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The paper presents an analytical and numerical study of two perfectly matched layer (PML)
formulations for the shallow water equations in terms of the unsplit physical variables. A per-
turbation method followed by a change of dependent variable allows us to extend the methods
to include the Coriolis forces. The PML equations, usually given in terms of the primitive
variables, are also presented here in terms of the conservative variables, which facilitates their
use in flows containing discontinuities. The performance of the two methods on a set of test
cases is investigated.
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1. Introduction

Geoscience problems are naturally posed in unbounded domains. The computa-
tional domain for a discrete solution of such problems is necessarily bounded with ar-
tificial boundaries. One of the earliest examples is the limited-area/regional numeri-
cal weather forecast model where there are no natural external boundaries. Artificial
boundaries require boundary conditions that ensure well-posedness of the correspond-
ing truncated-domain problem as well as accuracy of the relevant solution with respect
to the solution of the original problem in the unbounded domain. Furthermore, these
artificial boundary conditions must be consistent with the discretization scheme and eas-
ily implementable. Such boundary conditions are variously known as lateral boundary
conditions or transparent boundary conditions (in atmospheric science), nonreflecting
boundary conditions (in aeronautical science), and radiation boundary conditions or ab-
sorbing boundary conditions (in numerical analysis and computational aeroacoustics).

A popular method of dealing with the truncated physical domain is to surround it
with a zone in which non-physical equations are employed to filter, damp or convect out
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the incident waves so that there is little reflection into the physical domain of interest.
In the geoscience literature [15,17], such a zone is usually called a sponge layer, where
wave equations are employed with damping terms. In the context of electrodynamics,
Berenger [4] proposed to split the governing equations (i.e., the Maxwell’s equations)
in the coordinate directions with additional degrees of freedom. The additional degrees
of freedom are then exploited to endow the non-physical zones which he calls perfectly
matching layers (PML) with the property of absorbing the incident waves irrespective of
their frequency and orientation. Hu [13] extended the PML technique to the linearized
Euler equations and studied the acoustic, vorticity and entropy wave propagation in the
presence of uniform flow. Hayder et al. [11] applied the technique to the nonlinear Euler
equations governing the problems of shock/vortex interaction, free shear layer and ax-
isymmetric jet. They observed a weak instability in the form of three-point oscillations
in the solution, which were simply removed by a low-pass filter. Hesthaven [12] showed
that this weak instability is due to lack of strong well-posedness resulting from the split-
ting of the equations in the matched layer. Abarbanel and Gottlieb [1] placed the PML
methodology on a firm mathematical basis. Subsequently, Abarbanel et al. [2] employed
it to develop the first strongly well-posed PML formulation for what they call the ad-
vective acoustics problem (i.e., sound wave propagation in an otherwise uniform flow
within the framework of linearized Euler equations). More recently, Hu [14] provided a
new stable PML formulation, which is simpler and easier to implement, and which can
also be extended to include nonuniform mean flow. Also, it can easily accommodate the
equations in conservation form without splitting and can be made strongly well-posed
by the addition of arbitrarily small terms.

Darblade et al. [5] and Navon et al. [18] appear to be the first to apply the PML tech-
nique to the limited-area shallow water equations, which typify a certain class of prob-
lems in atmospheric and oceanic sciences. The former study is confined to an analysis
of linearized shallow water equations, while the latter is the first study of the nonlinear
shallow water equations with a PML procedure. The latter study follows the original
PML approach, splitting the equations in the matched layer in the coordinate directions
and introducing damping terms. The equations are discretized using the Miller–Pierce
finite-difference scheme. The results show that the PML approach yields better accu-
racy than the traditional approaches such as the characteristic boundary condition or the
absorbing boundary conditions of Engquist and Majda [8,9].

