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Abstract

Simulations of water transport in soil are ubiquitous, and the Richards’ equation introduced in 1931 is the main tool for that

purpose. For experiments on water transport in soil horizontal columns, Richards’ equation predicts that volumetric water

contents should depend solely on the ratio (distance)/(time)q where q ¼ 0:5: Substantial experimental evidence shows that

value of q is significantly less than 0.5 in some cases. Donald Nielsen and colleagues in 1962 related values of q , 0.5 to ‘jerky

movements’ of the wetting front, i.e. occurrences of rare large movements. The physical model of such transport is the transport

of particles being randomly trapped and having a power law distribution of waiting periods. The corresponding mathematical

model is a generalized Richards’ equation in which the derivative of water content on time is a fractional one with the order

equal or less than one. We solved this equation numerically and fitted the solution to data on horizontal water transport. The

classical Richards’ equation predicted a decrease of the soil water diffusivity for the same water content as infiltration

progressed whereas the generalized Richards’ equation described all observations well with a single diffusivity function.

Validity of the generalized Richards’ equation indicates presence of memory effects in soil water transport phenomena and may

help to explain scale-dependence and variability in soil hydraulic conductivity encountered by researchers who applied

classical Richards’ equation.
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1. Introduction

Transport of soil water affects heat and solute

transport in soils, defines rates of biological

processes in soil and water supply to plants,

governs transpiration and ground water replenish-

ment, controls runoff, and has many other

important functions in the environment. Therefore,

simulations of water transport in soil have many

applications in hydrology, meteorology, agronomy,

environmental protection, and other soil-related

disciplines. Success of a multitude of projects

depends on the correctness of the model of soil

water transport.

The Richards’ equation is the most often used

model. It has been introduced by Richards (1931)

who has suggested that the Darcy’s law originally

devised for saturated flow in porous media is also

applicable to unsaturated flow in porous media.

One-dimensional horizontal soil columns present
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the simplest systems to assess the validity of the

Richards’ equation. For such systems, Richards’

equation reduces to

›u

›t
¼

›

›x
DðuÞ

›u

›x

� �
: ð1Þ

Here u is the volumetric soil water content

(m3 m23), D is the soil water diffusivity (m2 s21),

x is the distance from one of the ends of the

column (m), t is time (s). Soil bulk density changes

and soil water hysteresis are ignored in this

formulation (Miller and Miller, 1956). Introduction

of the Boltzmann variable

l ¼
x

t0:5
ð2Þ

transforms Eq. (1) into an ordinary differential

equation

2
l

2

du

dl
¼

d

dl
DðuÞ

du

dl

� �
ð3Þ

which has been used to find analytical solutions for

soil water flow problems and also to find the

dependence of the diffusivity D on soil water

content u (Hillel, 1980). If Eq. (3) is applicable

then soil water content is a function of the

Boltzmann variable l, and, for the same values

of soil water content, one should expect the same

values of the Boltzmann variable.

Validity of Eq. (3) can be tested with experimental

data consisting of observed soil moisture changes

during infiltration in horizontal soil columns with

initially uniform soil water content as shown in Fig. 1.

Distances and times at which the same values of water

content have been observed must obey equations

x1

t0:5
1

¼
x2

t0:5
2

¼
x3

t0:5
3

¼ · · ·;

and, in general,

x ¼ At0:5 ð4Þ

where the multiplier A depends only on water content.

This equation means that the dependence between

lg(x ) and lg(t ) plotted in log–log coordinates is linear

and the slope of this dependence is 0.5 whereas the

intercept depends on the water content.

