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Abstract For petrological calculations, including geo-
thermobarometry and the calculation of phase diagrams
(for example, P–T petrogenetic grids and pseudosec-
tions), it is necessary to be able to express the activity–
composition (a–x) relations of minerals, melt and fluid
in multicomponent systems. Although the symmetric
formalism—a macroscopic regular model approach to
a–x relations—is an easy-to-formulate, general way of
doing this, the energetic relationships are a symmetric
function of composition. We allow asymmetric ener-
getics to be accommodated via a simple extension to the
symmetric formalism which turns it into a macroscopic
van Laar formulation. We term this the asymmetric
formalism (ASF). In the symmetric formalism, the a–x
relations are specified by an interaction energy for each
of the constituent binaries amongst the independent set
of end members used to represent the phase. In the
asymmetric formalism, there is additionally a ‘‘size
parameter’’ for each of the end members in the inde-
pendent set, with size parameter differences between end
members accounting for asymmetry. In the case of fluid
mixtures, for example, H2O–CO2, the volumes of the
end members as a function of pressure and temperature
serve as the size parameters, providing an excellent fit to
the a–x relations. In the case of minerals and silicate
liquid, the size parameters are empirical parameters to
be determined along with the interaction energies as part
of the calibration of the a–x relations. In this way, we
determine the a–x relations for feldspars in the systems
KAlSi3O8–NaAlSi3O8 and KAlSi3O8–NaAlSi3O8–
CaAl2Si2O8, for carbonates in the system CaCO3–
MgCO3, for melt in the melting relationships involving

forsterite, protoenstatite and cristobalite in the system
Mg2SiO4–SiO2, as well as for fluids in the system H2O–
CO2. In each case the a–x relations allow the corre-
sponding, experimentally determined phase diagrams to
be reproduced faithfully. The asymmetric formalism
provides a powerful and flexible way of handling a–x
relations of complex phases in multicomponent systems
for petrological calculations.

Introduction

In petrological mineral equilibria calculations, it is nec-
essary to formulate the activity–composition (a–x)
relations of multicomponent phases (minerals, fluids and
melt). For example, calculation of the PT grid and
pseudosections in the system Na2O–CaO–K2O–FeO–
MgO–Al2O3–SiO2–H2O in White et al. (2001) involves
phases which are solutions amongst three end members
(alkali feldspars, plagioclase, garnet), four end members
(orthopyroxene, biotite), and eight end members (silicate
melt). In this context, the regular solution model and its
expression as the symmetric formalism (SF, e.g. Powell
and Holland 1993) has proved to be a powerful tool in
representing the thermodynamics of phases. The main
advantages of the SF are (1) that a–x relations of mul-
ticomponent phases may be derived from a knowledge
of the constituent binary joins without recourse to ter-
nary contributions, and (2) that the models are macro-
scopic, and so avoid the problems associated with
formulating the many pair-wise microscopic (atomistic)
interactions in complex multisite phases.

The principal disadvantage of the SF is that it is a
symmetric model, and therefore cannot deal accurately
with asymmetric mixtures, as reflected in such features
as solvi which are skewed towards one end of a binary
system. For many practical purposes, regions of a real
asymmetric solid solution can be treated as a fictive
symmetric solution; however, particularly in phase dia-
gram calculations, a proper asymmetric solution model
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has become a necessity. An older model from the liter-
ature which has fallen into disuse, the van Laar model, is
resuscitated and reformulated in this paper into a con-
venient form for multicomponent asymmetric solutions.
It has both the advantages mentioned above for the
symmetric formalism as well as bringing a considerable
degree of flexibility to dealing with real asymmetric
solutions. Although the van Laar model has been used
in the geological literature before (e.g. Powell 1974,
1978; Saxena and Fei 1988; Shi and Saxena 1992;
Aranovich and Newton 1999), it has not found favour as
a general asymmetric model for solid solutions. Our
reformulation of the van Laar model, coined the asym-
metric formalism (ASF), allows it to be used in a
straightforward and powerful way. This reformulation is
outlined, then applied to the representation of the
thermodynamics of K–Na–Ca feldspars, CaCO3–
MgCO3 carbonates, H2O–CO2 mixtures and silicate
melt in the system Mg2SiO4–SiO2.