The current investigation extends the state-of-the art PML methodology, namely,
the procedures due to Abarbanel et al. [2], and Hu [14] to the nonlinear shallow water
equations with Coriolis forces. The effect of the Coriolis forces is accounted for by
the use of a perturbation technique with the Coriolis factor as a small parameter. Fur-
thermore, the PML equations, usually formulated for linearized equations in primitive
variables, are formally expressed in conservative variables. They are used both in lin-
earized and nonlinear form in several test problems, for which the two procedures are
compared with other possible lateral boundary conditions under different discretizations.
Both a fourth-order finite difference method, traditionally used with PML methods, and
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a spectral multidomain method, which is attracting increasing attention [6,7,10,19] due
to its accuracy properties, are used for this purpose.

2. Analysis of governing equations

The two-dimensional shallow water equations, including the effect of the Coriolis
forces, can be written as
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where h is the fluid height, g the gravitational constant, f the Coriolis factor and u and
v the x- and y-components of the fluid velocity, respectively. In terms of the potential
φ = gh, the equations become
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or, equivalently,
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where V = (φ u v)T and Ã, B̃, and C̃ are the following 3 × 3 matrices

Ã =

u φ 0

1 u 0
0 0 u


 , B̃ =


v 0 φ

0 v 0
1 0 v


 , C̃ =


0 0 0

0 0 −1
0 1 0


 . (4)

For the following analysis, as well as for the purpose of numerical discretization,
it is useful to first non-dimensionalize these equations. To this end, let us choose the
following reference values: a length scale specific to the problem, denoted by Hr, for
the spatial coordinates x and y, a reference velocity ur = √

gHr for the two velocity
components, a reference potential φr = u2

r for the potential and a reference time tr =
Hr/ur for time. The Coriolis factor is non-dimensionalized with fr = ur/Hr. With this
choice, the equations for the corresponding non-dimensional quantities remain the same
as equations (2). In the rest of the paper we work only with non-dimensional variables,
keeping the same notation as for the dimensional ones for simplicity.



278 S. Abarbanel et al. / Unsplit variables PML

The main difficulty in obtaining an extension of the PML methods as devised for
electromagnetics and acoustics to the case of the shallow water equations resides in the
presence of the coupling source terms due to the Coriolis forces. Since the maximum
value of the non-dimensional Coriolis factor is approximately f = 1.5 × 10−3 for a
reference length Hr = 1 km, we can proceed by using a perturbation procedure with
the non-dimensional Coriolis factor f as the small parameter. Hence, the solution is
considered to be, to a good approximation, given by

V =

φ

u

v


 = V0 + fV1 + f 2V2 + · · · . (5)

Introducing this expression in the governing equations and retaining terms to the
zeroth-order yields
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A solution to this problem is given by v0 = 0, φ0 = 1, and u0 = const = F0, where F
denotes the Froude number, F = u/ur.

The equations governing the first order perturbation (first order terms in f ) are
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Using the solution to the zeroth-order problem, they become
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This form of the equations does not allow a straightforward application of the
PML technique due to the presence of the coupling term F0 in the last equation. In
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order to eliminate this coupling term, we introduce the change of variable w1(x, y, t) =
v1(x, y, t) + x, thus obtaining
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These equations are identical to the linearized Euler equations governing the propaga-
tion of acoustic waves in a uniform mean flow, as given, for example, in [2]. We will
work with these equations to develop PML methods that can be applied eventually to
equations (2).

3. PML methods

3.1. Equations in transformed variables

This section presents two PML approaches for the set of equations (9). The first
one results directly from the work of Hu [14]. For ease of presentation, let us write the
equations as
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A straightforward extension of the analysis presented by Hu [14] to this system of equa-
tions yields the following PML equations
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Here q is an auxiliary variable needed only in the PML domain, ε is an arbitrarily small
parameter needed to ensure strong well-posedness and σx and σy are the absorption
coefficients in the x- and y-layers, respectively. The plane wave solutions of this system
can be shown to be perfectly matched to the solutions of the set of equations (10) for
ε = 0.
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The second PML approach considered here is the one proposed by Abarbanel
et al. [2]. In this case, the PML equations are
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Six auxiliary variables have been introduced here, namely Qx , Px , Rx , Qy , Py , Ry . The
damping parameters are denoted again by σx and σy , while the remaining parameters,
introduced to stabilize the PML equations, are taken as

