

1
A
3
5 ðA7Þ

Comparing terms yields the following set of equa-
tions:

d 1131 _QQ d 12 ¼ R c _QQ
21 31þ 37

21
P

� �
ðA8Þ

d 12 þ
1 _QQ

2
ðd 113d 22Þ ¼ R c _QQ ð1þ P Þ ðA9Þ

d 22 þ 1 _QQ d 12 ¼ R c _QQ
21 13

11
7
P

� �
ðA10Þ

d 33 ¼
34R c _QQ

21 P

21
ðA11Þ

Eqs. A8^A10 yield the following expression for
shear stress:

d 12 ¼
R c _QQ

1þ 1 2 _QQ 2ð1þ P Þ þ R c1
2 _QQ 3

1þ 1 2 _QQ 2 13
5
3
P

� �
¼

R c _QQ 1þ P

13
5
3
1 2 _QQ 2

1þ 1 2 _QQ 2

0
B@

1
CA

2
64

3
75 ðA12Þ

Using the de¢nitions of viscosity (ratio of shear
stress to shear rate), relative viscosity (ratio of
suspension viscosity R to continuous-phase viscos-
ity Rc), and 1 ( = 6RcR/5c), Eq. A12 yields:

R r ¼
R

R c
¼ 1þ P

13
12
5
N2

Ca

� �

1þ 6
5
NCa

� �
2

2
664

3
775 ðA13Þ

where NCa is the capillary number de¢ned in Eq.
5. Eq. A13 is the same as Eq. 4.
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