Activity–composition relations

In the symmetric formalism (SF) of Powell and Holland
(1993), a macroscopic regular model for a–x relations,
the activity coefficient for an end member l in a phase
with n (independent) end members, is given by

RT ln c‘ ¼ �
Xn�1

i¼1

Xn

j>1

qiqjWij ð1Þ

in which qi=1)pi when i=l and qi=)pi when i „ l. The
Wij are macroscopic interaction energies. A proportion,
pi, is the macroscopic fraction of i in the phase, for the
particular set of end members used to represent the
phase. Although

Pn
k¼1 pk ¼ 1, individual proportions

may be negative. For a given phase, the proportions will
change, in general, if a different independent set of end
members is chosen. For phases with order–disorder, the
number of independent end members, n, is the number
of independent macroscopic composition variables plus
the number of independent order parameters (Holland
and Powell 1996a, 1996b).

In the ASF (van Laar) expressions, asymmetry is
introduced via a size parameter for each end member, ai,
such that, when the size parameters are different for the
end members in a binary, asymmetry is introduced into
that binary. The ASF expressions equivalent to Eq. (1)
have the same form

RT ln c‘ ¼ �
Xn�1

i¼1

Xn

j>1

qiqjW �
ij ð2Þ

but the constituent terms are now a function of a:
qi=1)/i when i=l, and qi=)/i when i „ l, with /i

effectively a size parameter-adjusted proportion

/i ¼
piaiPn

j¼1 pjaj

Wij* is a size parameter-adjusted interaction energy,

W �
ij ¼ Wij

2a‘
ai þ aj

Clearly, if the a values for all the end members are the
same, Eq. (2) reduces to Eq. (1). In addition, the excess
Gibbs energy of mixing is given by

Gex ¼
Xn�1

i¼1

Xn

j>i

/i/jBij

where

Bij ¼
2
Pn

l¼1 alpl

ai þ aj
Wij

The eponymous precursor of the ASF is van Laar
(1906) in which asymmetry in mixing relations was
introduced via the van der Waals equation. In, for
example, Prausnitz et al. (1986), the van der Waals
constants were replaced by molar volumes. In the latter’s
formulation of the van Laar model for a 1–2 binary, the
activity coefficient of end member 1 is

RT ln c1 ¼ V1A12/2 1� /1ð Þ ð3Þ
Substituting A12 ¼ 2W12

V1þV2
, this reduces to the activity

coefficient expression derived from Eq. (2) for a binary.
In relation to the form given for the van Laar model in
Powell (1974, 1978), the A1 term therein is equivalent to
2V1W12

V1þV2
, and A2 to 2V2W12

V1þV2
. The advantage of the reformu-

lation of the van Laar model in Eq. (2), in contrast to
that in Prausnitz et al. (1986) and Powell (1974, 1978),
lies in its ease of extension to multicomponent phases,
and its clear separation of the interaction energy and size
parameter terms.

As an example, to bring out some features of the SF
and its extension, the ASF, the activity coefficient of
orthoclase (or) in ternary feldspar is presented. In the SF
it is

RT ln cor ¼ 1� porð ÞpabWorab þ 1� porð ÞpanWoran

� pabpanWaban

One of the essential features of the SF model is that
all symmetric microscopic interactions, both from
within-site terms and from cross-site terms, always result
in a single symmetric macroscopic interaction for any
chosen binary (Powell and Holland 1993). In this case,
for mixing of K, Na and Ca on the A site, and mixing of
Al and Si on two T sites,

Wabor ¼ W A
NaK

Waban ¼ W A
NaCa
þ 1

4 W T
AlSi
þ 1

2 W A�T
CaAlNaSi

Woran ¼ W A
KCa
þ 1

4 W T
AlSi
þ 1

2 W A�T
CaAlKSi

This points to a problem with microscopic models
used for activity modelling, as in the case of Waban, that
individual terms are not accessible experimentally. So,
for example, the charge difference between Ca++ and
Na+ means that no binary involving just this exchange
can be investigated. In the macroscopic approach it
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remains useful to interpret a part of the overall mixing
energy in terms of such microscopic interactions, while
recognising that a macroscopic strain energy may make
an important, even dominant, contribution.

The activity coefficient of orthoclase (or) in the ASF is

RT ln cor ¼ 1� /orð Þ/ab
2aor

aor þ aab
Worab

þ ð1� /orÞ/an
2aor

aor þ aan
Woran

� /ab/an
2aor

aab þ aan
Waban

The above interpretation of the interaction energies
for the SF carry over to the macroscopic interaction
energies in the ASF with, additionally, such strain en-
ergy contributions from mixing cations or groups of
cations of differing size or charge controlling the asym-
metry. This is often expressed in large differences in
molar volume between end members, although this ef-
fect may be masked in structures which have sufficiently
flexible frameworks that the overall volume differences
are relatively unaffected by substituting cations of dif-
ferent size or charge.