Significant deviations from Eq. (4) have been

observed in many published experiments. Gardner

and Widtsoe (1921) and Nielsen et al. (1962)

recorded the progress of the wetting front in air-dry

soil uniformly packed in horizontal columns. A

negative pressure head was held at one end of the

columns. The largest distance where the wetting

front was observed was 50 cm. Relationships

between wetting front positions and time are

shown in Fig. 2. A linear dependence

lg x ¼ lg A þ q lg t ð5Þ

can be traced in those figures. The companion

Table 1 contains values of the slope q; all are

significantly less than the value of 0.5 predicted by

Eq. (4). Rawlins and Gardner (1963) and Ferguson

and Gardner (1963) studied movement of water in

horizontal soil columns using gamma ray attenu-

ation. The furthest distance where water content

was measured was 40 cm. Fig. 3 shows their data

on the distance at which a particular water content

had been reached and time when this water content

was reached. Slopes of the regression lines at this

figure are given in Table 1. Those slopes are also

significantly less than 0.5. Similar data were

published by Biggar and Taylor (1959) and

Guerrini and Swartzendruber (1992, 1994). On the

other hand, Selim et al. (1970) and Whisler et al.

(1968) reported data from experiments on horizon-

tal infiltration in soil columns in which no

significant deviations from Eq. (4) were found.

Results of this review show that the Richards’

equation is not general enough to simulate water

Fig. 1. Sequential observations of soil water contents in an

experiment on infiltration in horizontal soil columns.
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transport in various soils. There were attempts to

generalize Richards’ equation by introducing an

empirical dependence of the diffusivity on time or

on distance (Guerrini and Swartzendruber, 1994;

Pachepsky and Timlin, 1998). Although a formal

agreement with experiments could be reached, a

physical interpretation of such empirical dependence

was never presented.

The objective of this work was to develop a

physics-based model of water transport in unsaturated

Fig. 2. Relationships between positions and observation times of the wetting front in experiments on infiltration in horizontal soil column. (a)

Data of Gardner and Widtsoe (1921), dimensions of distance and time not reported; (b) data of Nielsen et al. (1962), distance in cm, time in min,

symbols explained in the companion Table 1.

Table 1

Values of the parameter q found from data on horizontal movement of water to soil columns

Data source Soil q (mean ^ standard error) Graph, symbol

Gardner and Widtsoe (1921) Name and texture not reported 0.417 ^ 0.006 Fig. 2a

Nielsen et al. (1962) Columbia silt loam wet at 250 mb 0.402 ^ 0.003 Fig. 2b, W

Columbia silt loam wet at 2100 mb 0.425 ^ 0.006 Fig. 2b, A

Columbia silt loam wet with oil at 22 mb 0.480 ^ 0.008 Fig. 2b, X

Columbia silt loam wet with oil at 238 mb 0.440 ^ 0.003 Fig. 2b, B

Hesperia sandy loam at 2 2 mb 0.440 ^ 0.004 Fig. 2b, K

Hesperia sandy loam at 2 50 mb 0.384 ^ 0.002 Fig. 2b, L

Hesperia sandy loam wet at 2 100 mb 0.344 ^ 0.003 Fig. 2b, S

Rawlins and Gardner (1963) Salkum silty clay loam, u ¼ 0.51 0.439 ^ 0.007 Fig. 3a

Salkum silty clay loam, u ¼ 0.50 0.430 ^ 0.008 Fig. 3a

Salkum silty clay loam, u ¼ 0.48 0.437 ^ 0.011 Fig. 3a

Salkum silty clay loam, u ¼ 0.45 0.467 ^ 0.009 Fig. 3a

Salkum silty clay loam, u ¼ 0.40 0.479 ^ 0.003 Fig. 3a

Salkum silty clay loam, u ¼ 0.05 0.461 ^ 0.002 Fig. 3a

Ferguson and Gardner (1963) Salkum silty clay loam, u ¼ 0.05 0.454 ^ 0.002 Fig. 3b

Salkum silty clay loam, u ¼ 0.10 0.453 ^ 0.002 Fig. 3b

Salkum silty clay loam, u ¼ 0.15 0.452 ^ 0.003 Fig. 3b

Salkum silty clay loam, u ¼ 0.20 0.452 ^ 0.003 Fig. 3b

Salkum silty clay loam, u ¼ 0.25 0.452 ^ 0.003 Fig. 3b

Salkum silty clay loam, u ¼ 0.30 0.454 ^ 0.003 Fig. 3b

Salkum silty clay loam, u ¼ 0.35 0.458 ^ 0.004 Fig. 3b

Salkum silty clay loam, u ¼ 0.40 0.465 ^ 0.006 Fig. 3b
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soils that would explain and simulate both deviations

from and agreeing to the Boltzmann scaling.

