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Abstract

Mean groundwater levels of a multi-layered coastal leaky aquifer system are considered. The system consists of an unconfined

aquifer, a confined aquifer and a semi-permeable layer between them. Both exact asymptotic solutions and approximate

perturbation solutions are derived for multi-sinusoidal-component sea tide. At inland places far from the coastline, the perturbation

solutions show a good agreement with the exact asymptotic solutions. Due to the watertable-dependent transmissivity of the

unconfined aquifer, the mean groundwater levels of the aquifer system stand considerably above the mean sea level even in the

absence of net inland recharge of groundwater and rainfall. These lead to landward positive gradients of both the mean watertable

and mean head in the region near the coastline, which consequently results in a seawater–groundwater cycle. Seawater is pumped

into the unconfined aquifer by the sea tide and divided into two parts. One part returns to the sea driven by the mean watertable

gradient. The rest part leaks into the confined aquifer through the semipermeable layer, and returns to the sea through the confined

aquifer driven by the mean head gradient. The total discharge through the confined aquifer is significant for coastal leaky aquifer

system with typical parameter values. This seawater–groundwater cycle has impacts on better understanding of submarine

groundwater discharge and exchange of various chemicals such as nutrients and contaminants in coastal areas. If the observed

mean water levels in coastal areas are used for estimating the net inland recharge, the enhancing processes of sea tide on the mean

groundwater levels should be taken into account. Otherwise, the net inland recharge will be overestimated.
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1. Introduction

Interaction between the seawater and ground-

water in coastal areas is one of the most important

study topics of hydrologists. For example, esti-

mation of the submarine groundwater discharge

(SGWD) and net inland recharge in coastal areas are

of great importance for the correct assessment of the

role of groundwater in the global water cycle

(Moore, 1996; Li et al., 1999; Church, 1996). The

influences of sea tide on the mean groundwater

levels are one of the aspects immediately related to

the SGWD estimation.

For a single coastal unconfined aquifer, the

influences of the sea tide on the mean watertable
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have been studied by many researchers (e.g. Philip,

1973; Smiles and Stokes, 1976; Knight, 1981; Parlange

et al., 1984; Nielsen, 1990). Philip (1973) derived an

exact asymptotic constant solution to the steady

periodic nonlinear diffusion problem. As an appli-

cation of his analytical solution, he considered the

mean watertable in a coastal unconfined aquifer

bounded by an impermeable bottom and a straight

coastline with vertical beach connected to a sinusoidal

tidal water body. Assume that the datum is the mean

sea level, then, in the absence of net inland recharge of

groundwater and rainfall, the mean water table WðxÞ in

the unconfined coastal aquifer satisfies (Philip, 1973)

lim
x!1

WðxÞ ¼ D

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

1

2

A2

D2

s
2 1

0
@

1
A; ð1Þ

where A is the tidal amplitude [L], D is the unconfined

aquifer’s depth [L] below the mean sea level, and x

is the landward distance from the coastline. Based

on Eq. (1), Philip (1973) concluded that when

ðA=DÞ2 ¼ 1 the inland groundwater level lies above

the mean sea level by about 23% of the tidal amplitude.

Philip’s (1973) result was derived from Boussinesq’s

equation, which is based on the Dupuit–Forchheimer

(D–F) assumptions that assume groundwater flow to

be essentially horizontal. Knight (1981) considered a

free-surface problem that takes the vertical flow into

account strictly. He proved theoretically that Philip’s

result exactly holds independent of the validity of the

D–F assumptions.

For steady periodic state when there is neither

seawater intrusion nor net inland recharge, to maintain

water balance, water entering a coastal unconfined

aquifer at high tide should be exactly equal to that

leaving the aquifer at low tide. The transmissivity

of the unconfined aquifer is watertable-dependent. If

the mean watertable equalled the mean sea level, the

transmissivity of the unconfined aquifer at high tide

would be greater than that at lower tide (Fig. 1a).

Hence, seawater entering the aquifer at high tide

would be more than that leaving the aquifer at low

tide, which would result in water imbalance. If the

mean watertable is higher than the mean sea level, a

greater hydraulic gradient will be generated at low

tide, which will compensate for the low transmissivity

and increase the amount of water recharging to the sea.

Consequently, only when the mean watertable stays

above the mean sea level, can the unconfined aquifer

maintain correct water balance (Fig. 1b).

Philip’s theoretical prediction was examined and

confirmed by a Hele–Shaw experiment conducted by

Smiles and Stokes (1976). Their experiment curves

were consistent with Philip’s contention that the root

mean square should be effectively constant and about

23% greater than the mean of the reservoir oscillation

for the experiments described there. Parlange et al.

(1984) used second-order theory to describe the

propagation of steady periodic motion of liquid in

porous medium. Their two laboratory experiments,

together with analytical and numerical analysis also

support Philip’s (1973) prediction. Nielsen (1990)

developed an approximate analytical solution based

on a perturbation method to investigate the mean

watertable in the inland region near the coastline.

Under the same conditions used by Philip (1973), the

mean watertable in the unconfined coastal aquifer can

be approximated by (see Eq. (25) of Nielsen (1990))

WNielsenðxÞ ¼
A2

4D
ð1 2 e22aUxÞ; ð2aÞ

where aU is the wave number, and x is the landward

distance from the coastline. The wave number is given

by

aU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vSy=ð2KUDÞ

q
ð2bÞ

in which v is the tidal angular velocity [T21], Sy and

KU are the unconfined aquifer’s specific yield

[dimensionless] and hydraulic conductivity [LT21],

respectively. The sinusoidal sea tide is specified as

HseaðtÞ ¼ A cosðvt þ cÞ; where t is the time [T] and c

is the tidal phase shift [Radian]. Eq. (2a) shows that at

inland places where the dimensionless landward

distance aUx q 1; the mean watertable will be higher

than the mean sea level by A2=ð4DÞ: Using Taylor’s

expansion

ffiffiffiffiffiffiffiffiffi
1þa=2

p
¼ 1þ

a

4
þ

a2

32ð1þ j=2Þ3=2
; 0# j#a; ð3Þ

it follows that Eq. (2a) is an approximation to the

exact asymptotic constant (1) up to the first order

of a¼ðA=DÞ2: When a# 1; the truncation error is less

than 3.125%.