εx(x) =
√
F0

∣∣σ ′
x(x)

∣∣, µx(x) = σx(x), µy(x) = σy(y). (14)

3.2. Original variables

From the above equations one can easily obtain the PML formulation in the orig-
inal variables. To keep the paper within a reasonable length, we present here only the
development for equations (12). As w1 = v1 + x, the system can be written
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where V1 = (φ1 u1 v1)
T and ev = (0 0 1)T. These PML equations can thus be used for

the linearized shallow water equations in the presence of Coriolis forces. To obtain a
PML method for the nonlinear equations, we multiply the above equations by f and add
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the result to the zeroth order equations. After careful identification of the total variables,
we propose the following system of equations for the nonlinear case
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where V ′ = V − V0 is the total mean flow perturbation.

4. Conservative form

For numerical methods based on the conservative form of the shallow water equa-
tions, the PML equations are not easy to implement in the form presented above which
uses the primitive variables vector V . To devise a suitable implementation in this case,
denote by S = (φ m n)T the conserved variables vector, with m = φu and n = φv. Let

M = ∂S

∂V
=


1 0 0
u φ 0
v 0 φ


 (17)

be the transformation matrix between the conservative and the primitive variables, where
the variables now represent the full quantities, not only the perturbation. The shallow
water equations (ignoring the Coriolis forces as they do not introduce any complication
and can be added later) can be written in terms of the conserved variables either in
conservation form
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or in the so-called quasi-linear form
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where the Jacobian matrices are given by
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Identifying the conservative form of the equations with the primitive-variables form (ex-
cluding Coriolis terms), one can readily obtain the following relations

Ã = M−1αM, B̃ = M−1βM. (22)

We discuss here the development of the PML equations in conservative variables
for the set of equations (16), as the other set can be obtained in a similar fashion. The
first equation in the set can be written in the case f = 0 as
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Multiplying by M, one notices that the first three terms in this equation are identical to
the conservative equations (20). Moreover, these equations hold not only for the full
variables but also for the perturbations, as the full variables can be written in the PML
region as S = S0 + S ′ where S0 implicitly satisfies the steady form of the equations.
Since for small perturbations S ′ = MV , we obtain
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Because the mean flow is supposed to be uniform in the PML region, M can be con-
sidered constant. Multiplying the second equation in (16) by M and performing some
manipulation, we obtain the following PML equations in conservative variables:
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where we keep the same notation for the auxiliary variable q, which is however updated
from a different equation in this case.
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5. Numerical study

5.1. Discretization methods

The proposed PML equations have been tested using several different discretiza-
tions. To make the paper self-contained, this section succinctly presents the methods
that we used. The nonlinear conservative form of the equations was discretized with
a multidomain Chebyshev method first proposed by Kopriva and Kolias [16]. In this
case the computational domain is partitioned into a number of subdomains (“elements”
henceforth), and on each element the solution is approximated as a tensor product of
polynomials in each of the space coordinates,

S(x, y, t) =
N∑
i=1

N∑
j=1

S(xi, yj , t)hi(x)hj (y), (26)

where the points xi and yj are the Gauss–Gauss quadrature points, located inside the
element, and h(x) is the Lagrange interpolant based on these points,

hi(x) =
N∏

p=1,p 
=i

(
x − xp

xi − xp

)
. (27)

The values of the solution S(xi, yj , t) are the degrees of freedom of the discretization,
and N is the degree of the highest polynomial in the approximation. For a given partition
of the computational domain, the accuracy of the solution increases exponentially with
N if the time discretization errors are small enough. As continuity of the solution at
element boundaries is not implicit in the form of the solution given above, it is explicitly
enforced as part of the discretization process. To this end, one computes first the value
of the interpolant (26) at the Gauss–Lobatto quadrature points (x̄m, yj ), (xi, ȳn), m,n =
0, . . . , N , which are located on the element edges (but not at element corners). For
example, at points y = yj = constant the flux component F is needed and can be
computed by evaluating pointwise the solution interpolant

