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Abstract

This paper presents a procedure for calculating the transport to groundwater of surface-released contaminants. The approach

is derived from a series of analytical and semi-analytical solutions to the advection–dispersion equation that include root zone

and unsaturated water movement effects on the transport process. The steady-state form of these equations provides an efficient

means of calculating the maximum concentration at the watertable and therefore has potential for use in vulnerability mapping.

A two-layer approach is used in the solutions to represent the unsaturated profile, with the root zone corresponding to the upper

layer where evapotranspiration can occur and transport properties can be in contrast to the rest of the profile. A novel

transformation is applied to the advection–dispersion equation that considerably simplifies the way in which water movement

is represented. To provide a combined flow and transport model an approximate procedure for water movement, using averages

of the infiltration and transpiration rates with a novel, simple, quasi-steady state solution, is presented that can be used in

conjunction with the solutions to the advection–dispersion equation. This quasi-steady state approximation for water

movement allows for layering in the soil profile and root water uptake. Results from the combined quasi-steady state water

movement and semi-analytical solute transport procedure compare well with numerical solutions to the coupled unsaturated

flow and solute transport equations in a series of hypothetical simulations.
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1. Introduction

Mapping the vulnerability of aquifers to pollution

involves estimating the potential for contaminants to

migrate from the land surface through the unsaturated

zone to groundwater throughout areas of interest.

Existing vulnerability maps tend to use simple

qualitative indices (e.g. the GOD index (Foster,

1987) and the DRASTIC index (Aller et al., 1987))

that bring together key factors believed to influence

the solute transport process. At the time the maps were

developed this was an appropriate compromise since

quantitative information on the various transport

properties was largely unavailable and the approach

had to be compatible with the cost effective

production of maps. Nevertheless vulnerability maps

have proved popular tools and are now a common

feature of groundwater environmental management

throughout the world. However, the various indices

used to generate these maps are largely conceptual

(and thus subjective), and in general do not differen-

tiate between contaminants.
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A number of alternatives to the vulnerability

indices have been developed that are based on the

physics of solute transport. Initially developed for

ranking hazardous chemicals such as pesticides, these

approaches also have potential for use in vulnerability

mapping (Khan and Liang, 1989). One example is the

attenuation factor (Rao et al., 1985), a physically

based index that allows for degradation, the recharge

flux, and adsorption. Other work has taken this further

to develop relations for the residual mass fraction of a

pesticide that arrives at the watertable by solving the

advection–dispersion equation (Hantush et al., 2000).

All these approaches could potentially be used within

geographical information systems (GIS) to allows

users to interactively generate contaminant specific

vulnerability maps, an important development that

would allow improved management of water

resources and land use. A key requirement for such

an application is that the indices be relatively simple

to calculate, since such maps involve numerous

calculations of the index over the mapping area.

Another approach to vulnerability mapping would

be to calculate the probability that a contaminant

released at surface would arrive at the watertable

above the regulatory limit for groundwater for that

compound. This probability could then be mapped.

This risk calculation would require the combination of

a solution to the advection–dispersion equation with a

treatment of parameter uncertainty. While there are

several packages that provide numerical solutions to

this equation (Wagenet and Hutson, 1986; Leonard

et al., 1987) these would be difficult to incorporate

Nomenclature

ai1; ai2; ai3 constants of integration for Eq. (12) for

layer i

bi1; bi2 constants defined by Eq. (13) for layer i

b0
i1; b0

i2 steady-state form of bi1; bi2

c solute concentration (M/L3)

cs surface concentration (M solute/L3)

cL concentration at watertable (M

solute/L3)

D dispersion coefficient equal to

Dm þ aLlq=ul(L2/T)

Dm diffusion coefficient (L2/T)

f transformed solute concentration (M

solute/L3)

f oi initial value of f for layer i (M

solute/L3)

h matric potential (L)

hg van Genuchten scale parameter (L)

hL matric potential at the profile base (L)

KðhÞ unsaturated hydraulic conductivity

(L3water/L2/T)

Kd distribution coefficient (L3/M soil)

Ks saturated hydraulic conductivity (L3

water/L2/T)

L depth to watertable (L)

ms adsorbed mass (M solute/M soil)

n;m van Genuchten shape parameter

q water flux (L3 water/L2/T)

Q transformed depth (L3 water/L2)

Q0 transformed Q (L3 water/L2)

qo temporal average of infiltration (L3

water/L2/T)

qc solute mass flux (M solute/L2/T)

qco constant surface flux of solute (M

solute/L2/T)

Rf retardation factor

s Laplace transform variable

Sw sink/source of water (L3water/L3/T)

