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Abstract

The deformation of marker horizons across slip surfaces can lead to the development of several types of flanking structures. The
development of such structures was investigated using a numerical model to simulate the flow around a slip surface in a viscous medium.
The modelled structures can be classified on the basis of three criteria: (1) the extensional or contractional offset of markers, (2) the co- or
counter-shearing sense along the slip surfaces and (3) the normal or reverse drag of markers relative to the shear sense along the slip surfaces.
As a function of the kinematic vorticity of the flow and the initial orientation of the slip surface, with respect to the shear zone boundaries,
three main types of structures can develop: (1) shear bands developed along co-shearing extensional slip surfaces; (2) a-type flanking folds
developed along counter-shearing slip surfaces; and (3) s-type flanking folds developed along co-shearing contractional slip surfaces. All
these structures can occur with either normal or reverse drag effects. Shear bands and a-type flanking folds recording opposite shear senses
can be geometrically very similar and consequently lead to kinematic misinterpretations. However, correctly identified flanking structures

can provide quantitative information about the kinematic vorticity of the flow. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Ductile shear zones often contain discrete internal slip
surfaces oblique with respect to the shear zone boundaries
and generally dipping in the direction of the shear. These
slip surfaces are referred to as C’-surfaces (Berthé et al.,
1979), shear bands (White, 1979) or extensional crenula-
tion cleavage (Platt and Vissers, 1980), and they are
frequently used as kinematic indicators. Because these
slip surfaces often make a small angle (~25-30°) with
respect to the shear zone boundaries, they are thought to
represent an irrotational direction of the flow. Conse-
quently they have been interpreted as being parallel to
the shortening eigenvector of a general shear flow
(Simpson and De Paor, 1993; Pray et al., 1997). The
kinematic interpretation of shear zones can, however, be
hindered by the presence of slip surfaces recording an
opposite sense of shear with respect to the regional
shear sense (Platt and Vissers, 1980; Behrmann, 1987;
Ramsay and Lisle, 2000). Furthermore, these slip systems
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may co- or counter-rotate during progressive deformation
(Platt, 1984; Stock, 1992) and are thought to be indicative
of general shear flow (Platt and Vissers, 1980).

An additional problem is that the deflection of marker
horizons adjacent to some slip surfaces indicates an opposite
shear sense relative to the displacement revealed by the
offset of such marker horizons. Such structures, charac-
terised by an inconsistent drag of marker horizons, are
observed in various natural settings (Grasemann and
Stiiwe, 2001; Passchier, 2001), as well as in analogue
(Baumann, 1986; Hudleston, 1989; Odonne, 1990) and
numerical models of faults in elastic materials (Baumann,
1986; Reches and Eidelman, 1995). Such features indicate
that ‘classical’ shear bands (i.e. C'-surfaces) represent only
one example of several types of structures along slip
surfaces that can develop during progressive deformation.
Therefore, the general name of flanking structures (Passch-
ier, 2001) has been recently introduced for the deflection of
the fabric of rocks (e.g. foliation or layering) near the
margin of cross-cutting elements (CE). CE corresponds to
a cross-cutting planar feature (e.g. fault, vein or dyke)
embedded in a layered rock referred to as the host element
(HE; see Fig. 1).

Using numerical modelling Grasemann and Stiiwe
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Fig. 1. Terminology of the flanking structures discussed in the present
study. HE—host element containing marker horizons parallel to the
shear zone boundaries; CE—cross-cutting element, i.e. a planar slip surface
embedded in the HE. The convex or concave deflection of the marker line in
the direction of shear along CE defines normal or reverse drag. (a) s-Type
flanking folds are co-shearing with a contractional offset, (b) a-type flank-
ing folds are counter-shearing; and (c) shear bands are co-shearing with an
extensional offset.

(2001) investigated the deflection and offset of marker
horizons around a CE simulating a tension gash initially
oriented at 45° with respect to the boundaries of the shear
zone deforming by simple shear. This modelling showed
that, during progressive deformation, the drag of the
marker horizons associated with the rotation and shear
of the CE leads to the formation of an antiform—synform
fold train. For a rheologically strong CE, no offset of the
marker horizons occurs at the CE. In contrast, a rheolo-
gically weak CE leads to the development of a slip
surface recording a displacement in the opposite sense
relative to the bulk shear flow. Consequently, although
the drag of the marker horizons is consistent with the
main shear sense, it is inconsistent with the shear sense
along the CE. These results show that a correct kinematic
interpretation requires a careful analysis of the deflection
of marker horizons.

The present study addresses the deformation around
slip surfaces (CE) embedded in a ductile rock (HE) as a
function of the type of ductile flow and of the initial
orientation of CE. The full range of isochoric plane strain

flow conditions between the end members simple and
pure shear is investigated. Deformation is applied for
the complete range of initial CE orientations, whereas
marker horizons in the HE are initially parallel to the
shear zone boundaries.These conditions generate a spec-
trum of flanking structures that can be subdivided into
shear bands, a- and s-type flanking folds, all of them
showing either a normal or a reverse drag (Fig. 1). The
aim of this study is to describe the instantaneous and finite
kinematic development of these flanking structures on the
basis of a comparison between the results of finite element
modelling and natural examples.

2. Numerical technique

In order to investigate the range of flanking structures
developing within a linear viscous medium (HE) around
an active but pinned slip surface (CE), we use the two-
dimensional finite element model BASIL of Barr and
Houseman (1992, 1996). The modelling methodology is
comparable with that presented in Grasemann and Stiiwe
(2001) but differs in three aspects: (1) we model only linear
viscous material because non-linear and linear rheologies
generate topologically equivalent structures (Grasemann
and Stiiwe, 2001); (2) we investigate only the deformation
around an infinitely thin free-slipping surface embedded in a
viscous medium; and (3) the conditions are relaxed to
include general shear.