Nielsen (1990) and Li et al. (2000) also showed

that a slope water–land boundary will lead to a much
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higher mean water table than a vertical one does.

Therefore, the influence of tide on the mean water

table should be considered when SGWD from a

coastal unconfined aquifer is estimated by the mean

hydraulic gradient determined by comparing the mean

seawater and groundwater levels.

The main limitation of the previous work of

Phillip (1973), Smiles and Stokes (1976), Knight

(1981), and Parlange et al. (1984) is that they assume

the sea tide has only one sinusoidal component. In

reality, the sea tide consists of tens of sinusoidal

components that include the effects of the sun, moon

and earth, etc. (e.g. Melchior, 1978; Pugh, 1987).

Due to nonlinearities of the model equations

describing the unconfined aquifer, the solution to a

single sinusoidal component cannot be used, in

general, to superimpose to find the complete solution

for the whole sea tide. Therefore, generalization of

their work is necessary by taking into account more

than one components of the sea tide in the tidal

boundary condition. Although Li et al. (2000)

considered two tidal constituents, their model

focused on the effects of the beach slope on tidal

flow in the unconfined aquifer modelled by a

linearized Boussinesq equation. Moreover, in many

coastal areas, what abuts the sea is usually a multi-

layered system (e.g. Serfes, 1991; Sheahan, 1977;

Chen and Jiao, 1999; Jiao and Tang, 1999). It is

interesting to approach the influences of the sea tide

on the mean water levels in such a case. Based

on such motivations, this paper investigates the

tide-induced mean water levels of a coastal multi-

layered groundwater system consisting of a confined

aquifer, an unconfined aquifer, and a semi-permeable

Fig. 1. Explanation to the sea tide-induced mean watertable higher than the mean sea level: (a) Hypothetical situation (mean watertable ¼ mean

sea level) and (b) Real situation (mean watertable . mean sea level).
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layer between them. A nonlinear mathematical

model is built to describe the relationship between

the sea tides, water table in the unconfined aquifer

and water head in the confined aquifer. Different

sinusoidal components of the sea tide are included in

the tidal boundary condition. Exact asymptotic

solutions are derived to obtain the information on

the mean groundwater levels of the multi-layered

aquifer system at inland places far from the coastline.

Approximate perturbation solutions are also derived

to investigate the behaviour of the mean water levels

of the system in the vicinity of the coastline. The

solutions are analyzed and discussed.

2. Mathematical model and definitions of mean
water levels

2.1. Mathematical model

Consider a subsurface system consisting of an

unconfined aquifer, a confined aquifer and a semi-

permeable layer between them (Fig. 1). The system

satisfies the following assumptions: (a) Each layer is

horizontal and homogeneous, and has a vertical

boundary with the seawater. The confined aquifer has

an impermeable bottom. (b) The horizontal flow in the

semi-permeable layer and the vertical flow in

the confined aquifer are negligible. (c) The flow in the

unconfined aquifer is horizontal, i.e. the Dupuit–

Forchheimer assumptions (Bear, 1972) apply. (d) The

unconfined aquifer’s depth D below the mean sea level

is great enough so that the seawater remains connected

with the unconfined aquifer at low tide.

Cartesian coordinates x, z will be used, with z taken

to be positive vertically upwards. The two interfaces

between the semi-permeable layer and the two

aquifers are located in the planes z ¼ ^b0=2; where

b0 is the thickness [L] of the semi-permeable layer (see

Fig. 2). The water–land vertical boundary is located

at x ¼ 0. Based on assumption (c) and (d), the water

table Wðx; tÞ in the unconfined aquifer satisfies the

following one-dimensional Boussinesq equation

(Bear, 1972)

Sy

›W

›t
¼KU

›

›x
ðW þDÞ

›W

›x

� 	
2K 0 ›HS

›z






z¼

b0

2

;

21, t,1; x. 0;

ð4aÞ

and the boundary condition

W lx¼0 ¼WTideðtÞ ¼
XN
j¼1

Aj cosðvjtþ cjÞ; ð4bÞ

lim
x!1

›W

›x
¼ 0; ð4cÞ

where K 0 and HSðx;z; tÞ are the vertical hydraulic

conductivity [LT21] and water head [L] of the semi-

permeable layer, respectively; WTideðtÞ is the water

level [L] of the sea tide; N is the number of the

sinusoidal components of the sea tide; Aj; vj and cj

ðj¼ 1;…;NÞ are the amplitude [L], angular velocity

[T21] and phase shift of the jth sinusoidal component,

respectively. The angular velocities v1;…;vN are not

equal to each other. The datum of the system is set to

be the mean sea level. Eq. (4b) describes the tidal

boundary condition of Wðx; tÞ at the water–land

interface along the coastline, while Eq. (4c) gives a

no-flow boundary condition as x approaches infinity,

which means that there is no inland recharge far from

the coastline.