Swa average sink/source of water

(L3water/L3/T)

t time parameter (T)

z vertical coordinate (L)

zav depth constant (L)

zdi depth of layer i base (L)

zL depth of the profile (L)

ai, bi, gi equation coefficients for Eq. (10)

ag Gardner shape parameter (1/L)

aL dispersivity (L)

DQ1;DQ2 thickness in Q space of layer one and

two (L3water/L2)

u volumetric water content (L3water/L3)

us saturated volumetric water content

(L3water/L3)

ur residual volumetric water content

(L3water/L3)

m degradation rate (T21)

r soil dry bulk density (M soil/L3)
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within a GIS and still provide a tractable system for

interactive map generation since numerous simu-

lations could be required to generate a map. This

problem would be exacerbated if the inherent

parameter uncertainties had to also be treated, perhaps

through Monte Carlo analysis, within the GIS. This

paper presents an approach for calculating the

contaminant risk that would be suitable for use in an

interactive fashion within a GIS.

As an alternative to numerical solutions, the

advection–dispersion equation can also be solved

analytically. However, the derivation of analytical

solutions must be able to include the effect of a range

of processes. One important process for a field soil

exposed to climate is the variation in water content

and flux both spatially and through time. In addition,

many soils exhibit a biologically active zone, roughly

corresponding to the root zone, where the organic

content and oxygen concentration are higher than

deeper in the profile (Jury and Grsruber, 1989). For

many contaminants this biologically active zone will

mean that degradation and retardation rates are higher

than deeper in the profile. In addition to vertical

differences in transport properties, there can be a

contrast in soil hydraulic properties. Also, solute

concentrations may be affected by the uptake of water

by plants, increasing if the plant roots exclude the

solutes.

However, in order for the mathematical problem to

be tractable analytically, existing solutions tend to

involve a number of approximations about the manner

in which the physical system is represented. Approxi-

mations made in order to solve the advection–

dispersion equation have been constant coefficients

(Elrick et al., 1994; Sun et al., 1999; Connell and

Haverkamp, 1996) or coefficients that are time

varying but constant with respect to position (Barry

and Sposito, 1989). For transport in the unsaturated

zone spatially constant coefficients means that

retardation, degradation and dispersion are constant

throughout the unsaturated profile and therefore any

contrast between root zone properties and the rest of

the profile is not represented. The constant coefficient

assumption also means that the vertical and transient

variation in the unsaturated water content observed

under field conditions cannot represented. Bosma and

van der Zee (1992) present a solution that allows for

layering using a travelling wave approximation to

simplify the transport equation. Connell (2002)

allowed for root zone effects by treating the root

zone processes in a lumped fashion and combining

this with an analytical solution for below root zone

transport.

A complication often encountered in field soils is

the existence of macropores that allow preferential

flow of water and rapid transport of solute. This

preferential transport can be further complicated by

the diffusional transport of solutes from the macro-

pore into the surrounding soil matrix. While the

solutions discussed in the preceding paragraph have

considered that the transport behaves as that in porous

media, other approaches exist for some of the dual

porosity systems encountered with preferential flow

(e.g. Hantush et al., 2002; van Genuchten and Dalton,

1986). As a first analysis in this paper we consider the

transport to behave as that in a porous medium.

In this paper, analytical and semi-analytical

solutions to the advection–dispersion equation are

presented that have potential for use in mapping the

risk of surface released contamination to groundwater

systems. In the first part of the paper semi-analytical

solutions are derived that allow for a contrast between

root zone and sub-root zone properties, and variation

in the vertical unsaturated water content. These

solutions use a spatially transformed advection–

dispersion equation that simplifies the way in which

water movement is represented. With this transformed

equation a quasi-steady state approximation for the

water movement is developed that allows for layering

in soil hydraulic properties and uses temporal

averages of the infiltration and evapo-transpiration

rates. The accuracy of this approximation when there

is transient variation in unsaturated water movement

is investigated in a series of hypothetical simulations

with the numerical unsaturated flow and transport

model SWIMv2 (Verburg et al., 1996) as a basis of

comparison. These simulations involve a time series

in the surface boundary conditions where discrete

infiltration events are interspersed with periods of

transpiration. In a second part to the paper steady-state

forms of the semi-analytical solutions are derived that

have potential for use in the generation of GIS-based

risk maps.

The solutions are derived for two situations; where

there is a finite profile bounded by the soil surface and
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the watertable and where the profile is semi-infinite,

with the soil surface being the upper boundary.