2.1. Rheology

For a linear viscous rheology stress is proportional to
strain rate:

where 7;; are the deviatoric components of the stress tensor,
€;; are the components of the strain rate tensor and 7 is the
viscosity. The strain rate is defined in terms of the compo-
nents of velocity u, in the spatial x;- and x-directions:

1| duy ou;
e= | 204 24 @)
2 (9)('] (9)('1‘
BASIL calculates incompressible plane strain deforma-

tion by using Eq. (1) with the force balance equations in two
dimensions:

Tij

J d
4+ —p=0 3
dxj' TU dxip ( )

where the summation is over the i and j indices and p is the
pressure.

2.2. Geometry of the CE

The numerical model was set up to describe flow distur-
bances around pre-existing slip surfaces. The development
of CE is not considered here and discussed elsewhere (e.g.
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Fig. 2. Initial set-up and boundary conditions for the finite element model.

f

The grid includes 48 by 16 elements. Stress and strain are continuous across the

lateral boundaries except in the central 25% where deformation is discontinuous (see text). Velocities applied at the upper and lower boundaries of the grid
allow a wide range of flow types. The variable fault-tilt angle ¢ defines the initial orientation of the CE.

Platt, 1984; Harris and Cobbold, 1985; Dennis and Secor,
1987; Jiang and White, 1995). The deformation is parti-
tioned between the slip surface and continuous deforma-
tion in the matrix. The latter can be separated into a
background strain induced by the boundary conditions
and a perturbation strain (e.g. Mancktelow, 1991). The
model includes a region with 48 by 16 elements in the
two spatial directions (Fig. 2). The left side of the
modelled region was numerically welded to the right
side, so that all components of stress and deformation
are continuous across this boundary in order to simulate
an infinite periodic shear zone. This condition was relaxed
in the central 25% of the lateral boundary of the grid,
where we assume that: (i) the shear stress on the fault is
zero; (ii) the normal stress across the fault is continuous;
and (iii) the velocity normal to the fault is continuous but
otherwise unconstrained. This corresponds to a pinned
slip surface along the side of the modelled region. Over-
all, this starting geometry simulates an infinitely long
shear zone, with internal slip surfaces repeated at
distances corresponding to three shear zone widths and
oriented at angle ¢ to the shear zone boundaries. The
robustness of these assumptions for shorter slip surfaces,
finer grid spacing and other aspect ratios was tested to
ensure that the simulations represent a close approxima-
tion of the deformation of a finite length fault unaffected
by the thickness of the shear zone.

The assumption of zero shear stress along the slip surface
is not necessarily a realistic approximation of natural beha-
viour in rocks, but it is convenient for the purpose of asses-
sing the influence of the slip along a CE on the deformation
of the surrounding HE. Increasing the friction along the slip
surface would result in a smaller slip, and therefore in a less
pronounced drag of marker lines in the HE (Reches and

Eidelman, 1995). Marker horizons in the HE simulate a
foliation or layering that is initially parallel to the shear
zone boundaries, and consequently to the fabric attractor
of the flow (Passchier, 1987).

2.3. Boundary conditions

The displacement boundary conditions at the top and
bottom of the modelled shear zone are velocities. The
components of the velocity gradient tensor L for homo-
geneous isochoric plane strain flow, where the stretching
eigenvector of the flow is parallel to the shear zone bound-

aries, are:
ﬁui (?Mi
L _ r?xi é’x] (4)
U (?M]
0 )
&Xj
where:
(9ui _ f?l/l]
ox; ox;

7

Because we want to compare finite structures developing
during different flow types, between the pure and simple
shear end-members, it is critical to find components of L
resulting in comparable finite deformation. However, there
is no general agreement about what boundary conditions
lead to equivalent finite deformation for different flow
geometries (e.g. Fossen and Tikoff, 1997; Jiang, 1998).
For the present study we used velocities for different flow
geometries that are characterised by the same stretching rate
factor over the same time increment (Fig. 3). For a given
kinematic vorticity number Wy and a stretching rate factor S,
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Fig. 3. Examples of finite deformation of a unit square after a time incre-
ment | and corresponding Mohr Circles for L having the same stretching
rate factor S used in the numerical models. Examples are shown for kine-
matic vorticity numbers of (a) Wy = 1, (b) Wy = 0.87, (c) Wy = 0.5 and (d)
W, = 0. « is the angle between eigenvectors of flow, 8 is the angle between
ISA, and shear zone boundary. Finite deformation parameters are given in
Table 1.

the components of L can be calculated by (modified after
Passchier, 1987):

N
51/1 - W} WiS

L= g (%)
— _ 2
0 SV W

The corresponding deformation gradient tensor D given by
Ramberg (1975) and combined with Eq. (6) is:

St [ Vi-W
GXP(? 1- Wk) Z—VVk
St
0 exp(—;wll - Wlf)

where 7 is the time. The components of L of the different
models, the derived deformation gradient tensor after r = 1,
and the finite deformation parameters are listed in Table 1.