2. The generalized Richards’ equation

2.1. Physical model

For a long time, the Richards’ equation (1) was

considered to be a purely empirical flow equation, the

result of combining the equation of continuity with the

experimentally based ‘Buckingham–Darcy’ flux law

(Swartzendruber, 1968). Bhattacharya et al. (1976)

showed that this equation can be derived from

physically based molecular assumption. These

authors had to assume that water moves in a Brownian

motion in the form of quasi-molecules. Assumption

that particles perform a Brownian motion has been

also instrumental in deriving the diffusion equation

and a convective–dispersive equation (Bhatacharya

and Gupta, 1990). The Boltzmann scaling is appli-

cable to both horizontal water transport equation and

to the solute diffusion equation (Hillel, 1980).

Solute transport in porous media has been shown to

exhibit deviations from Boltzmann scaling and follow

a more general scaling law (5) with both q . 0.5 and

q , 0.5 (Neuman, 1990; Hatano and Hatano, 1998;

Haggerty et al., 2000; Pachepsky et al., 2001). The

physical model for such transport is the movement of

particles that do not perform a Brownian motion

because of constraints imposed either by structure of

porous media or by the solute–surface interactions

(Metzler and Klafter, 2000). The case of q . 0.5 was

interpreted resulting from Lévy motion of solute

particles, which is similar to the Brownian motion

except that the relatively large transitions occur

relatively more often. This may happen because of

the presence of highly conductive fractures, channels,

or macropores. The case q , 0.5 is also interpreted as

non-Brownian transport of particles that remain

motionless for extended periods of time, for example,

when waiting periods have a power law distribution.

Such a physical model was envisaged by Donald

Nielsen and colleagues in 1962 who had suggested

that the exponent q , 0.5 might occur because the

infiltration front underwent ‘jerky movements’, i.e.

immobility of the wetting front occurred for substan-

tially extended time periods. This physical model of

water particles being randomly trapped and having a

power law distribution of waiting periods is used in

this work to generalize the Richards’ equation.

2.2. Mathematical model

Particles with a power law distribution of waiting

periods have an infinite mean waiting time, and it has

been suggested to simulate the transport of an

ensemble of such particles using fractional derivative

on time (Meerschaert et al., 2002). The transport

equation appears to be similar to Eq. (1) except that

Fig. 3. Dependencies between observation time and distances for the same water contents in experiments on infiltration in horizontal soil

column. (a) Data of Ferguson and Gardner (1963); (b) data of Rawlins and Gardner (1963).
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fractional derivative of water content on time is used:

›gu

›tg
¼

›

›x
DgðuÞ

›u

›x

� �
: ð6Þ

Here g is the order of the fractional derivative, and Dg

is fractional diffusivity. The order of the fractional

derivative is less or equal to 1. Eq. (6) transforms into

the classical Richards’ equation when g ¼ 1: The

fractional diffusivity Dg depends on water content.

The water flux Q is governed by the Darcy law

Q ¼ 2DgðuÞ
›u

›x

as in the classical Richards’ equation.

The meaning of a fractional derivative may be

perceived from its finite-difference approximation.