2. Mathematical derivation

2.1. The advection–dispersion equation and its

transformation

The advection–dispersion equation is derived by

combining the solute mass flux relation with con-

servation of mass. Conservation of solute mass may

be written as,

›ðcuÞ

›t
þ r

›ms

›t
¼ 2

›qc

›z
þ muc ð1Þ

With Eq. (1) degradation only occurs in the dissolved

solute phase, not the adsorbed. The solute mass flux,

qc, combines the effects of solute advection and

dispersion and can be written as,

qc ¼ 2uD
›c

›z
þ qc ð2Þ

where D is the dispersion coefficient equal to Dm þ

aLlq=ul:
Introducing Eq. (2) into Eq. (1) leads to,

›ðcuÞ

›t
þ r

›ms

›t
¼

›

›z
uD

›c

›z

� �
2

›ðqcÞ

›z
þ muc ð3Þ

Eq. (3) is the advection–dispersion equation for

solute transport in unsaturated soil.

With a linear adsorption isotherm ðms ¼ KdcÞ and

continuity of water mass, Eq. (3) becomes,

uRf

›c

›t
¼

›

›z
uD

›c

›z

� �
2 qðz; tÞ

›c

›z
þ ðmu2 SwÞc ð4Þ

where Rf ¼ 1 þ Kdr=u and Sw represents water loss

due to transpiration. In Eq. (4) solute is excluded from

the water taken up by the plant root system for

transpiration and that loss of water mass represented

by Sw acts to increase the solute concentration.

However, if solute is taken up into the plant roots

with the transpiration water at the same rate, than Sw

does not appear in Eq. (4) as the solute concentration is

unaffected, even though the mass decreases (through

reductions in the volumetric water content, u).

Bond and Smiles (1983) transformed the advec-

tion–dispersion equation by introducing the following

variable,

Q ¼
ðz

0
u d�z ð5Þ

Here this transform is extended to the following,

Q ¼
ðz

0
uRf d�z ð6Þ

and used to transform Eq. (4) leading to

›f

›t
¼

›

›Q
Rfu

2D
›f

›Q

� �

2 qð0; tÞ þ
ðz

o
Sw d�z

� �
›f

›Q
þ

ðmu2 SwÞ

Rfu
f ð7Þ

where f ðQ; tÞ is the Q space form of the concentration,

cðz; tÞ:

Without plant water uptake Eq. (7) becomes,

›f

›t
¼

›

›Q
Rfu

2D
›f

›Q

� �
2 qð0; tÞ

›f

›Q
þ

m

Rf

f ð8Þ

2.2. Two-layer semi-analytical solution

2.2.1. Physical approximations

For many soil profiles it may be a reasonable

approximation to assume that there is a compact root

zone with more or less uniform root distribution, and

thus vertically uniform plant water uptake, Sw.

Therefore for the first of the two layers in our

model, Sw could be approximated by a spatial

constant within the layer. For the second layer,

below the root zone, Sw is zero. For the first layerÐz
o SwðtÞd�z can be integrated to SwðtÞz: Since SwðtÞz

acts to reduce the advective water flux in Eq. (7)

replacing z by a constant, zav, would mean that

advective transport is overestimated above zav and

underestimated below that point. zav could be chosen

to ensure the travel time through the root zone is

preserved, even though it is not accurately rep-

resented within the layer.

In an extension of the transform used by Barry

and Sposito (1989), Q0 ¼ Q 2
Ðt

o

�
qð0; �tÞ þ Swð�tÞzav

�
d�t; can be substituted into Eq. (7), leading to,

›f 0

›t
¼

›

›Q0
Rfu

2D
›f 0

›Q0

� �
þ

mu2 Sw

uRf

f 0 ð9Þ
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where f 0 is the Q0 transform of f presented in Eq.

(7). This transformation removes the advective term

from Eq. (7) and redefines the problem in a moving

boundary form. While Eq. (9) does not form the

basis for the solutions presented below, it does

demonstrate that the advective component of

transport, at a given time, is determined by the

cumulative or net surface water flux up to that

time,
Ðt

o qð0; �tÞ d�t and the cumulative transpiration,Ðt
o Swð�tÞ d�t: To find the concentration at a time, qot

and Swat can replace the integral terms in the

previous sentence, where qo and Swa are averages.

Setting aside water content effects, solute transport

could then be modeled using readily available

information on the surface water fluxes (readily

measured as cumulatives) rather than simultaneous

solution of the water movement equation.

However, while the advective component of

transport can largely be described using averages of

the surface water flux and root water uptake, in

order to map a location in to the Q transform space

the water content profile is required. In an

unsaturated soil the water content will vary with

depth. At equilibrium, with a zero water flux, the

water content profile above the watertable will be

equivalent to the matric potential relationship, with

the negative of the distance above the watertable

being equivalent to the matric potential. The water

content therefore tends to saturation with depth

towards the watertable. Consistent with our average

surface flux approximation is that water movement

is in a quasi-steady state. While this may seem a

coarse approximation for a soil exposed to climate,

transient water movement responses are damped by

the soil profile. As a result, the water movement

behaviour approaches an averaged state with depth.