S(x̄m, y, t) =
N∑
i=1

N∑
j=1

S(xi, yj , t)hi(x̄m)hj (y), m = 0, . . . , N. (28)

For those Gauss–Lobatto points located on the element edges there will be two flux
values, one from each of the two elements which have that edge in common. A unique
value is computed from these flux values using a Riemann solver [3] and is assigned
to both elements. This ensures weak continuity of the solution, and the necessary flux
derivatives can be evaluated by differentiating within each element the flux interpolant
through the Gauss–Lobatto points

F(x, y, t) =
N∑

m=0

N∑
j=1

F(x̄m, yj , t)h̄m(x)hj (y), m = 0, . . . , N, (29)
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where h̄ are the Lagrange interpolants through the Gauss–Lobatto points. This differen-
tiation can be expressed, and is actually implemented in the computer code, as a matrix–
vector multiplication operation of the form

{Fx} = [D]{F }, (30)

where {Fx} is the vector of flux derivative values at the Gauss–Gauss points, {F } is the
vector of pointwise flux values at the Gauss–Lobatto points, and D is an N × (N + 1)
differentiation matrix. For the boundary condition at the outer limit of the PML do-
main, it is straightforward under this discretization to use characteristic boundary condi-
tions, as they can be imposed using the same Riemann solver. After computation of flux
derivatives, the system of partial differential equations reduces to a system of ordinary
differential equations for the degrees of freedom which are integrated in time using a
low-storage Runge–Kutta method [20].

We also tested a finite difference discretization of both the nonlinear and linear
equations. The dispersion relation preserving (DRP) [21] fourth order method was used
for discretization in space in this case, and a linear multistep method for time integration.
The degrees of freedom are the solution values qij at the nodes (i, j) of a Cartesian grid,
and the finite difference approximation to the derivatives is given by

(
∂q

∂x

)
ij

= 1

+x

3∑
m=−3

amqi+m,j , (31)

where ai = −a−i , a0 = 0, a1 = 0.79927, a2 = −0.18941 and a3 = 0.02651 in the inte-
rior of the domain [21]. Nonsymmetric finite difference stencils are used at the bound-
aries. Under this discretization we used either the asymptotic form of the radiation and
outflow boundary conditions for the shallow water equations without the Coriolis force
at the outer limit of the PML domain, or a simple closure similar to that proposed by
Hu [14]. In the former case, for the points located at the boundary of the domain, a
different partial differential equation is used as closure. For example, for those bound-
aries where the mean flow velocity is directed inside the computational domain, these
equations can be written in the form (usually known as a radiation boundary condition):(

1

Vθ

∂

∂t
+ ∂

∂r
+ 1

2r

)
q = 0, (32)

where Vθ = F0 cos θ +
√

1 − F 2
0 sin2 θ , with r the radius from the source of disturbance

to the boundary point and θ the angle between this radius and the mean-flow velocity
direction. In the latter case, denoting the entire computational domain by [xm, xM ] ×
[ym, yM ], we impose

φ = φ0 at x = xM, y = ym, y = yM,

φ = φ0, v = v0 at x = xm.
(33)
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The damping coefficients used in the computation are of the form

σx(x) = σM

∣∣∣∣x − xd

L

∣∣∣∣p, σy(y) = σM

∣∣∣∣y − yd

L

∣∣∣∣p, (34)

where the subscript d denotes the value of the respective coordinate where the PML
region starts, σM is a constant, and p is an integer exponent. The particular values used
for these parameters are specified for each computation in the next section. The value
of the strong well-posedness coefficient ε is equal to zero unless otherwise mentioned.
In all cases, the error was computed by comparison to a reference solution obtained
on a domain large enough to remain unaffected by reflections until the final time of
the computation. In order to study the stability of the proposed PML formulations, no
filtering of any kind has been used to stabilize the computations in the domain proper or
in the PML region, even in the nonlinear case.