The boundary flow type is defined by Wy (Fig. 3), corre-
sponding to the cosine of the angle a between the non-
rotating directions (eigenvectors) of the flow (Passchier,
1987). The kinematic vorticity number consequently varies
between Wy = 0 for ideal pure shear (&« = 90°) and W, =1
for ideal simple shear (a = 0°). The flow type also deter-
mines the orientations of the shortening ISA, and of the
stretching ISA; with respect to the shear zone boundaries,
and these orientations are given by the angles B and
B +90°, respectively. The relation between « and B is
given by B = (a +90°/2. These parameters can be
elegantly illustrated in a Mohr circle (e.g. Passchier, 1987)
plotting instantaneous stretching rates (€) against angular
velocities (w). Mohr circles of similar diameter indicate
the same stretching rate factor S. Consequently, the bound-
ary conditions used for our modelling can be illustrated by
shifting a Mohr circle with a constant diameter along the w-
axis, between the end-members of pure and simple shear
(Fig. 3).

D= (6)

3. Instantaneous structural development

Fig. 4 shows the instantaneous deflection of the central
marker line between two CEs as a function of initial orien-
tation of the CE varying between ¢ = 10° and 170°. For a
given initial orientation of the CE, each diagram shows the
instantaneous deflection of the central marker line for the
complete range of flow types, between simple shear
(a =0° and pure shear (o = 90°). The marker lines are
labelled with letter codes A to K corresponding to the
instantaneous flanking structures classified in Figs. 5 and
6. Different outlines are used for the central marker lines,
as a function of the rotation sense of the CE, which can
undergo either co-, non- or counter-rotation compared
with the sense of the main shear flow. If the sense of
shear along the CE is the same as the main shear flow, the
slip surface is co-shearing, whereas it is counter-shearing



Table 1
List of deformation parameters of the FEM models.*

a W B S L L; Li L D D; D; Dy I L A A 1 +e 1+ e R
9 0 9 2 1 0 0 1 2718282 0 0 0367879 7.524391 1 7.389056 0.135335 2.718282 0.367879 7.389056
85 0.087155743 87.5 2 0996195 0.174311 0 —0.9961947 2707958 0.204607603 0  0.369282 7.511268 1 7.375687 0.135581 2.715822 0368213 7.375687
80 0.173648178 85 2 0.984808 0347296 0  —0.9848077 2677297 0406219648 0 0373511 7.472445 1 7336133 0.136312 270853  0.369204 7.336133
75 0258819045 825 2 0.965926 0.517638 0  —0.9659258  2.627219 0.601971505 0 0380631 7.409528 1 7.272015 0.137513 2.696667 0.370828 7.272015
70 0342020143 80 2 0.939693 0.68404 0 —0.9396926  2.559195 0.789250064 O 0390748 7.325077 1 7.185916 0.139161 2.680656 0.373043 7.185916
65 0422618262 77.5 2 0906308 0.845237 0  —0.9063077 2475167 0965794795 0 0404013 7.222437 1 7.081218 0.141219 2661056 0375791 7.081218
60 0.5 75 2 0.866025 I 0  —0.8660254 2377443 1.129772083 0 042062  7.10554 1 6961901 0.143639 2.638541 0.378997 6.961901
55 0573576436 725 2 0.819152 1.147153 0  —0.8191520 2.268575 1.279818396 0  0.440805 6978679 1 6.832315 0.146363 261387 0382575 6.832315
50 0.64278761 70 2 0.766044 1285575 0  —0.7660444  2.15124 1415050804 O 0464848 6.846286 | 6696965 0.149321 2587849 0.386421  6.696965
45 0707106781 675 2 0707107 1414214 0 —0.7071067  2.028115 153504629 0 0493069 6712734 1 6560302 0.152432 2561309 0.390425  6.560302
40 0766044443 65 2 0.642788 1.532089 0  —0.6427876  1.901775 1639793734 0 0525825 6582163 1 6426558 0.155604 2535066 0.394467 6.426558
35 0.819152044 625 2 0573576 1.638304 0  —0.5735764 1774602 1729624314 0  0.563506 6458354 1 6299614 0.15874 2509903 0398422 6.299614
30 0866025404 60 2 0.5 1732051 0  —05 1.648721 1.805127089 0  0.606531 6344645 1 6.182909 0.161736 2.486546 0.402164 6.182909
25 0906307787 57.5 2 0422618 1812616 0 —04226182  1.525952 1.86705688 0  0.655329 6243886 1 6.079396 0.16449 2465643 0.405574 6.079396
20 0939692621 55 2 034202 1.879385 0  —0.3420201  1.407789 1916241201 0 0710334 6.158423 1 5991521 0.166903 2447758 0.408537 5.991521
15 0965925826 525 2 0258819 1.931852 0  —0.2588190  1.295399 1953492262 0  0.771963 6.090118 1 5921234 0.168884 2433359 0.410955 5.921234
10 0984807753 50 2 0.173648 1.969616 0 —0.1736481  1.189637 1.97952897 0  0.840593 6.040367 1 5.870009 0.170357 242281  0.412744 5.870009
5 0996194698 47.5 2 0.087156 1.992389 0  —0.0871557 1.091067 199491276 0 0916534 6010138 1 5838872 0.171266 2416376 0.413843 5.838872
0 1 45 2 0 2 0 0 1 2 0 1 6 1 5828427 0.171573 2414214 0414214 5.828427

a

a—angle between eigenvectors of flow; W —kinematic vorticity number: Wy = cosa; B—angle between ISA, and coordinate system: 8 = (90 + «)/2; S—stretching rate factor; L;—component of
velocity gradient tensor L (fig. 2 in Passchier, 1987); D;;—component of rotated general position gradient tensor with Dj; = 0 (Eq. (38) in Ramberg, 1975); I,, ,—first and second invariant of D (Egs. (33.8) and