If the function u(t ) is defined at time moments

t0 ¼ 0; t1 ¼ Dt; t2 ¼ 2Dt;…tn ¼ nDt; and it is

smooth at t ¼ 0; then the following approximation

can be used (Gorenflo, 1997):

›gu

›tg

����
t¼tn

<
un2c1u

n212c2u
n222c3u

n232 ···2cn21u
12cnu

0

ðDtÞg
:

ð7Þ

Here u n is the value of u at time tn, u n21 is the value

of u at time tn21, etc. coefficients cj, j¼1;2;3;…;

depend on the order of the fractional differentiation as:

cj¼ð21Þj21
g

j

 !
¼

gðg21Þ···ðg2 jÞ

1·2····j
: ð8Þ

The important feature of the fractional derivative

approximation (7) is the incorporation of the values of

the dependent variable u not only at the current and

the previous time moments tn and tn21, as it is usually

done with the first-order derivatives, but at all

previous incremental time moments tn, tn21,

tn22,…t1, t0.

Coefficients cj are decaying functions of j as shown

in Fig. 4. Beginning from j ¼ 10; dependencies of cj

on j can be approximated by power laws c ¼ c10j2m

where m ¼ 1 þ g:

By introducing an analog j of the Boltzmann

variable as

j ¼
x

tg=2
; ð9Þ

Eq. (6) can be easily transformed into

Gð1 2 g=2Þ

Gð1 2 3g=2Þ
j

du

dj
¼

d

dj
Dg

du

dj

� �
; ð10Þ

which reduces to Eq. (3) when g ¼ 1 (the derivation is

in Appendix A, G is the gamma-function). Eq. (10)

shows that soil water content is a function of the

variable j, and, for the same values of soil water

content, one should expect the same values of the

variable j. Therefore, the equation

x ¼ AðuÞtg=2 ð11Þ

or its analog

lg x ¼ lg A þ
g

2
lg t ð12Þ

has to be valid in experiments with horizontal

infiltration in a soil column. Comparison of Eqs.

(12) and (5) leads to the conclusion that Eq. (12) is

indeed valid in experiments with horizontal infiltra-

tion and the empirical parameter q in this equation is

equal to g/2. Values of q in Table 1 are all less than 0.5

which means that Eq. (6) is valid in this experimental

conditions where g , 1.

Eq. (10) can be rearranged to compute the

fractional diffusivity Dg from experimentally defined

Fig. 4. Coefficients cj to compute the fractional derivatives for

several values of the order of the fractional derivatives.
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dependence of j on u

DðuÞ ¼
Gð1 2 g=2Þ

Gð1 2 3g=2Þ

dj

du

ðu

ui

jðuÞdu ð13Þ

where ui is the initial water content, when g ¼ 1; this

equation reduces to Philip’s (1955) equation to

compute the hydraulic diffusivity:

DðuÞ ¼ 2
1

2

dl

du

ðu

ui

lðuÞdu: ð14Þ

Water transport equations have to be solved

numerically when boundary conditions are variable,

the initial water content is not homogeneous, and

the flow domain cannot be assumed semi-infinite.

Using Eq. (7), one derives an implicit finite

difference approximation of Eq. (6) as

where the subscript i denotes values of u at x ¼

xi ¼ iDx; i ¼ 1; 2;…;M 2 1: Simple transformation

converts this system of equations into a tridiagonal

system on non-linear equations with respect to un
i ;

i ¼ 1; 1; 2;…M 2 1

Dðun
i21Þ þ Dðun

i Þ

2ðDxÞ2
un

i21

2
Dðun

i21Þ þ 2Dðun
i Þ þ Dðun

iþ1Þ

2ðDxÞ2
þ

1

ðDtÞg

� �
un

iþ1

þ
Dðun

iþ1Þ þ Dðun
i Þ

2ðDxÞ2
un

iþ1 ¼ 2

Xn

j¼1
cju

n2j
i

ðDtÞg

ð16Þ

for i ¼ 1; 2; 3;…M: Two more equations are

derived from boundary conditions, after that the

resulting system of M þ 1 equations can be solved

using iterations with Gauss elimination (Press et al.,

1992). The code to implement this algorithm for

numerical solution of Eq. (6) has been written in

FORTRAN and is available from the corresponding

author upon request. It was tested to see how accurately

Eq. (12) would apply to the numerical solution.