Based on the assumption (b), the groundwater head

HSðx; z; tÞ in the semi-permeable layer satisfies

S0
S

›HS

›t
¼K 0›

2HS

›z2
; 21,t,1;2

b0

2
,z,

b0

2
; ð5aÞ

HSðx;z;tÞlz¼b0=2¼Wðx;tÞ; ð5bÞ

HSðx;z;tÞlz¼2b0=2¼HCðx;tÞ; ð5cÞ

where S0
S is the specific storage [L21] of the semi-

permeable layer, and HCðx;tÞ is the groundwater head

of the confined aquifer. Eqs. (5b) and (5c) guarantee

the water head continuity at the upper and lower

boundaries of the semi-permeable layer.

Based on the assumptions (a) and (b), the

groundwater head HCðx; z; tÞ in the confined aquifer

satisfies

S
›HC

›t
¼ T

›2HC

›x2
þ K 0 ›HS

›z
lz¼2b0=2;

21 , t , 1; x . 0;

ð6aÞ

HClx¼0 ¼ WTideðtÞ ¼
XN
j¼1

Aj cosðvjt þ cjÞ; ð6bÞ

lim
x!1

›HC

›x
¼ 0 ð6cÞ
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where S and T are the storativity [dimensionless] and

the transmissivity [L2T21] of the confined aquifer,

respectively. Eq. (6b) describes the tidal boundary

condition along the coastline, and Eq. (6c) gives the

no-flow boundary condition as x approaches infinity,

which means that there is no inland recharge far from

the coastline.

Let Pj ¼ mj=nj ðj ¼ 1;…;NÞ be the period [T] of

the jth sinusoidal component of the sea tide, where mj

and nj are two positive integers prime to each other

and Pj is measured in hours. Then, with unit of h 21,

the angular velocity of the jth sinusoidal component is

vj ¼
2p

Pj

¼
2pnj

mj

; ðj ¼ 1;…;NÞ: ð7aÞ

Therefore, the sea tide water level

WTideðtÞ ¼
XN
j¼1

Aj cosðvjt þ cjÞ ð7bÞ

is periodic with respect to the time t with a period of P

(in hours) given by

P ¼
minCMðm1;…;mNÞ

maxCDðn1;…; nNÞ
; ð7cÞ

where minCMðm1;…;mNÞ denotes the minimum

common multiple of m1;…;mN ; and

maxCDðn1;…; nNÞ the maximum common divisor

of n1;…; nN : In fact, because njP=mj is an integer for

each j ¼ 1;…;N; it follows that

WTideðt þ PÞ ¼
XN
j¼1

Aj cosðvjt þ vjP þ cjÞ

¼
XN
j¼1

Aj cos vjt þ 2p
nj

mj

P þ cj

 !

¼
XN
j¼1

Aj cosðvjt þ cjÞ ¼ WTideðtÞ: ð7dÞ

2.2. Definition of the mean water levels

Based on Eq. (7d), one can assume that the

solutions of the steady-periodic nonlinear system

Eqs. (4a)–(6c), Wðx; tÞ; HSðx; z; tÞ and HCðx; tÞ; will

also be periodic functions of time t with a period of P:

This assumption is physically reasonable because the

periodic sea tide (7b) is the only driving force of the

system. Therefore, it is reasonable to define the mean

water levels of the leaky aquifer system by

WðxÞ ¼
1

P

ðtþP

t
Wðx; tÞdt; ð8aÞ

HSðx; zÞ ¼
1

P

ðtþP

t
HSðx; z; tÞdt; ð8bÞ

HCðxÞ ¼
1

P

ðtþP

t
HCðx; tÞdt; ð8cÞ

Fig. 2. Schematic representation of a leaky confined aquifer system near open tidal water.
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Integrating Eqs. (5a)–(5c) in the interval ðt; t þ PÞ

with respect to time t, dividing the resulting equations

by P; and using the periodicity assumption of Wðx; tÞ;

HSðx; z; tÞ and HCðx; tÞ; yield

›2HSðx; zÞ

›z2
¼ 0; 2

b0

2
, z ,

b0

2
; ð9aÞ

HSðx;zÞlz¼b0=2¼WðxÞ; HSðx;zÞlz¼2b0=2¼HCðxÞ: ð9bÞ

The solution of Eqs. (9a) and (9b) is

HS¼
zðWðxÞ2HCðxÞÞ

b0
þ

WðxÞþHCðxÞ

2
: ð10aÞ

From Eq. (10a), one obtains

K 0 ›HS

›z
¼

K 0ðWðxÞ2HCðxÞÞ

b0
¼LðW2HCÞ; ð10bÞ

where L¼K 0=b0 is the leakance [T21] of the semi-

permeable layer (Hantush, 1960).

Integrating Eqs. (4a) and (6a) in the interval

ðt; t þ PÞ with respect to time t, dividing the resulting

equations by P, and using the equation (10b), the

identical equation

ðW þ DÞ
›W

›x
¼

1

2

›W2

›x
þ D

›W

›x
;

and the periodicity assumption of Wðx; tÞ; HSðx; z; tÞ

and HCðx; tÞ; yield

KU

d2

dx2

1

2
WmsðxÞþDWðxÞ

� 	
2LðW 2HCÞ¼0; x.0;

ð11Þ

TH 00
CþLðW 2HCÞ¼0; x.0; ð12Þ

where WmsðxÞ is the mean square of the watertable

defined as

WmsðxÞ¼
1

P

ðtþP

t
W2ðx;tÞdt

� 	
: ð13Þ

In Sections 3 and 4, the behaviours of the mean water

levels defined as Eqs. (8a)–(8c) will be investigated

analytically based on the derived Eqs. (10a), (11)

and (12).

3. Asymptotic mean water levels of the system

This section will focus on the asymptotic

behaviours of the mean water levels of the leaky

aquifer system when the landward distance from

the coastline is so far that the tide-induced

oscillations have died out. Exact, asymptotic

solutions when x !1 will be derived and

discussed.