The application of the ASF both to fluids (e.g. H2O–
CO2) and to solid solutions and silicate melt is
straightforward. In the case of fluids, the molar volumes
at the PT of interest may be used for the size parameters,
whereas for solids and silicate melt the size parameters
are treated as adjustable parameters which reflect some
combination of the local size of interacting atoms or
groups of atoms and the resulting strain effects on the
mineral lattice. Although the equations are written such
that one size parameter is assigned to each end member,
the number of size parameters in an n-component
solution is n)1 because it is the ratio of the size
parameters which matters, and one of the size parame-
ters may be arbitrarily set (say, at unity).

Although it is not possible to write an expression for
the critical temperature and composition for a solvus
unless the size parameters are equal (when the regular
solution model applies and Tc ¼ W

2nR at x=0.5 for a
solution with site multiplicity of n), the relationships can
be shown graphically, as in Fig. 1. As the asymmetry
increases, the critical temperature rises slightly, and the
critical composition of the solvus top is nearly linearly
related to the ratio of the size parameters. Thus, for
moderately asymmetrical solvi, a value of W may be
approximately estimated from the regular solution
expression, and the ratio of the size parameters found
from the composition of the solvus crest.

The shapes of solvi calculated with the ASF are given
in Fig. 2. The solvi become more asymmetric as the
parameter t2 ¼ a2

a1þa2
changes from 0.5 (symmetric) to 0.2

(Fig. 2a). In Fig. 2b, solvi with t2=0.6 at the critical
temperature, but with varying temperature-dependence
for t2, are drawn to show the wide variety of solvus
shapes which can be accommodated using the van Laar
model. Even more variability may be introduced by
making W a function of temperature as well.

In the petrological literature the subregular model has
been much favoured (following Thompson and Wald-
baum 1968a, 1968b) as a vehicle for representing asym-
metry in solid solutions. This has been a convenient
device for binary systems but becomes rather cumber-
some when extended to ternary and higher-order solu-
tions. In comparison to the subregular model, the
number of overall parameters required in the ASF be-
comes significantly fewer as n, the number of indepen-
dent end members in the phase, increases. The subregular
model may also need extra higher-order terms which are
not properties of the constituent individual binary solu-
tions, these being a logical outcome of the third-order
polynomial formulation of Gex. The ASF, by contrast, is
essentially a quadratic (second-order) model and does
not include such ternary terms. This property of building
up a complex model solely from its binary properties is a
particularly attractive and useful aspect of the ASF
model in multicomponent solutions.

Examples

Alkali (and ternary) feldspars

The first example involves the binary KAlSi3O8–Na-
AlSi3O8 (sanidine–high albite) alkali feldspar join in
which an asymmetric solvus has been experimentally
determined. Although both albite and K-feldspar un-
dergo Al–Si ordering, first onto two tetrahedral sites

Fig. 1a, b Solvus systematics for the van Laar model. a The solvus
critical temperature for various values of W as a function of the
asymmetry parameter t2 ¼ a2

a1þa2
. The solvus crest temperature rises

only slightly for moderately asymmetric solvi. b The solvus critical
composition is close to being linear in the asymmetry parameter t2
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and, with further ordering, of Al onto a single favoured
site at low temperatures, the effects of ordering on the
solvus will not be taken into account here, the focus
being on the high-temperature sanidine–albite solvus.
Thompson and Waldbaum (1969) used the experimental
data of Bowen and Tuttle (1950), Orville (1963) and
Luth and Tuttle (1966) to construct a third-order Mar-
gules model (i.e. the subregular model) for the alkali
feldspar solvus, and were able to reproduce the experi-
mental data up to 10 kbar. Later experiments at high
pressures (from 9 to 15 kbar) were performed by
Goldsmith and Newton (1974) who found that the
Thompson and Waldbaum model extrapolated remark-
ably well to the conditions of their experiments. We now
(1) demonstrate that the ASF described above can
reproduce the experimental data faithfully, and (2) use
the binary model as a platform for the construction of a
ternary feldspar solution model involving the additional
anorthite component.