Function Dg(u ) was taken as exp(5(u 2 1.5),

boundary conditions were un
0 ¼ 1 and un

M21 ¼ un
M

for n ¼ 0; 1; 2;…; the initial condition was u0
i ¼ 0

for i ¼ 1; 2;…;M; intervals for x and t were

0 # x # 50 cm, 0 # t # 2000 min, the discretiza-

tion was made with M ¼ 100; N ¼ 1000: The

scaling (12) was applicable to the numerical

solution with 2% difference between g values

from the numerical solution and g values assumed

to obtain this solution for 0 # x # 30 cm.

3. Apparent scale effects on hydraulic diffusivity

The dependencies of Boltzmann variable l and

the fractional scaling variable j on volumetric

water content u were found from data of Ferguson

and Gardner (1963) collected at 3.5, 7.5, 15.5 and

27.8 cm from the source. The experimental depen-

dencies of the Boltzmann variable on u for those

distances are shown in Fig. 5a. Dependencies are

distinctly different for different depths.

To compute the hydraulic diffusivity from the

Philips’ equation (14), we had to approximate the

dependencies shown in Fig. 5a because the equation

includes derivatives of the dependence of l on u. Data

for each depth were fitted with the empirical logistic

equation

l ¼ l0

1 þ u expðvu0Þ

1 þ u expðvuÞ
exp½vðu2 u0Þ�

þ lmax

1 2 exp½vðu2 u0Þ�

1 þ u expðvuÞ
ð17Þ

where u0 is the maximum water content close to

porosity where observation are available, l0 is the

observed value of l at u ¼ u0; lmax, u and v are

fitting parameters. Lines in Fig. 5a show results of

this fitting. Dependencies of hydraulic diffusivity

on water contents computed according to Eq. (14)

are shown in Fig. 6a. Differences among depen-

dencies of l on u at different depths cause

un
i 2

Xn

j¼1
cju

n2j
i

ðDtÞg
¼

1

2
½Dðun

iþ1Þ þ Dðun
i Þ�

un
iþ1 2 un

i

Dx
2

1

2
½Dðun

i Þ þ Dðun
i21Þ�

un
i 2 un

i21

Dx
Dx

ð15Þ
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variability in diffusivity values. The average range

of variations is about half an order of magnitude

for any given u value.

Dependencies of the fractional scaling variable j

on u are shown in Fig. 5b. The order of the fractional

derivative g was taken as �q=2 where �q ¼ 0:455 is the

average value for this data set in Table 1. Data for

different depths coalesce, and it is possible to derive a

unique, depth-independent function j(u ). This func-

tion could be used to generate a unique dependence of

the fractional diffusivity on u as shown in Fig. 6b.

We carried out numerical experiments consisting

of water transport simulations with the generalized

Richards’ equation and calculating classic Richards

diffusivity from water content profiles at several

times. Results of one such experiment are shown in

Fig. 7. The order of the fractional derivative was

g ¼ 0.8, the initial water content and the porosity

were 0.04 and 0.55 m3 m23, respectively, the diffu-

sivity was Dg ¼ 40uð1:8–2:5 ln uÞ cm min20:8; the dis-

tances and time ranged from 0 to 40 cm and from 0 to

1200 min, respectively. Fig. 7a shows dependencies

of the Boltzmann variable on water content obtained

from water content profiles at different times. The

decrease in values of l as time progresses can be

observed. This decrease causes an apparent decrease

in diffusivity values obtained for the same water

contents as time increases (Fig. 7b). When the water

Fig. 5. Boltzmann scaling variable l and fractional scaling variable j as functions of the volumetric water contents from observations of

Ferguson and Gardner (1963) at several distances from the infiltration source; W—3.5 cm, A—7.5 cm, K—15.5 cm, L—27.5 cm.

Fig. 6. Diffusivity for the classic Richards equation (a) and for the generalized Richards’ equation (b) from observations of Ferguson and

Gardner (1963) at several distances from the infiltration source; — 3.5 cm, – – – 7.5 cm, - - - 15.5 cm, –·–·– 27.5 cm.
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contents at different distances rather than times were

used to compute l, the diffusivity decreased with the

distance (data not shown).