3.1. Exact asymptotic solutions

as x !1 when L . 0

Adding Eqs. (11) and (12), yields
f 00ðxÞ ¼ 0; x . 0 ð14aÞ
where

f ðxÞ ¼
KU

2
WmsðxÞ þ DKUWðxÞ þ THCðxÞ: ð14bÞ

The general solution of Eq. (14a) is f ðxÞ ¼ c1 þ c2x:

From the no-flow boundary condition Eqs. (4c) and

(6c), it can be easily deduced that limx!1 f 0ðxÞ ¼ 0;

which implies c2 ¼ 0: Therefore, one has

f ðxÞ ¼ c1 ¼ f ð0Þ ¼KU½Wmsð0Þ=2þDWð0Þ�þTHCð0Þ:

ð14cÞ

Using the tidal boundary conditions (4b) and (6b), one

obtains

Wð0Þ ¼HCð0Þ ¼ 0: ð14dÞ

Using Eqs. (4b) and (13), one finds

Wmsð0Þ¼
1

P

ðtþP

t
W2ð0;tÞdt

� 	

¼
1

P

ðtþP

t

XN
j¼1

Aj cosðvjtþcjÞ

0
@

1
A2

dt

¼
1

P

ðtþP

t

XN
i;j¼1

AiAj cosðvitþciÞcosðvjtþcjÞdt

¼
1

P

ðtþP

t

XN
j¼1

A2
j cos2ðvjtþcjÞ

2
4

þ2
X

1#i,j#N

AiAj cosðvitþciÞcosðvjtþcjÞ

3
5dt:

ð14eÞ

Substituting the trigonometric identities

2cosðvitþciÞcosðvjtþcjÞ

¼ cos½ðvitþciÞ2 ðvjtþcjÞ�

þcos½ðvitþciÞþðvjtþcjÞ�
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into Eq. (14e), because vkP¼2pnkP=mk; and nkP=mk

is an integer for each k¼1;…;N according to Eqs.

(7a) and (7c), one can easily find that

ðtþP

t
cosðvitþciÞcosðvjtþcjÞdt¼

P=2; if i¼j;

0; if i–j:

8<
: ð14fÞ

Substituting Eq. (14f) into Eq. (14e), one obtains

2Wmsð0Þ¼
XN
j¼1

A2
j ¼

def:
A2
S: ð14gÞ

Eventually, from Eqs. (14b), (14d) and (14g) one finds

f ðxÞ¼ 1
4
KUA2

S; x$0: ð14hÞ

Integrating Eq. (12) in the interval ðx;xþXÞ; let X!1

and then use the no-flow boundary condition (6c), one

obtains

TH 0
CðxÞ¼L

ð1

x
½WðjÞ2HCðjÞ�dj: ð15Þ

Using Eq. (15) and the no-flow boundary conditions

(4c) and (6c), one can show that (see Appendix A for

the proof)

lim
x!1

½WðxÞ2HCðxÞ�¼0 if L.0: ð16aÞ

If the landward distance x is great enough, all

the tide-induced oscillations will die out. This

implies

lim
x!1

½WmsðxÞ2W2ðx;tÞ�¼0; ð16bÞ

lim
x!1

½WðxÞ2Wðx;tÞ�¼0; ð16cÞ

lim
x!1

½HCðxÞ2HCðx;tÞ�¼0: ð16dÞ

From Eqs. (14b) and (14h), one has

1

4
KUA2

S¼
KU

2
WmsðxÞþDKUWðxÞþTHCðxÞ

¼
KU

2
ðWms2W2ÞþDKUðW2WÞ

þTðHC2WÞþTðW2WÞþ
KU

2
W2

þDKUWþTW : ð16eÞ

Let x!1 in Eq. (16e), and use Eqs. (16a)–(16d),

it follows that

lim
x!1

KU

2
W2þDKUWþTW

� 	
¼

1

4
KUA2

S; if L.0:

ð16fÞ

Eq. (16f) implies that as x!1; Wðx;tÞ tends to a

constant c that satisfies

KUc2
=2þðDKUþTÞc2KUA2

S=4¼0; if L.0: ð16gÞ

Neglecting the negative root of Eq. (16g) which is

physically unrealistic, one eventually obtains

lim
x!1

Wðx;tÞ¼ lim
x!1

WðxÞ

¼ðDþT=KUÞð
ffiffiffiffiffiffiffiffiffiffi
1þaL=2

p
21Þ; if L.0

ð17aÞ

where aL is a dimensionless parameter given by

aL¼
K2

UA2
S

ðDKUþTÞ2
¼

K2
U

ðDKUþTÞ2

XN
i¼1

A2
i : ð17bÞ

By means of Eqs. (16a), (16d) and (17a), one has

lim
x!1

HCðx;tÞ¼ lim
x!1

HCðxÞ

¼ðDþT=KUÞð
ffiffiffiffiffiffiffiffiffiffi
1þaL=2

p
21Þ; if L.0: ð17cÞ

3.2. Exact asymptotic solutions as x !1 when L ¼ 0

Philip’s (1973) exact asymptotic solution (1)

considers only one single unconfined aquifer with

impermeable bottom, which is equivalent to

the situation in this paper when the semi-permeable

layer is replaced by a completely impermeable layer,

i.e. L ¼ 0: Substituting L ¼ 0 into Eq. (11), integrat-

ing the resulting equation and using the boundary

conditions (4b) and (4c), yield

1

2
WmsðxÞþDWðxÞ ¼

1

2
Wmsð0ÞþDWð0Þ ¼

1

4
A2
S:

ð18aÞ

By means of Eqs. (18a), (16b) and (16c), one obtains

lim
x!1

Wðx; tÞ ¼ lim
x!1

WðxÞ ¼Dð
ffiffiffiffiffiffiffiffiffiffiffi
1þa0=2

p
21Þ;

if L¼ 0 ð18bÞ
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where a0 is a dimensionless parameter given by

a0 ¼
A2
S

D2
¼

1

D2

XN
i¼1

A2
i : ð18cÞ

Eq. (18b) is a generalization of Philip’s (1973)

solution (1) in the sense that Eq. (18b) considers all

the sinusoidal components of the sea tide. Substituting

L¼ 0 into Eq. (12) and using the boundary conditions

(6b) and (6c), yield

HCðxÞ; 0; if L¼ 0; ð18dÞ

which implies that the aquifer’s mean water level

equals the mean sea level only when the aquifer is

governed by linear equation and there is no net

flux.