The model parameters to be fitted to the experiments
are the size parameters for the albite and sanidine end
members (aab and asan) and the interaction energy Wabsan

for the binary. Because it is only the ratio of the two size
parameters which determines the thermodynamics, one
is set at unity (here asan is chosen), leaving the other as

the adjustable parameter. The two equilibrium equa-
tions relating compositions of coexisting feldspars are

1Þ KAlSi3O8 albiteð Þ ¼ KAlSi3O8 sanidineð Þ and
2Þ NaAlSi3O8 albiteð Þ ¼ NaAlSi3O8 sanidineð Þ;
so the activity of the sanidine end member must be the
same in both phases coexisting across the solvus (and
likewise for the albite end member). By equating
RT ln Xici for each end member at each temperature for
coexisting pairs, and taking experimental values for the
Xi, the values for the unknown parameters may be found
by non-linear regression, using the following equations
for the activity coefficients

RT ln csan ¼
2asan

asan þ aab
/2

abWabsan ð4Þ

RT ln cab ¼
2aab

asan þ aab
/2

sanWabsan ð5Þ

We have used the experimental points selected by
Thompson and Waldbaum (1969) in their original
analysis, supplemented by several reversals between 9
and 15 kbar from Goldsmith and Newton (1974).
Figure 3 shows the calculated solvi at 2 and 14.5 kbar,
together with the experimental data. The model fits
the experimental data well, using just four adjustable
parameters, as follows (with T in K and P in kbar):

Wabsan ¼ 25:1 �2:0ð Þ � 0:0108 �0:0022ð ÞT
þ 0:343 �0:025ð ÞPkJ; and aab ¼ 0:643 �0:018ð Þ;

with asan set at 1:0:

The size parameters for sanidine (1.0) and albite
(0.643) are more disparate than would be suggested from
the molar volumes of these end members (10.9 and
10.1 J bar)1 respectively) but are much closer to the
relative ionic radii of K+ and Na+ (1.33 vs. 0.97).
Presumably the size parameters are governed in part by
factors which include the cation size mismatch and by

Fig. 3 Calculated solvus for sanidine–high-albite feldspars. The
2-kbar data are those selected by Thompson and Waldbaum (1969)
for their analysis. The brackets from Goldsmith and Newton at 14
and 15 kbar are combined here, and the curve is that calculated for
14.5 kbar (calculated using THERMOCALC; Powell and Holland
1988; Powell et al. 1998)

Fig. 2a, b Solvus shapes calculated using the van Laar model. a
Varying the asymmetry parameter t2 ¼ a2

a1þa2
for constant W, and b

varying the temperature-dependence of t2 for constant W and a
value for t2=0.6 at the critical temperature
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the resulting local strain effects in the feldspar structure,
whereas the molar volume differences between albite and
sanidine are moderated by the flexibility of the Al–Si
framework.

The KAlSi3O8–NaAlSi3O8 solvus serves as a starting
point in calibrating the coexisting plagioclase and alkali
feldspar in the ternary feldspar system KAlSi3O8–Na-
AlSi3O8–CaAl2Si2O8. This system has been investigated
extensively by Ghiorso (1984), Green and Usdansky
(1986), Fuhrmann and Lindsley (1988) and Elkins and
Grove (1990), using the Margules formulation for mixing
energetics. Elkins and Grove (1990) analysed their
experimental results in the range 700–900 �C, with a one-
site entropy of mixing and a subregular solution. The tie
lines between calcic plagioclase and alkali feldspars show
a clear change in slope relative to the tie lines between
sodic plagioclase and alkali feldspars, this change occur-
ring around the an50 composition.We have reinvestigated
the system, using theElkins andGrove experimental data,
separating the plagioclase feldspars into an albite-rich C1
solid solution and an anorthite-rich I1 solid solution,
using the Darken’s quadratic formalism (DQF, Powell
1987) approach used by Holland and Powell (1992).
Plagioclase compositions more anorthite-rich than given
by the C1–I1 boundary, X b

an ¼ 0:12þ 0:00038 T Kð Þ
(Carpenter and McConnell 1984) are taken as belonging
to the I1 solid solution.