(33.9) in Ramsay and Lisle, 2000); A;, A,—principal quadratic stretch (Eqs. (33.10) and (33.11) in Ramsay and Lisle, 2000); 1+, 1 + e,—principal strain; R—ellipticity
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Fig. 5. Diagram illustrating the instantaneous development of flanking structures as a function of the type of flow (horizontal axis) and the initial orientation of
the CE (vertical axis), based on the modelling results in Fig. 4. Letter codes A—K as in Fig. 4. See text for details.

otherwise. Faulting along the CE reveals either an exten-
sional or contractional offset of marker lines. A key point for
a correct kinematic interpretation of the flanking structure is
the deflection (curvature) of marker lines in the direct vici-
nity of the CE. Normal-drag is defined as a deflection of the
central marker line that is convex in the direction of shear
along the CE, whereas a concave deflection indicates a
reverse-drag (Hamblin, 1965). In other words, the drag is
called ‘normal’ if the deflection of the central marker line
indicates a rotation in accordance with the sense of shear
along the CE, and is otherwise called ‘reverse’.

On the basis of Fig. 4, three types of flanking structures
can be distinguished (compare Fig. 1): (1) shear bands are
co-shearing with an extensional offset; (2) a-type flanking
folds are counter-shearing; and (3) s-type flanking folds are
co-shearing with a contractional offset. All three types of

structures can have a normal or a reverse drag of the HE
near the CE. Note that these definitions are different from
those of Dennis and Secor (1987), who used normal and
reverse slip for extensional and contractional offset along
oblique crenulations. We emphasize that our terminology
also differs from that used by Passchier (2001), who defines
a flanking structure as synthetic (or antithetic) if the rotation
indicated by the deflected central marker line (i.e. the drag)
is in the same (or the opposite) sense with respect to the
sense of shear along the CE. However, model results in Fig.
4 demonstrate that the offset along CE and the drag effects
are independent parameters, both of which are necessary for
the suggested terminology.

Fig. 5 together with the simplified schematic plot of Fig. 6
illustrates the instantaneous development of the various
structures modelled in Fig. 4, as a function of the flow

Fig. 4. Calculated deformation of the central marker line. The diagrams show the vertical instantaneous velocity ; plotted for the length of the central marker
line between two CEs, for different flow types. The shear sense is always dextral. The initial orientations of the CE varies between ¢ = 10° and 170° (a—q). @
is the angle between the eigenvectors typical for the flow type (simple shear, @ = 0°; pure shear, @ = 90°). The marker lines are labelled with letter codes A to
K corresponding to the instantaneous flanking structures classified in Figs. 5 and 6. Different line patterns are used for co-, non- and counter-rotating CEs.
Thick dotted lines show orientations of CEs that are parallel to either ISA; or ISA;.
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shear band
SN,

type («) and the initial orientation of the CE (¢). The plot in
Fig. 5 is subdivided into different fields, as a function of (i)
the sense of shear along the CE, (ii) the sense of rotation of
the CE; and (iii) the drag of HE.

(1) Sense of shear along the CE: The diagram shows three
fields, separated by two oblique and parallel lines represent-
ing the orientations of the instantaneous stretching axes
(ISAs) as a function of the flow type. The lower line corre-
sponds to the shortening ISA, and its orientation is defined
by ¢ = (a + 90°)/2 = B. The ISAs correspond to the only
orthogonal pair of lines having the same angular velocity,
i.e. they are directions of no infinitesimal shear. Conse-
quently, CEs parallel to the ISA, develop no instantaneous

offset of the central marker line (structure G,), although the
slip surface co-rotates during progressive deformation. In
the field below the ISA; (¢ < B), co-shearing along the
CE leads to the development of shear bands (structures
A-F), whereas counter-shearing CEs in the field above
the ISA, (B < ¢ < B + 90°) induces a-type flanking folds
(structures H and I). The second direction of no instanta-
neous shear corresponds to the orientation of the stretching
ISA,, defined by ¢ = 0.5« + 135°= 8 + 90°. CEs parallel
to the ISA, again develop no deflection of the central marker
line (structure G;). In the field above the ISA;
(¢ > B +90°), co-shearing along the CE results in the
development of s-type flanking folds (structures J and K).

(ii) Sense of rotation of the CE: Flanking folds are always
associated with co-rotating CEs but shear bands can be
associated with co-, non-, or counter-rotating CEs. The
orientations of non-rotating CEs (structures B and E) corre-
spond to a curved line in the lower part of the diagram in
Figs. 5 and 6. This line separates the fields of shear bands
associated with co-rotating CEs, to the left (structures C and
F), from those associated with counter-rotating CEs, to the
right (structures A and D). For ¢ > 40°, the line of non-
rotating CEs is identical to the line of non-rotating passive
markers (i.e. « = ¢), which is by definition the orientation
of the shortening eigenvector of the flow. For ¢ < 40°,
however, these lines diverge significantly, implying a field
where CEs with low ¢ angles are still co-rotating, although
passive markers are counter-rotating. This surprising beha-
viour arises because, in contrast to passive markers, the
modelled CE simulates a pinned active slip surface. Trans-
fer of material from the footwall to the hanging wall occurs
at the upper slip surface tip, and from the hanging wall to the
footwall at the lower slip surface tip (Barr and Houseman,
1996). If this transfer is in the direction of the bulk shear
flow, the additional spin component on the CE can induce its
co-rotation. However, this effect requires a significant
component of co-shearing along the CE and it is conse-
quently restricted to ¢ angles of less than 40° (Pray et al.,
1997) and to deformation dominated by simple shear
(a < 45°).