4. Discussion

The generalized Richards’ equation provided a

good description of the experimentally observed

scaling of soil water contents during the horizontal

infiltration. The difference between assumptions

leading to the classical Richards’ equation and to

the generalized Richards’ equation consists in the

type of movements that water particles perform.

The assumption that long waiting periods without

movement occur relatively more often than in

homogeneous medium may be more applicable to

soils which are aggregated media. Water within

aggregates may have difficulty moving to intraag-

gregate space. The assumption of long waiting

periods should be especially true in the experiments

considered in this work because the soil columns

wee packed with sieved soil.

It seems to be important that the generalized

Richards’ equation includes the classical Richards’

equation as a specific case when the parameter g

does not differ significantly from one. Some

authors did not find tangible deviations from the

Boltzmann scaling in experiments with infiltration

into horizontal columns (Reichardt et al., 1972;

Selim et al., 1970; Whisler et al., 1968). Eq. (6)

encompasses both such cases and cases when the

Boltzman scaling is violated. It is worth noting that

the presence of the fractional derivative in the

generalized Richards’ equation does not result in

violations of the mass balance (Metzler and Klafter,

2000).

The fractional derivative is a quite old mathemat-

ical notion, and, for example, the approximation (7)

has been proposed in 1868 (Letnikov, 1868). For a

specific distance, this approximation includes water

contents at all times from the beginning of the

transport. This can be interpreted as incorporating the

history of the process in the model. A review of

applications of fractional derivatives to systems with

history-dependent behavior can be found in paper of

Mainardi (1997). Note that water contents at earlier

times enter the approximation with smaller coeffi-

cients. Nevertheless, retaining only a small number of

coefficients in the expansion (7) leads to an error

accumulation, and scaling with q ¼ g=2 appears to be

violated. With respect to the numerical solution of

Eq. (12), this means that the algorithm will require

much more storage memory than the algorithm for

numerical solution of the classical Richards’ equation.

Water contents at all previous time steps must be

stored to assure correct computation of the fractional

derivative. Computer memory was not an issue in our

simulations done on PC-333; however, it may be

desirable in future to carry out an error analysis

related to retaining water contents at a limited number

of foregoing time steps.

Scanning through Table 1 shows an interesting

feature of the data from Nielsen et al. (1962) for

Hesperia sandy loam. The lower the soil water

potential, the lower is the value of q. The same

Fig. 7. Boltzmann scaling variable l and diffusivity from the numerical solution of the generalized Richards’ equation for several simulated

times; — 120 min, – – – 360 min, - - - 600 min, –·–·– 1200 min.
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authors did not observe that for the Columbia silt

loam. We do not have other data to decide whether it

is a common feature or just an artifact caused by using

different soil columns. Since the connectivity of

water-filled pores may be different at different water

contents, there is no reason why the value of q should

be constant over the range of water contents.

However, the value of q was approximately constant

over a range of water contents in other experiments

listed in Table 1.

Applying the classical Richards’ equation to soil

in which the generalized Richards’ equation is

actually valid led to both variability and scale-

dependence in the hydraulic diffusivity function.

The scale dependence shown in Fig. 7 is very

similar to the scale dependence in dispersivity

observed by Rawlins and Gardner (1963) in

experiments on infiltration into horizontal soil

columns (Fig. 8). Both data of numerical simu-

lations used to derive diffusivities in Fig. 7 and

experimental data used to derive diffusivities in

Fig. 8 were of high spatial and temporal density.

Experimental data of Ferguson and Gardner (1963)

used to derive diffusivities in Fig. 6a were not

dense in time and space (Fig. 5a). Because Eq. (4)

contains a derivative of the very steep dependence

of l on u, an inaccuracy in computing the deriva-

tives from sparse data results in the diffusivity

variability shown in Fig. 6b rather than in scale

dependence of the type shown in Figs. 7b and 8.