Three internal equilibria were used, one for each of the
three feldspar end members, to determine the parameters
for mixing in the anorthite–albite–sanidine system. The
model discussed above was used for the albite–sanidine
binary. The standard state used is the Gibbs energy of the
pure end members in their stable structural state, i.e. C1
for albite and sanidine, and I1 for anorthite. Thus, for the
C1 solid solutions, a Gibbs energy increment (the DQF
parameter Ian) is required to convert the anorthite Gibbs
energies to that of a fictive anorthite with theC1 structure.
Similarly, a Gibbs energy increment for albite in the I1
structure feldspar is required. The model was fitted to the
coexisting plagioclase and alkali feldspars from the
experimental dataset of Elkins and Grove (1990) in two
stages. Firstly, the C1 coexisting feldspars (i.e. the pairs
involving plagioclase with less than 50% anorthite con-
tent) were regressed to give the values for the additional
parameters W C1

ansan, W C1
anab, and aC1

an . The resulting fits to the
data are shown in Fig. 4 where the slopes of the tie lines
and calculated compositions agree well with the original
experimental data. The parameter values from the
regression are

W C1
ansan ¼ 40 �1:5ð Þ kJ

W C1
anab ¼ 3:1 �1:3ð Þ kJ

aC1
an ¼ 1:0 �0:15ð Þ:

ð6Þ

The second stage involves fitting to the pairs of
feldspars involving I1 plagioclase, of which there are
only three experimental brackets, all at 900 �C. With so
few brackets, it was decided to keep the values for W I1

ansan
and aI1

an the same as for the C1 solutions, and solve for

the value of W I1
anab. The values for the DQF parameters

Ian and Iab are constrained from the position of the C1–
I1 transition in plagioclase feldspars, as determined by
Carpenter and McConnell (1984) as follows: for C1
plagioclase,

RT ln cab ¼ 2aab
aanþaab

/2
anW C1

aban

RT ln can
2aan

aanþaab
/2

abW C1
aban
þ Ian

ð7Þ

and for I1 plagioclase,

RT ln cab ¼ 2aab
aanþaab

/2
anW I1

aban
þ Iab

RT ln can ¼ 2aan
aanþaab

/2
abW I1

aban

ð8Þ

Equating the values of RT ln c at the composition of the
phase boundary Xan ¼ X b

an gives expressions for Iab and
Ian

Iab ¼ �2 2aab
aabþaan

/2
anDW

Ian ¼ 2 2aan
aabþaan

/2
abDW

ð9Þ

where DW ¼ W I1
aban � W C1

aban. Knowing the value for X b
an at

900 �C (0.57) from Carpenter and McConnell (1984),
once the two W parameters are known, the two
I parameters may be calculated as a function of tem-
perature for the C1–I1 boundary, giving the additional
model parameters used to generate Fig. 5:

W I1
ansan ¼ 40 �1:5ð Þ kJ

W I1
anab ¼ 15 �3ð Þ kJ

aI1
an ¼ 1:0 �0:15ð Þ

Ian ¼ 7:03� 0:00466T �0:2ð Þ kJ
Iab ¼ 0:57� 0:00412T �0:2ð Þ kJ

ð10Þ

The tie-line slopes for calcic plagioclase–orthoclase
pairs in Fig. 5 do not match the experimental data

Fig. 4 Calculated C1 ternary feldspar compositions (tie lines) and
experimental data (fields) at (above) 800 �C and 2 kbar, (below)
700 �C and 2 kbar. The experimental pair at low Xan at 800 �C is at
1 kbar. Thick tie lines and experimental data fields are taken from
Elkins and Grove (1990; calculated using THERMOCALC)
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perfectly. This may be in part due to the simplifications
introduced here (taking a one-site entropy of mixing
model, a simplified DQF plagioclase model, and the
assumption that Wansan is the same in C1 and I1 feld-
spars). Nevertheless, the model works remarkably well
overall and, in addition, produces activity–composition
relations for plagioclase feldspars which are very similar
to those in Holland and Powell (1992).

Calcite–dolomite–magnesite

The Ca–Mg carbonates exhibit both exsolution and or-
der–disorder behaviour, with strong Ca–Mg ordering at
the dolomite composition leading to a pair of solvi