5.2. Flows without Coriolis forces

5.2.1. Gaussian pulses
The first tests investigated the propagation of potential and vorticity pulses speci-

fied initially by

φ(x, y, t = 0)= φ0 + Aφe− ln(2)((x+xφ)
2+y2)/δ2

φ ,

u(x, y, t = 0)= u0 + Avye− ln(2)((x+xv)
2+y2)/δ2

v , (35)

v(x, y, t = 0)= v0 − Av(x − xv)e
− ln(2)((x+xv)

2+y2)/δ2
v .

Here δφ = 3 represents the width of the potential pulse, and δv = 4 the width of
the vorticity pulse. Results for F0 = 0, Av = 0, Aφ = 0.1 and xφ = 0 have been
computed using both the spectral method with 25 elements and the solution interpolated
by a polynomial of degree twelve on each element, and the finite difference method with
a step size +x = +y = 1. The computational domain is [−45, 45]2, with a PML domain
of width L = 10 positioned inside. In both cases the exponent for the damping profile
was set to p = 2, and σM = 1. Figure 1 shows the maximum error in the potential φ
at the interior limit of the PML domain for the nonlinear conservative formulation using
the spectral discretization. Unfortunately the second PML formulation (13) turned out
to be unstable, due to discontinuities of the order of interpolation error that exist at
interdomain boundaries in this discretization, so we can only report results using the first
PML formulation (PML1, equation (12)). The reflections produced by the characteristic
boundary treatment are about two orders of magnitude larger than those generated by
PML1. In figure 2 we plot again the maximum error in the potential computed using
the linear equations discretized by the finite difference method when the computational
domain is closed by the simple boundary conditions in equation (33), and in figure 3 we
use the asymptotic boundary condition. The reflections caused by the simple boundary
condition are significantly reduced by both PML formulations, i.e. about five times by
PML2 and with more than two orders of magnitude by PML1. Note that the presence of
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Figure 1. Maximum error in the potential for the propagation of a Gaussian pulse at F0 = 0.0, nonlinear
conservative formulation, spectral multidomain method. PML versus characteristic boundary conditions.

Figure 2. Maximum error in the potential for the propagation of a Gaussian pulse at F0 = 0.0, linear
primitive variables formulation, finite difference method. PML versus simple boundary conditions.
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Figure 3. Maximum error in the potential for the propagation of a Gaussian pulse at F0 = 0.0, linear
primitive variables formulation, finite difference method. PML versus asymptotic boundary conditions.

the layers causes reflections to develop sooner (at approximately t = 40) in the results
than for the cases with no layer. The asymptotic boundary condition is quite accurate,
to the extent that formulation (13) (PML2) is not able to outperform it, while PML1
reduces the reflections by more than one order of magnitude.

As a more demanding test case, we consider Aφ = 0.1, xφ = −20, Av = 0.005
and xv = 25, and run the nonlinear finite difference method with a layer width L = 15,
σM = 1 and p = 4. In this case the mean flow Froude number is F0 = 0.2. Figure 4
shows the maximum error in the x-velocity component along the right boundary of the
domain proper as a function of time with different boundary conditions. In this case
PML1 is more than an order of magnitude better than the asymptotic boundary condition,
which still performs better than PML2.

5.2.2. Pulsating source
As a test of the long-time integration properties of the PML algorithms, we con-

sider as a second test the propagation of gravity waves generated by a harmonic source
in a uniform mean flow. The following source term is added to the right-hand side of the
equation for the potential

R(x, y, t) = Aφe− ln(2)(x2+y2)/δ2
φ sin(ωt). (36)

We set F0 = 0.3, Aφ = 0.01, δφ = 3 and ω = 0.2 and compare the solution obtained in a
large reference domain with the solution obtained in a computational domain [−55, 55]2
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Figure 4. Maximum error in u for propagation of Gaussian pulses at F0 = 0.2, nonlinear nonconservative
formulation, finite difference method. PML versus asymptotic boundary conditions.