3.3. Discussion of the exact asymptotic solutions

Solutions (17a) and (17c) show that, in inland

places far from the coastline, the mean water levels of

both the unconfined aquifer and the confined aquifer

will be higher than the mean sea level by the same

constant. This phenomenon is due to the watertable-

dependent transmissivity of the unconfined aquifer

and the leakage of the semi-permeable layer. The

watertable-dependent transmissivity of the uncon-

fined aquifer, as mentioned in Section 1, will lead to a

mean watertable higher than the mean sea level. Due

to leakage through the semi-permeable layer, the

mean head of the underlying aquifer will increase

accordingly. These lead to landward positive gradi-

ents of both the mean watertable and mean head in

the region near the coastline. Therefore, a ground-

water–seawater cycle is formed. Seawater is pumped

into the unconfined aquifer by the sea tide. Then, part

of it returns to the sea driven by the mean watertable

gradient. The rest leaks into the confined aquifer

through the semi-permeable layer, and returns to the

sea through the confined aquifer driven by the mean

head gradient. The leakage from the semi-permeable

layer is the only source of the discharge through the

confined aquifer because there is no inland recharge in

the aquifer system.

Using Taylor’s expansion (3), the exact

asymptotic water levels (17a) and (17c) can be

approximated by

lim
x!1

WðxÞ ¼ lim
x!1

HCðxÞ <
KUA2

S

4ðDKU þ TÞ

¼
KU

4ðDKU þ TÞ

XN
i¼1

A2
i ð19Þ

with a truncation error relative to D þ T =KU being

less than a2
L=32: From assumption (d), a2

L is usually

less than 1, so Eq. (19) has adequate accuracy.

For example, consider a coastal leaky aquifer

system with parameters TU ¼ T ¼ 10 m2/h,

D ¼ 1.25 m,
PN

j¼1 A2
j ¼ 1 m2; the exact solutions

(17a) – (17c) shows that the exact asymptotic

mean water level is 0.098076 m, the approximate

solution (19) gives a value of 0.10 m. The error is

very small.

According to solutions (17a)–(17c) or (19), the

asymptotic groundwater level of the leaky aquifer

system is independent of the magnitude of the

leakance of the semi-permeable layer. This is

because the asymptotic groundwater level higher

than the mean sea level is due to a positive

difference between the inflow and outflow in a tidal

period at the tidal boundary of the unconfined

aquifer, which is independent of the magnitude of

the leakance of the semi-permeable layer.

It is well known that Boussinesq’s equation (4a)

can be linearized approximately when the tidal

amplitudes is much less than the aquifer’s depth D

under the mean sea level (e.g. Bear 1972).

Solutions (17a)–(18d) show that the linearization

is valid in the sense that the increase of mean

groundwater levels of the aquifer system, whose

magnitude has the order of AS=D; is negligible for

small AS=D:

4. Perturbation solutions for thin semi-permeable

layer and small leakage

4.1. Perturbation solutions

In order to investigate the mean water levels of

the leaky aquifer system in the vicinity of the

coastline, approximate perturbation solutions will

be derived in this section. The system (4a)–(6c) is
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very complex because it includes many aquifer

parameters. For the sake of succinctness, assume

that the semi-permeable layer’s storage is negli-

gible (e.g. a thin semi-permeable layer) and the

leakage is small ð
PN

j¼1 L=ðvjSyÞp 1Þ: Under such

assumptions the following perturbation solutions

can be obtained (see Appendix B for the

derivation)

where TU ¼ KUD; aj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vjSy=ð2KUDÞ

p
is the wave

number corresponding to the jth sinusoidal com-

ponent, 1j is a small dimensionless constant defined as

1j ¼
L

vjSy

¼
uj

2ðSy=SÞ
ð22Þ

with uj ¼ L=ðvjSÞ being the dimensionless leakage (Li

and Jiao, 2001). The mean head of the semi-

permeable layer HSðxÞ is given by Eq. (10a).

For real aquifer systems, one has Sy , 1021; S ,
ð1025 –1023Þ (Todd, 1980). The major sinusoidal

components of the sea tide are usually semidiurnal

and diurnal, so the range of uj is from 0 to 20 for real

leaky aquifer systems (Li and Jiao, 2001). Therefore,

according to Eq. (22), the range of 1j is 1023 –1021:

This validates to a certain extent the small leakage

assumption ð
PN

j¼1 1j p 1Þ:

4.2. Discussion

It may be interesting to have some idea about how

the leakage from the unconfined aquifer to

the confined aquifer changes with the inland distance.

Based on Darcy’s law and Eqs. (10b), (20) and (21),

the time-averaged leakage flux FLðxÞ through

the semi-permeable layer is defined as

FLðxÞ¼
K 0

P

ðtþP

t

›HS

›z






z¼2b0=2

dt¼K 0›HS

›z
¼LðW2HCÞ

¼
LT

2D

XN
j¼1

A2
j exp 2x

ffiffiffiffiffiffiffiffiffi
L

T
þ

L

TU

s !
2expð22ajxÞ

" #

2T21jðTþTUÞ
:

ð23Þ

Because there is no inland recharge, the

discharge QC from the confined aquifer equals

the total leakage through the semi-permeable layer,

i.e.