(iii) Drag of HE: For a small initial dip of the CE
(¢p ~ <25-30° the drag of the central marker line is
convex in the direction of shear along the CE (i.e. normal)
and the resulting structures are normal shear bands (struc-
tures A, B and C in Figs. 5 and 6). For ~25-
30° < ¢ < ~150-155°, the drag of the central marker line
is reverse for all structures and flow types resulting in
reverse shear bands (structures D, E and F), a-type (H)
and s-type flanking folds (J). If the CE makes a very large
angle with respect to the shear zone boundaries
(¢ > ~150-155°), the instantaneous deformation induces
again a normal drag of the central marker line and normal
a-type (I) and s-type flanking folds (K) develop. However,
the transition between normal and reverse drag effects is
difficult to determine in the model, and might be impossible
to establish in the field, inasmuch as it implies a gradual and
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Fig. 7. Selected cases of modelled flanking structures that developed after a given finite deformation. The flow type («), the initial orientation of the CE (¢)
and the finite deformation tensor are shown for each case. For a detailed discussion see text.

subtle change of the deflection from convex to concave (e.g.
Fig. 4a—c).

4. Finite structural development and natural examples

The results above are instantaneous solutions. Except for
the special cases of non-rotating CEs (E and B), the orienta-
tion of CE will change during progressive deformation. The
final structure developed will therefore depend on (i) the
initial orientation of the CE, (ii) the flow type, and (iii)
the finite deformation. Assuming a steady state flow
(constant W), the small arrows in Fig. 5 indicate the direc-
tion of progressive structural evolution. Nearly all structures
are unstable. During ideal simple shear (a« = 0°), for exam-
ple, a normal shear band starting to develop at ¢ = 10° will
evolve with increasing deformation to a reverse shear band
(F), then to a reverse a-type flanking fold (H), to a reverse s-
type flanking fold (J), and finally to a normal s-type flanking
fold (K). Normal (B) and reverse shear bands (E) plotting

along the line of non-rotating CE are the only (meta-) stable
structures in Fig. 5. Reverse shear bands E have, however, a
precarious stability that can easily be disturbed and such
structures are consequently metastable. Just a slight devia-
tion of ¢ from its non-rotating orientation would result in
either a co- or counter-rotation of the CE. On the other hand,
normal shear bands B are stable structures, because a devia-
tion from the non-rotating orientation of the CE would result
in either counter- or co-rotation into the original non-rotat-
ing position. This result is consistent with the fact that
normal shear bands are the most frequent structures in
natural shear zones. Such natural normal shear bands are
typically characterised by an angle of less than 25-30°
between the CE and the main foliation, which approximates
the orientation of the fabric attractor for high finite deforma-
tion (Platt and Vissers, 1980; Passchier, 1984). Our model-
ling is consistent with this observation as it indicates that
normal drag along shear bands only develop at low ¢ < 25—
30°. Normal shear bands have been interpreted as being
parallel to the shortening eigenvector of a general shear
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Fig. 8. (a) Normal shear band in an amphibolite facies mylonite (Sutlej Valley, NW Himalaya, N31°30'35.3" E78°14/42.0"). [1] Co-shearing secondary shear
zone (CE); [2,3] marker lines showing an extensional offset and a normal-drag; [4] main mylonitic foliation. The angle between [4] and [1] is about 25°. (b)
Reverse shear band in an eclogite—amphibolite from the Eastern Alps (Schober Group, Austria, N46°55'06.9”, E12°43'10.1"). [1] Sigmoidal, co-shearing
quartz vein (CE); [2] marker lines with an extensional offset and a reverse-drag; [3] marker lines revealing a normal-drag near the tips of the CE; [4]
asymmetric necking of the foliation above and below the CE. (c) Reverse shear band in an amphibolite facies paragneiss (Sangla Valley, NW Himalaya,
N31°26'59.5" E78°12/29.9"). [1] Sigmoidal, co-shearing quartz vein (CE); [2] calc—silicate marker horizon with an extensional offset and a reverse-drag; [3]
marker lines revealing a normal-drag near the tips of the CE; [4] leading edge fold; [5] calc—silicate marker horizon boudinaged by a normal-drag shear band.
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flow (Simpson and De Paor, 1993; Pray et al., 1997). In
contrast, our modelling shows that stable normal shear
bands develop where CE is less steep than the shortening
eigenvector of the flow, and that CEs parallel to the short-
ening eigenvector are either unstable or metastable. In the
following sections the various types of flanking structures
simulated by our numerical model are compared with
natural structures.

4.1. Shear bands (co-shearing slip surfaces with extensional

offset)

(i) Normal shear bands are characterised by a convex
drag of the central marker line towards the shear sense
along the CE (Fig. 7) and consequently the deflection is
consistent with a drag along the co-shearing CE. It should
be noted that strictly speaking the normal-drag in the direct
vicinity of the CE is superposed on a reverse drag further
away from the CE. Typical natural examples of normal
shear bands are illustrated in many publications (e.g. shear
bands from many different rock types developed under a
broad range of metamorphic conditions are found in
Snoke et al. (1998)). Although such structures are
commonly used as a kinematic indicator, we emphasize,
again, that they are not always easily distinguished from
a-type flanking folds related to an opposite shear sense,
and such structures have been occasionally confused
(Grasemann and Stiiwe, 2001). Fig. 8a shows a normal
shear band in a mylonite of the Main Central Thrust (NW
Himalayas) characterised by a well-defined shear sense
(Vannay and Grasemann, 1998). The CE [1] corresponds
to a co-shearing slip surface recording an extensional offset.
The convex deflection of the marker lines [2,3] in the direct
vicinity of the CE indicates a normal drag superposed on a
reverse drag away from the CE. In such a highly-deformed
mylonite, the 25° angle between the CE and the mylonitic
foliation, parallel to the shear zone boundaries, strongly
suggests a stable normal shear band (structure B in Fig. 6)
that developed in a general shear flow characterised by an
intermediate Wy (0.6 = Wy = 0.8), in good agreement with
quantitative kinematic indicators reported from the Main
Central Thrust (Grasemann et al., 1999).