The data density depends on experimental setup

and may not be high in some types of experiments.

However, when the correct scaling of water

contents is applied (Fig. 5b), the source of the

inaccuracy disappears.

Several reasons for violation of the Boltzmann

scaling were pondered by the authors who encoun-

tered it. Biggar and Taylor (1959) indicated that

soil particles might change as the infiltration front

advanced, and variations in packing might affect

the infiltration rate. Nielsen et al. (1962) invoked a

dependence of contact angle on the rate of

movement. Rawlins and Gardner (1963) discussed

heat evolving as water wets soil, and changes in

soil solution composition during wetting as other

possible cases of non-Boltzmann scaling. We note

that the magnitude of the aforementioned effects

alleged to cause non-Boltzmann scaling was not

actually observed in experiments. Neither was their

absence shown. Therefore, one cannot exclude a

role of those effects. We stress, however, that the

structure of soil pore space preventing purely

Brownian motion may be a probable cause of the

non-Bolztmann scaling.

Physical models other the one in this paper were

also shown to lead to the fractional derivative on time

in diffusion-type transport equations. For example,

fractional Brownian motion of particles and random

walks on fractals were suggested (Jumarie, 1992;

Roman and Alemany, 1994). Soil structure is a

primary candidate to be an underlying cause of non-

Brownian transport leading to non-Boltzmann

scaling.

Soil columns in experiments on horizontal

infiltration were filled with sieved aggregates. Soil

in situ has pronounced structural hierarchy. Effects

of this hierarchy on scaling in water transport

present an interesting issue to explore. No extra-

polations of the generalized Richards’ equation can

be made at this point for the case of vertical

infiltration when an external force of gravity affects

water transport. It remains to be seen whether a

gravitational term can be added to Eq. (6) to use

this equation to explain empirical infiltration

equations that do not follow from the classical

Richards’ equation.

Fig. 8. Diffusivity computed by Rawlins and Gardner (1963) from

observations of horizontal infiltration made at various times. —

16 min, – – – 144 min, - - - 400 min, –·–·– 1440 min.
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5. Conclusions

1. There is evidence in literature that Richards’

equation cannot explain observations of water

transport in horizontal soil columns.

2. A physical model of non-Brownian transport of

particles that remain motionless for extended

periods conforms to the observations of jerky

movements of the infiltration front made by

Nielsen and colleagues. This model constitutes a

basis for the generalized Richards’ equation that

explains experimental data and includes the

classical Richards’ equation as a specific case.

3. The generalized Richards’ equation includes a

fractional derivative on time. It can be solved

numerically with an algorithm similar to the one

used for the classical Richards’ equation. The

fractional diffusivity can be determined from

experimental data with the method analogous the

one developed by J. Philip.

4. Both apparent variability in soil hydraulic proper-

ties and apparent scale effects in soil hydraulic

properties may arise from using the classical

Richards’ equation where the generalized Richards

equation is actually valid.

Appendix A

Eq. (10) is derived using the property of the

fractional derivative (Gorenflo, 1997; Mainardi,

1997):

datb

dta
¼

Gð1 þ bÞ

Gð1 þ b2 aÞ
tb2a ðA1Þ

Assuming that u depends only on j given by Eq. (9),

one obtains

›gu

›tg
¼

du

dj

›j

›tg
¼

du

dj
x

dgðt2g=2Þ

dtg

¼
du

dj
x
Gð1 2 g=2Þ

Gð1 2 3g=2Þ
t2g=22g

¼
du

dj

Gð1 2 g=2Þ

Gð1 2 3g=2Þ

x

t3g=2
ðA2Þ

›u

›x
¼

du

dj

›j

›x
¼

du

dj

1

tg=2
ðA3Þ

and

›

›x
DgðuÞ

›u

›x

� �
¼

1

tg
d

dx
DgðuÞ

du

dx

� �
: ðA4Þ

Substitution of derivatives in Eq. (6) for their

expressions from Eqs. (A2) and (A4) yields Eq. (10).
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