QC¼
ð1

0
FLðxÞdx¼

T

2D

XN
j¼1

A2
j ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LTTU=ðTUþTÞ

p
21jajTUÞ

2T21jðTþTUÞ
:

ð24Þ

One can also calculate

QC¼
T

P

ðtþP

t

›HC

›x






x¼0

dt¼TH 0
Cð0Þ

by directly using Eq. (21). The result is the same

as Eq. (24).

To see how the leakage flux FLðxÞ changes with

landward distance x and how large the discharge QC

will be, consider a coastal leaky aquifer system

with typical parameters TU ¼ T ¼ 50 m2=h; D¼ 2 m;

N ¼ 1; A1 ¼ 1 m; Sy ¼ 0:3; v1 ¼ 0:5 h21 (semidiurnal

sea tide), L¼ 0:00075–0:0075 h21: These data lead to

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1Sy=ð2TUÞ

p
¼ 0:03873 m21; u¼ 11 ¼ L=ðv1SyÞ

¼ 0:005–0:05: Fig. 3 shows how the leakage flux

FLðxÞ changes with the landward distance x for

different values of u.

WðxÞ <
XN
j¼1

A2
j

2D

TU

2ðTU þ TÞ
þ

T

ðTU þ TÞ

exp 2x

ffiffiffiffiffiffiffiffiffiffiffiffi
L

T
þ

L

TU

s !

ð2 2 1jð1 þ TU=TÞÞ
2

ð2 2 1jTU=TÞexpð22ajxÞ

2ð2 2 1jð1 þ TU=TÞÞ

2
66664

3
77775; ð20Þ

HCðxÞ <
XN
j¼1

A2
j

2D

TU

2ðTU þ TÞ
2

TU

ðTU þ TÞ

exp 2x

ffiffiffiffiffiffiffiffiffiffiffiffi
L

T
þ

L

TU

s !

ð2 2 1jð1 þ TU=TÞÞ
þ

1jTU expð22ajxÞ

2ð2T 2 1jðT þ TUÞÞ

2
66664

3
77775; ð21Þ
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The leakage flux FLðxÞ is zero at the coastline

x ¼ 0 because the water levels in the unconfined

and confined aquifers equal the sea level. It reaches

its maximum at a certain point and then

decreases to zero as x !1: The maximum leakage

flux decreases with u. When u is smaller, the

leakage will occur over a greater range of inland

distance.

As the dimensionless leakage u increases from

0.005 to 0.05, the discharge QC from the confined

aquifer increases from 0.38 to 1.06 m2 d21, which

means that the groundwater entering the sea from the

confined aquifer per day per meter of the coastline is

0.38–1.06 m3. Considering that most coastal aquifers

have long coastlines, this is a considerable amount.

One of the assumptions of this study is that

there are neither rainfall infiltrations into the

unconfined aquifer nor net groundwater recharges

into the aquifers from inland places far from the

coast. In reality, however, there usually exist

the rainfall infiltration and other inland recharges

to the unconfined and confined aquifers, which

may influence the direction of the leakage flux and

the circulation, i.e. the sign of FL. In this case,

because the local leakage flux direction is

determined by the difference of the local water-

table of the unconfined aquifer and the local

hydraulic head of the confined aquifer, the sign of

the leakage flux may be negative in some inland

places and positive at other places. It is obvious

that the rainfall infiltration and other inland

recharges into the unconfined aquifer will lead to

the increase of the leakage flux. On the contrary,

inland recharges into the confined aquifer will

result in the decrease of leakage flux. Sufficiently

great inland recharge into the confined aquifer will

lead to negative leakage flux-leakage flux from the

confined aquifer into the unconfined aquifer at

some inland places.

Let the landward distance x approach infinite in

Eqs. (20), (21) and (10a), one obtains

lim
x!1

W ¼ lim
x!1

HS ¼ lim
x!1

HC ¼
TU

4DðTU þTÞ

XN
j¼1

A2
j

¼
KU

4ðDKU þTÞ

XN
j¼1

A2
j : ð25Þ

Comparison of Eqs. (25) and (19) reveals that at

inland places far from the coastline, the pertur-

bation solutions equal the approximate Taylor

expansion of the exact asymptotic solutions with

a truncation error less than a2
L=32 relative to Dþ

T=KU; where aL is defined as Eq. (17b). From

assumption (d), aL is usually less than 1. So the

relative error of Eq. (25) is less than 3.125% and

can be neglected. For example, for the above

aquifer system discussed in Fig. 3, the exact

solutions (17a) and (17c) show that the

asymptotic mean water level far inland is

0.06202 m, the perturbation solutions (20), (21)

or (25) give a value of 0.0625 m.

Solution (2a) by Nielsen (1990) assumed that the

unconfined aquifer has an impermeable bottom, i.e.

Fig. 3. Change of the leakage flux FLðxÞ in the confined aquifer with the landward distance x for different values of the dimensionless

leakage u.
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the leakance L ¼ 0: Substituting L ¼ 0 into Eqs. (20)

and (21) yields

WðxÞlL¼0<
XN
j¼1

A2
j

4D
ð12e22ajxÞ; HCðxÞlL¼0;0: ð26Þ

Eq. (26) is a generalization of Nielsen’s

solution (2a) in the sense that Eq. (26)

considers all the sinusoidal components of the sea

tide.