(i1) Reverse shear bands are characterised by concave
drag of the central marker line. These structures are identi-
cal to the asymmetric foliation boudinage revealing a
reverse drag effect (fig. 4 in Platt and Vissers, 1980). The
transition between normal and reverse shear bands is not
easy to determine. Although the distinction between these
structures gets clearer after some finite deformation (Fig. 7),
a correct identification of shear bands requires a careful
inspection of the deflection of the central marker line.
Furthermore, reverse shear bands and reverse a-type flank-
ing folds are confusingly similar, potentially resulting in an
incorrect shear sense interpretation. Natural examples of
reverse shear bands from an eo-Alpine eclogite—amphibo-
lite and from an amphibolite facies paragneiss from the

Main Central Thrust (NW Himalayas) are illustrated in
Fig. 8b and c, respectively. In both examples the shear
sense is well-established by independent shear sense
criteria. Both structures consist of a co-rotating CE corre-
sponding to an apparently weak quartz-filled vein [1],
cutting at a relatively large angle the more competent meta-
morphic foliation. Whereas most of the marker lines reveal
a reverse-drag [2], marker lines at the lower part of the
footwall of the CE, as well as at the upper part of the hang-
ing wall of the CE, show a normal-drag [3]. Together with
the relatively large angle between the CE and the marker
horizons, this change of the marker lines drag along the CE
is a specific characteristic of reverse shear bands. Further-
more, the CE is folded consistently with the bulk shear
sense. Extension along the CE is compensated by asym-
metric necking of the foliation above and below the vein
[4]. These characteristics can be also observed in the FEM
model results plotted in Fig. 7.

Because we modelled a pinned slip surface with co-shear-
ing slip, the CE is deformed in both types of shear bands
(Barr and Houseman, 1992). This deformation results in a
sigmoidal shape of the CE that is consistent with the bound-
ary shear sense. Such a sigmoidal CE is also typical for
natural shear bands, suggesting that such structures may
also not freely propagate in real rocks. The orientation of
the sigmoidal shape may also serve as an important char-
acteristic to distinguish between shear band and a-type
flanking folds.

4.2. a-Type flanking folds (counter-shearing slip surfaces)

(i) Reverse a-type flanking folds reveal a drag of the
central marker line that is concave towards the shear sense
along the CE and these structures are equivalent to the
‘paired hook folds’ described by Hudleston (1989). Due to
the diminishing amount of offset along the CE, the ampli-
tude of the flanking folds decreases from the central marker
line towards the tips of the CE. The marker lines above and
below the pinned tips of the CE typically form leading edge
folds characterised by a vergence that is inconsistent with
the boundary shear sense. For CEs oriented at
90° < ¢ < 135° with respect to the shear zone boundaries,
reverse a-type flanking folds will develop in all types of flow
between simple shear to pure shear and such structures are
probably much more common than currently reported. Fig.
9a illustrates a typical reverse a-type flanking fold devel-
oped in a calcite mylonite from the detachment fault of the
Naxos metamorphic core complex, characterised by unam-
biguous shear sense (Buick, 1991). The CE corresponds to a
late slip surface, cutting the layering and mylonitic foliation
[1], and subsequently co-rotated during progressive defor-
mation. All the marker horizons [3] cut by the co-shearing
slip surface [1], including the central marker line [2], show
an extensional offset and a reverse-drag. The marker lines
above and below the slip surface tips [4] are slightly folded
but they show no offset in the continuation of the slip
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Fig. 9. (a) Reverse a-type flanking folds in a mylonitic marble from Naxos (Greece, N37°11'23.6”, E25°30'55.1"). [1] Counter-shearing fault (CE); [2] central
marker line and [3] marker lines showing an extensional offset and a reverse-drag; [4] leading edge folds; [5] normal-drag shear band. (b) Normal s-type
flanking fold in Quaternary lake sediments from the NW-Himalaya (Sangla Valley, India, N31°2603.7", E78°14'20.9”). [1] Co-shearing CE; [2] central
marker line showing a contractional offset and a normal-drag; [3] leading edge folds. (c) Conjugate set of dextral flanking structures in an amphibolite facies
mylonite (Sutlej Valley, NW Himalaya, N31°30'24.3”, E78°14'01.0"). [1] Co-shearing extensional CE associated with normal shear band; [2] counter-
shearing extensional CE associated with reverse a-type flanking fold; [3] central marker line; [4] normal-drag along the shear band; [5] reverse-drag along the
a-type flanking fold; [6] o-type feldspar clast indicating dextral shear.
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Fig. 10. Finite reverse a-type flanking fold (¢ = 110°) and reverse shear
band (¢ = 70°) showing exact mirror symmetry after pure shear deforma-
tion.

surface. Note that these gentle leading edge folds have a
vergence that is inconsistent with the bulk shear sense.
The straight CE, the consistent drag of all the marker lines
cut by the CE, and the dextral shear sense confirmed by
normal-drag shear band boudinage [5] are the features
distinguishing this structure from a reverse shear band.