which are both asymmetric and of unequal critical
temperature (Fig. 6). Experimental studies, such as the
one of Goldsmith and Newton (1969), form the basis of
the diagram which is taken from the summary of Ano-
vitz and Essene (1987). These features of the carbonate
system calcite–dolomite–magnesite pose a particularly
difficult challenge to thermodynamic modelling. It is
important to develop a model which is continuous be-
tween magnesite and calcite, and which is capable of
generating an ordered dolomite field, rather than treat-
ing calcite–dolomite and dolomite–magnesite as two
separate solid solutions. The model discussed below
involves a non-ideal calcite–magnesite solution which
would lead to a wide solvus in the absence of ordering.
By using an order–disorder model similar to that used
for omphacite (Holland and Powell 1996b), it is possible
to generate a field of ordered dolomite between a pair of
miscibility gaps which separate it from disordered calcite
and magnesite. The model is quite simple, and treats this
binary join as a fictive ternary between the three two-site
end members calcite (cc, Ca2(CO3)2), dolomite (dol,
CaMg(CO3)2) and magnesite (mag, Mg2(CO3)2). Order–
disorder is treated by assigning a free energy (DGR) to
the internal equilibrium relation

1
2ccþ 1

2mag ¼ dol

and by allowing N moles of Ca to move from the M1 to
the M2 site (and of Mg to the M2 from the M1 site),
such that the site fractions become

xM2
Ca ¼ 1� X þ N

xM2
Mg ¼ X � N

xM1
Ca ¼ 1� X � N

xM1
Mg ¼ X þ N

ð11Þ

where the bulk composition X can be written as
X ¼ 1

2x
M1
Mg þ 1

2x
M2
Mg. The proportions (or mole fractions) of

the end members are

pcc ¼ xM1
Ca ¼ 1� X � N

pmag ¼ xM2
Mg ¼ X � N

pdol ¼ xM1
Mg � xM2

Mg ¼ 2N

ð12Þ

The ideal mixing on sites activities (e.g. Wood and Banno
1973; Powell 1978; Anderson and Crerar 1993) are

aidealcc ¼ xM2
Ca xM1

Ca

aidealmag ¼ xM2
Mgx

M1
Mg

aidealdol ¼ xM2
Ca xM1

Mg

and the ASF activity coefficients (where c=cc, d=dol,
and m=mag)

RT ln cc¼ 1� /cð Þ/mWcm
2ac

ac þ am
þ 1� /cð Þ/d

� Wcd
2ac

ac þ ad
� /m/dWmd

2ac

am þ ad

Fig. 5 Calculated ternary feldspar compositions (tie lines) and
experimental data (fields) at 900 �C and 1 kbar. Plagioclase at
Xan>0.6 is assumed to be I1 structure. Thick tie lines and
experimental data fields are taken from Elkins and Grove (1990;
calculated using THERMOCALC)

Fig. 6 Calculated solvi in the calcite–dolomite–magnesite system.
Experimental brackets are taken from Anovitz and Essene (1987;
calculated using THERMOCALC)
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RT ln cm¼ 1� /mð Þ/cWcm
2am

ac þ am
� /c/dWcd

2am

ac þ ad

þ 1� /mð Þ/dWmd
2am

am þ ad

RT ln cd¼ �/c/mWcm
2ad

ac þ am
þ 1� /dð Þ/cWcd

2ad

ac þ ad

þ 1� /dð Þ/mWmd
2ad

am þ ad
ð13Þ

The parameters used in constructing Fig. 6 are

DGR ¼ �13:5 kJmol�1

Wccmag ¼ 70:0 kJmol�1 Wccdol ¼ 20:5 kJmol�1

Wmagdol ¼ 29:9 kJmol�1

amag ¼ 1:0 adol ¼ 0:7 acc ¼ 0:50þ 0:000546 T

The size parameters are dimensionless and normalised
to unit value for magnesite. The degree of asymmetry
exhibited by the calcite–dolomite solvus required a tem-
perature-dependence for acc. The parameters have been
chosen for the purposes of illustrating the model, but
may be subject to revision when a fuller treatment of
the calcite–magnesite–siderite system is attempted. We
wish to emphasize that the miscibility gaps are not treated
as two separate binary models, but that the single set
of parameters listed above generates the complete
phase diagram, including the changing state of order in
the carbonates. In this respect, the state of order in
the dolomite is predicted to be high even at the highest
temperatures shown on the diagram.