5. Summary

This paper investigates the influences of the sea

tide on the mean water levels in a multi-layered

coastal aquifer system with a confined aquifer, an

unconfined aquifer, and a semi-permeable layer

between them. Exact asymptotic solutions and

approximate perturbation solutions are derived for

multi-sinusoidal-component sea tide. At inland places

where the distance from the coastline is so far that all

the tide-induced oscillations have died out, the mean

water levels in both the unconfined and confined

aquifers approach the same constant considerably

higher than the mean sea level. Exact asymptotic

solutions show that this constant water level depends

on the amplitudes of the sinusoidal components of the

sea tide, the confined aquifer’s hydraulic transmissiv-

ity, the unconfined aquifer’s permeability and the

depth below the mean sea level, and that it is

independent of the magnitude of the leakance of the

semi-permeable layer. As the landward

distance approaches infinite, the perturbation sol-

utions in both aquifers tend to the same constant that

is found to be a Taylor-expansion approximation to

the exact asymptotic constant with a relative trunca-

tion error less than 3.125%. Nielsen’s mean water-

table solution (2a) is the special case for single-

sinusoidal-component sea tide when the middle layer

becomes impermeable.

Due to the watertable-dependent transmissivity of

the unconfined aquifer, the mean water levels of the

unconfined and confined aquifer higher than the mean

sea level lead to positive landward gradients of the

mean water levels, which result in a seawater-

groundwater cycle in the region near the coastline.

Seawater is pumped into the unconfined aquifer by

the sea tide and divided into two parts. One part

returns to the sea driven by the mean watertable

gradient. The rest part leaks into the confined aquifer

through the semi-permeable layer, and returns to the

sea through the confined aquifer driven by the mean

head gradient. The perturbation solutions show that

the discharge through the confined aquifer is signifi-

cant for typical aquifer parameter values. The

seawater–groundwater circulation described in this

paper has impacts on the exchange and movement of

chemicals such as nutrients and contaminants in the

coastal areas. This circulation provides also insights

into better understanding the mechanism regarding

SGWD. If the observed mean water levels in coastal

areas are used for estimating the net inland recharge,

the enhancing processes of sea tide on the mean

groundwater levels should be taken into account.

Otherwise, the net inland recharge will be

overestimated.

According to Nielsen (1990) and Li et al. (2000), a

slope water–land boundary of the coastal aquifer will

lead to much higher watertable in the unconfined

aquifer than a vertical water–land boundary does. In

reality, the water–land boundary of the coastal aquifer

systems is usually a slope. Hence, the phenomenon

revealed in this paper may be reinforced in multi--

layered coastal aquifer systems with sloping beach.
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Appendix A. Proof of Eq. (16a)

Suppose Eq. (16a) does not hold, then there exists a

fixed number c0 . 0; and a series of xj ðj ¼ 1; 2;…Þ

that tends to infinite, such that

lEðxjÞl . c0; ðj ¼ 1; 2;…Þ; ðA1Þ

holds, where EðxÞ ¼ WðxÞ2 HCðxÞ: From the no-

flow boundary conditions (4c) and (6c), there exists
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an integer J, such that for each j $ J; xJ is great

enough for the following inequalities to hold

dWðx; tÞ

dx










, c2

0

2
;

dHCðx; tÞ

dx










, c2

0

2
;

;t [ ð21;1Þ; x$ xJ : ðA2Þ

Using Eq. (A2) and definitions of mean water

levels (8a) and (8c), it follows that

dE

dx










# dW

dx












þ dHC

dx














#
1

P

ðtþP

t
ðj
›W

›x
þj j

›HC

›x
jÞ t# c2

0; x$ xJ : ðA3Þ

Using Eqs. (A1) and (A3), when xj $ xJ þ1=c0; one hasðxjþ1=c0

xj21=c0

ðW 2HCÞdx

¼
ðxjþ1=c0

xj21=c0

EðxÞdx

¼
ðxjþ1=c0

xj21=c0

ðx

xj

dEðjÞ

dj
djþEðxjÞ

" #
dx

. 2þ
ðxjþ1=c0

xj21=c0

ðx

xj

dEðjÞ

dj
dj

" #
dx

$ 22
ðxjþ1=c0

xj21=c0

ðx

xj

dEðjÞ

dj
dj












dx

$ 22
ðxj

xj21=c0

ðxj

x

� 



dEðjÞ

dj
dj






�

dx

2
ðxjþ1=c0

xj

ðx

xj

" 




dEðjÞ

dj
dj







#

dx

$ 22
ðxj

xj21=c0

ðxj

x
c2

0 dj

� �
dx

2
ðxjþ1=c0

xj

ðx

xj

c2
0 dj

" #
dx¼ 1: ðA4Þ

Eq. (A4) is in contradiction with the convergence of the

integral
Ð1

x ½WðjÞ2HCðjÞ�dj in the right-hand side of

Eq. (15).

Appendix B. Derivation of perturbation solutions

Neglecting the storage of semi-permeable layer,

from Eqs. (5a)–(5c) one obtains

K 0 ›HS

›z
¼

K 0

b0
½Wðx; tÞ2HCðx; tÞ�¼LðW 2HCÞ ðA5Þ

Let d¼AS=D be the perturbation parameter, and let

Wðx; tÞ¼W0ðx;tÞþdW1ðx; tÞþd2W2ðx; tÞ…; ðA6Þ

HCðx;tÞ¼HC0ðx;tÞþdHC1ðx;tÞþd2HC2ðx;tÞ…; ðA7Þ

inserting Eqs. (A6) and (A7) into Eqs. (4a)–(4c) and

(6a)–(6c), and separating terms of equal order in d;

one finds that W0¼HC0;0 from equations of order

d0; while Wi and HCi ði¼1;2Þ satisfy the following

system of equations.