(i1) Normal a-type flanking folds share several similarities
with normal shear bands, namely the extensional offset and
normal drag of marker lines. Such structures may conse-
quently be difficult to distinguish in natural examples.
Normal a-type flanking folds should not be frequently
observed in nature because such structures develop only in
shear flows dominated by pure shear, and they evolve to
normal s-type flanking folds during progressive deformation
(Fig. 5). It is interesting to note, however, that normal a-type
flanking folds and normal shear bands can both develop
together, leading to co-existing structures looking like a
conjugate set of normal shear bands indicative of pure
shear dominated flow (Platt, 1984; Harris and Cobbold,
1985; Grasemann et al., 1999).

Shear bands and a-type flanking folds, especially with
reverse drag, are difficult to distinguish. This similarity
between reverse shear bands and a-type flanking folds
becomes clear, when the model is deformed under ideal
pure shear conditions (Fig. 10). Because the deformation
is coaxial a model with an initial CE oriented with an
angle ¢ = 110° would be an exact mirror image of the

same model using ¢ = 70°. Therefore, under pure shear
deformation, structures D =H (and also A =1; see Fig.
5). For these initial orientations of CEs, however, even a
small dextral non-coaxial component applied at the shear
zone boundaries would result in the development of reverse
a-type flanking folds and reverse shear bands, respectively.

4.3. s-Type flanking folds (co-shearing slip surfaces with
contractional offset)

(i) Normal s-type flanking folds are characterised by co-
shearing contractional offset at the level of the central
marker line, which decreases towards zero at the tips of
the CE. Above and below the pinned tips of the CE, leading
edge folds with a vergence consistent to the sense of the
bulk shear flow develop (Boyer, 1986). Normal s-type flank-
ing folds reveal several similarities with fault-propagation-
folds (Suppe and Medwedeff, 1984), although the modelled
pinned slip surface can by definition not propagate. The
main analogy stems from the fact that the CE cuts up-
section through the syncline of the leading edge folds and
that it records a decreasing displacement towards its tips.
Although fault-propagation-folds normally grow as a thrust
ramp propagates up-section from a bedding-parallel fault
segment, observations by McConnell et al. (1997) support
the interpretation that such faults can also develop both up-
and down-dip from a nucleation point. The development of
folds above fault tips will be favoured when the rate of fault
growth is low relative to the slip rate (Suppe and Medwe-
deff, 1984) or when the fault tip is pinned as the fault slip
increases (Wickham, 1995). Although there are many
natural examples of structures that could represent s-type
flanking folds, it is difficult to demonstrate that the forma-
tion of the folds is a direct consequence of co-shearing along
a co-rotating CE, and not of shearing of the overturned limb
of an antiform-synform fold train. An exceptionally beau-
tiful example of a ‘rootless fold’ is given in fig. 7 of Martelat
et al. (1997), where a clearly-developed leading edge fold
supports the interpretation of this structures as a normal-
drag s-type flanking fold. Fig. 9b shows a natural case of
a possible normal s-type flanking fold in Quaternary lake
sediments from the Himalaya. The CE corresponds to a
discrete slip surface [1], possibly representing the reactiva-
tion of one of the high-angle extensional faults commonly
observed in these sediments. The fine layering clearly reveal
the contractional offset of the central marker line [2] at the
level of the CE, whereas the marker lines above and below
the slip surface tips [3] developed a continuous antiform—
synform fold train. The down-dip vergence of these leading
edge folds indicates that the structure formed during tilting
and slumping of these soft sediments. As the slip surface is
not continuing in a decollement level this structure did not
develop as a fault-propagation-fold and the interpretation of
a s-type flanking fold is favoured.

(ii) Reverse s-type flanking folds will evolve to normal s-
type flanking folds during progressive deformation.
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However, the difference in the drag of the marker line is
subtle and the transition from reverse to normal s-type flank-
ing folds would probably be difficult to distinguish in the
field. In both modelled examples of s-type flanking folds
(Fig. 7), the CE is deformed as a direct consequence of
the slip along a pinned slip surface (Barr and Houseman,
1992).

5. Discussion

5.1. Are flanking structures useful (quantitative) kinematic
indicators?

Shear bands have been abundantly used as kinematic
indicators, although several observations have suggested a
more cautious use of this shear sense criteria (Platt and
Vissers, 1980; Behrmann 1987; Grasemann and Stiiwe,
2001). The results of the present study emphasize this warn-
ing by showing that both types of shear bands can be nearly
mirror images of a-type flanking folds recording an opposite
shearing direction. This pessimistic view has to be consid-
ered, however, parallel with the fact that normal shear bands
often appear to successfully record the correct shear sense
constrained by other independent criteria. Moreover, our
mechanical modelling shows that, if correctly analysed
and interpreted, well-developed flanking structures can not
only be useful shear sense criteria, but that they can also
provide information about the flow type, as discussed in the
following paragraph.

Normal shear bands are characterised by a low angle with
respect to the shear zone boundaries, as well as by a clear
deflection of the marker lines that is consistent with the
shear sense along the CE. In good agreement with the results
of our modelling, natural examples of normal shear bands
are typically characterised by an angle of less than 25-30°
between the CE and the main foliation, which is probably
close to the fabric attractor (e.g. Berthé et al., 1979; Platt
and Vissers, 1980; Passchier, 1984). Although normal shear
bands can form in all types of flow, such structures are only
stable in a general flow characterised by Wy around 0.6—0.8
(a = 40-50°). Natural normal shear bands can be very diffi-
cult, or even impossible to distinguish from normal a-type
flanking folds if the deflection of marker lines is not clearly
exposed. In highly-strained rocks, however, a pronounced
offset of the central marker line at the level of the CE is most
likely indicative of normal shear bands (Fig. 7). Further-
more, CEs associated with normal shear bands should
have a sigmoidal shape, whereas CEs associated with
normal a-type flanking folds should be straight (Fig. 7).