Forsterite–enstatite–silica melting

Another instance where an asymmetric model is critical
is in silicate melting, for example, where unmixing of

two silicate liquids occurs close to the SiO2 composition
in the forsterite–silica (Mg2SiO4–SiO2) binary system.
Symmetric models are inadequate for representing the
phase equilibria, and we present an analysis of this
system using the ASF model in Fig. 7, where the tem-
peratures and compositions of the univariant equilibria
forsterite–protoenstatite–liquid, protoenstatite–cristo-
balite–liquid, and cristobalite–two liquids are remark-
ably well reproduced by the model. The compositional
binary is approximated by a fictive ternary made up of
the end members forsterite liquid (foL, Mg4Si2O8), en-
statite liquid (enL, Mg8/3Si8/3O8) and silica liquid (qL,
SiO8), all expressed in eight-oxygen units. These units
are assumed to mix ideally in terms of the entropy of
mixing, but the ASF is used to express the non-ideal
enthalpic contribution. In this interpretation of the
thermodynamics, the mole proportion of the protoen-
statite ‘‘molecule’’ in solution is analogous to an order
parameter, taking on values from zero for a disordered
solution to unity for a fully ordered solution at the
protoenstatite bulk composition.

On an eight-oxygen basis, the enL composition is
given by enL ¼ 2

3 foLþ 1
3qL and, using the two variables

x and y to represent bulk silica and order parameter
respectively, the following relations hold:

x ¼ qL
foLþ qL

aidealenL ¼ penL ¼ y

aidealqL ¼ pqL ¼ x� y
3

aidealfoL ¼ pfoL ¼ 1� x� 2y
3

and the activity coefficients are written using a ternary
van Laar expression analogous to that written above
(Eq. 13) for the calcite–dolomite–magnesite system in
which the / values are calculated using the end-member
proportions as derived above. The Gibbs free energy of
the internal equilibrium reaction

enL ¼ 2
3 foLþ 1

3qL

is taken directly from the thermodynamic data inHolland
and Powell (1998), and the values for the three interaction
energies WfoL enL, WfoL qL and WqL enL as well as the
size parameters afoL and aqL (with aenL set at unity)
were found by least-squares fitting to the experimental
data of Bowen and Anderson (1914) and Greig (1927).

The van Laar parameters used in constructing Fig. 7
are

WfoL qL ¼ 40:0 kJmol�1 WfoLenL ¼ 21:0 kJmol�1

WenL qL ¼ 139:5� 0:046 T kJmol�1

aenL ¼ 1:0 afoL ¼ 0:46 aqL ¼ 0:30

The temperatures and compositions of the calculated
univariant equilibria in Fig. 7 are within ±2 �C and
±0.04 respectively of the experimental determinations.
The univariant between two liquids and cristobalite is
calculated at 1,707 �C, higher than the data of Greig

Fig. 7 Calculated phase diagram and experimental data for the
forsterite–silica system at atmospheric pressure. The experiments
are from Bowen and Anderson (1914) and Greig (1927). The
temperatures from Greig (1927) for the univariant horizontal line
involving two liquids+cristobalite have been raised to agree with
Ol’shanskii (1952; calculated using THERMOCALC)
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(1927) but in better agreement with the more recent data
of Ol’shanskii (1951).

The success of this model has been made possible by
three assumptions about the mixing. Firstly, the use of
an order–disorder model involving the enL component
acting as a dominant species has allowed the thermo-
dynamics of the foL–qL binary to behave like two nearly
decoupled subsystems (foL–enL and enL–qL). Secondly,
the use of eight-oxygen units gives some entropic
asymmetry to the effective enL–qL sub-binary, and al-
lows the liquid immiscibility gap to move to more silica-
rich compositions. Thirdly, the van Laar model allows
enough additional asymmetric behaviour to fit the phase
diagram features quantitatively.

H2O–CO2

Aranovich and Newton (1999) performed experiments
to determine the mixing properties for binary H2O–CO2

mixtures and used a van Laar expression to fit their re-
sults. They showed that, as well as fitting their results
extremely well, the resulting activities were in close
agreement with the Kerrick and Jacobs (1981) version of
the modified Redlich Kwong (MRK) equation of state
for these mixtures.

Writing the activity coefficients using the van Laar
equations (h=H2O, c=CO2), and taking the size
parameters to be the molar volumes of the end members
at P and T gives

RT ln ch ¼ 2
VhVc

Vh þ Vc

Vc

phVh þ pcVcð Þ2
Whcp2c ð14Þ

Aranovich and Newton fitted Whc as a function of
pressure and temperature which, although fitting the
data over the PT range of their experiments, does not
agree well with the MRK predictions at very high
pressure. By comparing the value of Whc as obtained by
fitting to the MRK equation of state (Kerrick and
Jacobs 1981), it is clear that Whc appears to vary nearly
linearly with the inverse molar volume of the mixture, in
particular the product Whc