Order d1:

Sy

›W1

›t
¼ KUD

›2W1

›x2
2 LðW1 2 HC1Þ;

21 , t , 1; x . 0;

ðA8:1Þ

W1lx¼0 ¼
D

AS

XN
j¼1

Aj cosðvjt þ cjÞ; ðA8:2Þ

›W1

›x






x¼1

¼ 0; ðA8:3Þ

S
›HC1

›t
¼ T

›2HC1

›x2
þ LðW1 2 HC1Þ;

21 , t , 1; x . 0;

ðA8:4Þ

lim
x!1

›HC1

›x
¼ 0; ðA8:5Þ

HC1lx¼0 ¼
D

AS

XN
j¼1

Aj cosðvjt þ cjÞ; ðA8:6Þ

Order d2:

Sy

›W2

›t
¼KUD

›2W2

›x2
þKU W1

›2W1

›x2
þ

›W1

›x

� 	2
 !

2LðW2 2HC2Þ; 21, t,1; x. 0; ðA9:1Þ

W2lx¼0 ¼ 0; ðA9:2Þ

HC2lx¼0 ¼ 0: ðA9:3Þ

The other three equations satisfied by W2 and HC2 are

not written out here because they can be obtained
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directly by substituting W1 and HC1 in Eqs. (A8.3)–

(A8.5) with W2 and HC2; respectively.

Although the exact solution W1 to Eqs. (A8.1)–

(A8.6) has been found (Li and Jiao, 2002), here

it will be simplified for the sake of succinctness.

Using the condition 1j ¼ L=ðvjSyÞp 1; the exact

solution W1 of Eqs. (A8.1)–(A8.6) can be simpli-

fied into

W1ðx; tÞ¼
D

AS

XN
j¼1

Aj e2ajxð1þOð1jÞÞcosðvjt2ajxþcjÞ:

ðA10:1Þ

Using Eq. (A8.1) and the periodicity of W1; one

has

1

P

ðtþP

t
KUW1

›2W1

›x2
dt¼

Sy

2PD

ðtþP

t

›W2
1

›t
dt

þ
L

PD

ðtþP

t
W1ðW12HC1Þdt

¼
L

PD

ðtþP

t
W1ðW12HC1Þdt;

ðA10:2Þ

substituting Eq. (A10.1) into the above equation,

using W12HC1 ¼ASOð1Þ; yield

1

P

ðtþP

t
KUW1

›2W1

›x2
dt¼

XN
j¼1

AjvjSy Oð1jÞe
2ajx:

ðA10:3Þ

Using Eq. (A10.1) and the trigonometric identities

2 sinfcosc¼ sinðfþcÞ2sinðf2cÞ;

2 cosfcosc¼ cosðfþcÞþcosðf2cÞ;

one obtains

1

P

ðtþP

t
KU

›W1

›x

� 	2

dt

¼
D

2A2
S

XN
j¼1

A2
j vjSyð1þOð1jÞÞexpð22ajxÞ: ðA10:4Þ

Substituting Eq. (A10.1) into Eq. (A9.1), then

integrating Eqs. (A9.1)–(A9.3) and other three

equations satisfied by W2 and HC2 with respect to

t from t to tþP; one obtains the time-averaged

linear system with respect to W2 and HC2: Based

on Eqs. (A10.2)–(A10.4), the source term of

the time-averaged system is

1

P

ðtþP

t
KU W1

›2W1

›x2
þ

›W1

›x

� 	2
 !

dt

¼
D

2A2
S

XN
j¼1

A2
j vjSyð1þOð1jÞÞexpð22ajxÞ: ðA11Þ

Neglecting terms of Oð1jÞ; the time-averaged

system is eventually simplified into

W 00
2 2

L

TU

ðW2 2 HC2Þ

¼ 2
D

A2
S

XN
j¼1

A2
j a2

j expð22ajxÞ; x . 0; ðA12:1Þ

H 00
C2 þ

L

T
ðW2 2 HC2Þ ¼ 0; x . 0; ðA12:2Þ

W2lx¼0 ¼ 0; W 0
2lx¼1 ¼ 0; ðA12:3Þ

HC2lx¼0 ¼ 0; H 0
C2lx¼1 ¼ 0; ðA12:4Þ

where TU ¼ KUD: For the jth single source term

2ðD=A2
SÞA

2
j a2

j expð22ajxÞ; the solutions W2j and

H2j to the system (A12) are

W2j ¼
DA2

j a2
j

A2
S

pjLT 2 qjLU

LT þ LU

�

þ
LUðpj þ qjÞexpð2x

ffiffiffiffiffiffiffiffiffiffiffi
LT þ LU

p
Þ

LT þ LU

2 pj expð22ajxÞ

�
; ðA13:1Þ

H2j ¼
DA2

j a2
j

A2
S

pjLT 2 qjLU

LT þ LU

�

2
LTðpj þ qjÞexpð2x

ffiffiffiffiffiffiffiffiffiffiffi
LT þ LU

p
Þ

LT þ LU

þ qj expð22ajxÞ

�
; ðA13:2Þ

where

LT ¼ L=T ; LU ¼ L=TU;
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pj ¼
4a2

j 2 LT

4a2
j ð4a2

j 2 LU 2 LTÞ
;

qj ¼
LT

4a2
j ð4a2

j 2 LU 2 LTÞ
:

Using Eqs. (A8.1)–(A8.6), it follows that

W1ðxÞ ¼ HS1ðxÞ ¼ HC1ðxÞ ; 0: ðA14Þ

Implementing the time-averaged transform to both

sides of Eqs. (A6) and (A7), then substituting Eqs.

(A13.1), (A13.2) and (A14) back into the transform

results, one finally obtains the time-averaged

solutions W ; HC and HS given by Eqs. (20), (21)

and (10a), respectively.
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