Reverse shear bands and reverse a-type flanking folds are
difficult to distinguish and it will be impossible to deduce
the shear sense from one structure alone. A close interlimb
angle of the folds along the CE could indicate a reverse a-
type flanking fold, because folds associated with reverse
shear band always show open angles between the limbs,

even after high deformation (Baumann, 1986). If it can be
shown that the CE is counter-rotating, then the structures are
reverse shear bands and the flow must have had a significant
component of pure shear. Moreover, the CE should be
sigmoidal in reverse shear bands and more straight in
reverse a-type flanking fold (Fig. 7).

Reverse and normal s-type flanking folds are the only
structures recording a contractional offset of the central
marker line and they are therefore good shear sense indica-
tors. The development of s-type flanking structures is
favoured by simple shear deformation.

5.2. Conjugate flanking structures

Natural examples of conjugate shear bands have been
interpreted to be indicative of a strong coaxial component
of deformation (e.g. Platt, 1984). According to our model,
various combinations of shear bands coexisting with either
a-type flanking folds or s-type flanking folds can develop as
a function of the initial orientation of the CE, the flow type
and the finite deformation. Such conjugate structures are
unlikely to be common in ductile flows dominated by simple
shear (a < 30°), inasmuch as shear bands are unstable for
such a flow and they evolve to flanking folds with increasing
deformation. Alternatively, combinations of reverse a-type
flanking folds with either reverse or normal s-type flanking
folds can develop in flows dominated by simple shear. In
ductile flows dominated by pure shear (a > 50°), conjugate
sets of shears bands and a-type flanking folds are more
likely to be observed, inasmuch as these structures are
associated with CEs characterised by opposite rotation
directions, and shear bands can be stable. It is therefore
probable that at least some of the ‘conjugate shear bands’
described in the literature rather correspond to combinations
of normal and/or reverse shear bands with a-type flanking
folds.

Fig. 9c shows a natural example of a conjugate set of
dextral flanking structures in a mylonite from the Main
Central Thrust (NW Himalaya), where the shear sense is
clearly defined. The normal shear band is associated with
a co-shearing extensional CE [1] along which the central
marker line [3] shows a normal drag [4]. The same central
marker line [3] indicates a reverse-drag [5] along the
counter-shearing extensional CE [2] associated with the
reverse a-type flanking fold. The dextral shear sense is
independently supported by a o feldspar clast [6]. The
development of such a conjugate set of flanking structures
is indicative of a general flow dominated by pure shear,
which is again in good agreement with quantitative kine-
matic analysis of structures from the Main Central Thrust
(Grasemann et al., 1999).

5.3. Does the development of flanking structures require a
pre-existing anisotropy?

Analogue models suggest that shear bands form in HEs
with a pre-existing anisotropy like layering or foliation (e.g.
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Williams and Price, 1990). Although anisotropy might be
important for the formation of CEs (Platt and Vissers 1980;
Dennis and Secor, 1987), our study demonstrates that all
flanking structures can develop in perfectly homogeneous
host rocks, provided that CEs exist or can develop and that
slip is allowed along the CEs. Although shear band
structures are frequently developed in highly-foliated
rocks, flanking structures may also develop in non-layered
rocks like quartzites or marbles (e.g. Grasemann and Stiiwe,
2001, fig. 6b). However, the identification of shear bands
and flanking folds in such ‘homogeneous’ rocks could be
hindered by the lack of marker horizons.

5.4. Does the orientation of flanking structures relate to
planes of maximum finite shear strain?

Recently, it has been suggested that secondary ductile
shear zones may relate to planes of maximum finite shear
strain (Ramsay and Lisle, 2000). During simple shear flow
two sets of structures may develop, a counter-shearing C1I-
band and a co-shearing C2-band, both of which are dipping
in the opposite direction relative to the bulk shear. Accord-
ing to our model these orientations would develop a-type
(Cl1-bands) and s-type (C2-bands) flanking folds. However,
shear bands, which are co-shearing but dipping in the direc-
tion of bulk shear flow, are the most frequent flanking
structures and have been successfully applied as shear
sense criteria (for examples see Passchier and Trouw,
1996). Because of their orientation these shear bands cannot
be related to planes of maximum finite shear strain. Yet
again, a precise distinction between C1 bands (a-type
flanking folds) and shear bands are crucial for the correct
interpretation of the shear sense, which might be aided by a
careful comparison of natural examples with modelled finite
structures outlined in Section 4.

6. Conclusions

The instantaneous geometry of flanking structures is a
function of the initial orientation of the CE and the flow
field. On the basis of the shear sense along the CE, and offset
of the HE, flanking structures can be separated into shear
bands, a- and s-type flanking folds, all of which can have a
normal and reverse drag. Shear bands and a-type flanking
folds can be easily confused in natural rocks, potentially
resulting in an incorrect kinematic interpretation. During
progressive deformation, most flanking structures gradually
evolve to other types of flanking structures as a consequence
of rotation of the CE. Normal shear bands with low angle
orientations of the CE, which is non-rotating, are the only
stable structures. The stability of normal shear bands,
predicted by our modelling, accounts for the fact that this
type of flanking structure is the most common in nature and
has been successfully used as shear sense indicator. The
present modelling indicates that conjugate shear bands can
develop only during pure shear, when shear bands and

a-type flanking folds are mirror images. Non-coaxial
deformation can result in conjugate sets of shear bands
and flanking folds. Flanking structures can form in homo-
geneous host rocks, without the need for pre-existing aniso-
tropies or layering, provided that CEs already exist or can
develop.
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