VhVc
VhþVc

remaining virtually con-
stant over the range 0.5–20 kbar, 400–1,000 �C. Thus,
for H2O–CO2 mixtures we have Whc ¼ ahc

VhþVc
VhVc

, with ahc
around 12.0 kJ2kbar)1. The van Laar expressions for
Gibbs energy and activity coefficients can therefore be
simplified considerably to

Gex ¼ 2ahc

phVh þ pcVcð Þ phpc ð15Þ

RT ln ch ¼
2ahcVc

phVh þ pcVcð Þ2
p2

c ð16Þ

RT ln c2 ¼
2ahcVh

phVh þ pcVcð Þ2
p2

h ð17Þ

With this convenient functional form for the PT
dependence of the van LaarW parameter, we refitted the

experiments of Aranovich and Newton (1999), along
with all the dehydration and decarbonation experiments
used in building the dataset of Holland and Powell
(1998), to find the optimum value for the van Laar
interaction energy parameter given by the phase equi-
librium data. The best fit obtained by least squares was
ahc=10.5±0.5 kJ2kbar)1. This value is slightly smaller
than that derived from the MRK equation of state
(12 kJ2kbar)1), suggesting that the latter slightly over-
estimates the non-ideality in H2O–CO2 mixtures at the
higher pressures and temperatures of the experiments.
Following the same procedure, using the standard sub-
regular model produced a less good fit of the data.

Figure 8 shows the calculated activities in the H2O–
CO2 system at a variety of pressures and temperatures.
They are very similar to, but slightly more ideal than the
Kerrick and Jacobs (1981) MRK activities over the
range of PT (0.5–20 kbar, 400–1,000 �C). The one-
parameter ASF model presented here is only in semi-
quantitative agreement with the precise molar volumes
and activities determined by Blencoe et al. (1999) at
400 �C. It is probable that the parameter ahc fails to
remain constant once pressures and temperatures

Fig. 8 Activity–composition plots for H2O–CO2 at 400, 600 and
800 �C, calculated from the van Laar model discussed in the text.
Contours are at 0.5, 2, 5, 10 and 20 kbar
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approach those of the critical point of H2O. This is not
surprising, given that Blencoe et al. (1999) needed to use
three separate and considerably more complex equations
to reproduce their data as a function of pressure for just
the 400 �C isotherm. It is, nevertheless, quite remarkable
that a single adjustable parameter can fit the H2O–CO2

activity data well over such a large PT range, covering
most of the facies in metamorphic petrological applica-
tions. H2O and CO2 become immiscible at low temper-
atures, and Fig. 9 shows the calculated critical
temperature and composition for immiscibility in the
H2O–CO2 binary as a function of pressure, and it sug-
gests that unmixing may be common at conditions
within the blueschist and low-temperature eclogite fa-
cies. The solvus becomes extremely asymmetric at low
pressures where the molar volumes of H2O and CO2

diverge markedly. The 1-kbar solvus crest at 273 �C and
XCO2=0.17 is in good agreement with the experimental
determinations of Todheide and Franck (1963) and
Takeneuchi and Kennedy (1964).

If the ASF model with constant aij parameters can
represent the H2O–CO2 activities well over a large range
of PT conditions, then it is likely that the approach will
be useful in multicomponent fluids in the COH system.
When values for van Laar Wij from pairs of gases in the
system H2O–CO2–CO–CO2–H2–CH4 are determined
using the Holloway-Flowers MRK equation of state
(Holloway 1977; Flowers 1979), the following aij
parameters (kbar)1) are obtained.

aij CO2 CH4 H2 CO
H2O 12:0 15:5 14:9 16:8
CO2 0:6 2:2 1:2
CH4 0:8 0:0
H2 0:3

This table brings out the fact that mixing of H2O with
other species is very non-ideal whereas the other gases
mix nearly ideally among themselves, a feature stem-
ming from the polar nature of the H2O molecule. With
the aij values above, the Wij may be found at any desired
PT and the activity coefficients determined for complex
gas mixtures through Eq. (2).

In summary, the examples above illustrate both the
simplicity and the utility of the ASF model in tackling
petrological problems with multicomponent solid and
fluid solutions, especially where several constituent bin-
ary joins are quite asymmetric. The model should find
particular application in the development of multicom-
ponent melt models, as well as in increasing the flexi-
bility in accounting for order–disorder in solid solutions
by extending the SF approach of Holland and Powell
(1996b).
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