Figure 5. Maximum error in φ for source in F0 = 0.3 flow, linear primitive variables formulation, finite
difference method. PML versus asymptotic boundary conditions.
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Figure 6. Contour levels for the potential φ, source in F0 = 0.3 flow, PML1.

Figure 7. Maximum error in φ for harmonic source at F0 = 0 flow, linear primitive variables formulation,
finite difference method. PML versus simple boundary conditions.

using a PML region of width 15 positioned inside. The parameters for damping in the
PML are again taken as σM = 1 and p = 4. Figure 5 presents the maximum error
in the potential at x = 39 as a function of time for the PML methods closed with the
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(a)

(b)

Figure 8. x-velocity (u) contours at t = 23 for propagation of a Gaussian pulse at F0 = 0.01, for
(a) f = 0.01 and (b) f = 0.1.

asymptotic boundary condition. In this advective case both methods showed no sign of
instability. A contour plot of the potential values at time t = 100 is shown in figure 6.
We noticed however that in the absence of mean flow, i.e., for F0 = 0, PML2 became
unstable, as can be seen in figure 7 for times later than t = 300.

5.3. Flows with Coriolis forces

For this type of flow we only performed numerical studies using the linear equa-
tions. The results pertaining to the performance of the two PML formulations presented
in the previous section extend naturally to this case, since the computations can be done
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(a)

(b)

Figure 9. x-velocity (u) contours at t = 23 for propagation of a Gaussian pulse at F0 = 0.2, for
(a) f = 0.01 and (b) f = 0.1.

using the newly introduced variable w1 = v1 + x, and the results for v can then be re-
covered afterwards by setting v = v0 + f (w1 − x). We note that in the nonlinear case
one needs to work with the original variables directly. To show the effect of the Coriolis
force on the performance of the damping layer, we consider the propagation of a pulse as
given in equation (35), with δφ = 3, Aφ = 0.1, xφ = 0 and Av = 0, and compute the so-
lution in the domain [−55, 55]2, with a PML domain of width L = 15 positioned inside
for different values of the Coriolis force and different values of the Froude number F0.
The values of the damping parameters are taken as σM = 1 and p = 2, and only PML1
was tested for this case. By extension, we still use at the outer limit of the PML domain
the asymptotic type boundary condition [21]. Shown in figure 8 are the contours for u at
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(a) (b)

Figure 10. x-velocity (u, (a)) and potential (φ, (b)) contours at t = 50 for propagation of a Gaussian pulse
at F0 = 0.2, f = 0.01.

(a) (b)

Figure 11. x-velocity (u, (a)) and potential (φ, (b)) contours at t = 50 for propagation of a Gaussian pulse
at F0 = 0.2, f = 0.1.

t = 23, before the pulse reaches the interior limit of the PML region, for two different
values of the non-dimensional Coriolis factor f = 0.01 and f = 0.1 in a mean flow
with F0 = 0.01. For the results in figure 9, F0 = 0.2. For this last value of the Froude
number we also show, in figures 10 and 11, the contours of u and φ after the pulse has
entered the PML domain (time t = 50) for f = 0.01, and f = 0.1, respectively. The
effectiveness of the PML is clear from these pictures. As expected, the behavior of the
maximum error at the interior limit of the PML was found to be similar to the previous
cases. We note that the main effect of the Coriolis forces is, as expected, to shear and
rotate the velocity field, while the potential field is hardly affected.
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6. Conclusions

In all the simulations performed, the performance of Hu’s newly developed PML
method [14] was better than that of Abarbanel’s et al. method [2]. Therefore, we recom-
mend the former as the method of choice for lateral boundary conditions in limited-area
models. Coriolis forces do not appear to affect the performance of the PML method
significantly. Although we did not discuss it in this paper, we noticed that for nonlinear
computations both PML methods became unstable for very long time integration. This
was a consequence of nonlinear instabilities, and could be avoided by using a low-pass
filter. No such instability was noticed in the linear case unless explicitly stated in the
previous section.
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