This will be sensitive to both the climate and soil

hydraulic properties. Under steady state conditions

simple relationships can be derived for the water

content profile with respect to the surface flux (i.e.

Gardner, 1958).

2.2.2. Derivation of layer equation

The approach presented here involves conceptua-

lising the profile as being composed of two layers.

Towards the surface there is a biologically active

zone, where rates of degradation and adsorption are

higher than deeper in the profile, and where there is

plant water uptake through the root system.

Eq. (7) is used to describe solute transport within

the root zone and Eq. (8) for below the root zone.

Within each layer a constant coefficient form of the

differential equations is solved analytically in Laplace

space. These layer analytical solutions are then

coupled together to provide a description for the

dependent variable in Laplace space over the problem

domain. Numerical Laplace inversion is then used to

calculate values for the dependent variable at

locations in time.

A generalised form of the transformed constant

coefficient approximation for Eqs. (7) and (8) is

presented below,

›fi
›t

¼ ai

›2fi

›Q2
i

2 bi

›fi
›Qi

þ gifi ð10Þ

where i refers to the layer number and ai ¼ kRfu
2Dli;

bi ¼ ðqoi þ SwaizaviÞ; gi ¼ ðmikuil2 SwaiÞ=kRfiuil; and

where Swa2 is zero. The brackets k l refer to layer

constant values. In Eq. (10) Qi is defined as being

local to each layer; i.e. Qi ¼
Ðz

zdi
uRfid�z; where zdi is

the depth of the interface between the two layers, for

example, zd1 ¼ 0 and zd2 is the depth of the interface

between the two layers.

Taking the Laplace transform of Eq. (10) leads to

the following equation,

s�fi 2 foi ¼ ai

d2�fi

dQ2
i

2 bi

d�fi
dQi

þ gi
�fi ð11Þ

where foi refers to the initial value of f ; in this case a

constant.

The analytical solution to Eq. (11) is of the

following form,

�fi ¼ ai1ebi1Qi þ ai2ebi2Qi þ ai3 ð12Þ

Substituting Eq. (12) into (11) leads to the following,

bi1 ¼
bi 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

i þ 4aiðs 2 giÞ
q

2ai

and

bi2 ¼
bi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

i þ 4aiðs 2 giÞ
q

2ai

and

ai3 ¼ fio=ðs 2 giÞ:

ð13Þ

The coefficients ai1 and ai2 are determined from

coupling the equations for each layer (defined by
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Eq. (12)) together and introducing the boundary

conditions.

2.2.3. Finite domain: surface to watertable

2.2.3.1. Prescribed surface concentration. Surface

concentration;

cð0; tÞ ¼ csðtÞ

or in Laplace transform space, �fðQ1 ¼ 0Þ ¼ �csðsÞ:With

the above condition and using Eq. (12) defined for the

first layer,

a11 ¼ �cs 2 a12 2 a13 ð14Þ

For the lower boundary conditions;

cðL; tÞ ¼ cLðtÞ

which leads to,

a21 ¼ �cL 2 a23 2 a22eb22DQ2

h i
=eb21DQ2 ð15Þ

In order to solve the dependent variable variation

throughout the problem domain the two layer

equations need to be linked together. The con-

ditions applied to link the equations are continuity

of mass and dependent variable across the interface

between layers 1 and 2.

Continuity of dependent variable is expressed as
�f1ðQ1 ¼ DQ1Þ ¼ �f2ðQ2 ¼ 0Þ; and with Eqs. (12),(14)

and (15), this leads to,

a12 eb12DQ1 2 eb11DQ1

h i
þ a22 eðb222b21ÞDQ2 2 1

h i
¼ �cL 2 a23

� �
e2b21DQ2 2 �cs 2 a13

� �
eb11DQ1 þ a23 2 a13

ð16Þ

Continuity of solute mass in Laplace transform space

can be written as,

�qc1ðQ1 ¼DQ1Þ ¼ �qc2ðQ2 ¼ 0Þ

or with Eq. (2) in Q space,

2½Rf u
2D�

d�f1

dQ1

þq�f1

� �
Q1¼DQ1

¼ 2½Rfu
2D�

d�f2

dQ2

þq�f2

� �
Q2¼0

ð17Þ

Substitution of Eqs. (12),(14) and (15), and noting that

ðq�f1ÞQ1¼DQ1
¼ ðq�f2ÞQ2¼0 leads to,

a12½Rfu
2D�1½b11eb11DQ1 2b12eb12DQ1�

þa22½Rfu
2D�2½b22 2b21eðb222b21ÞDQ2 �

ð18Þ

¼ ½a23 2 �cL�½Rfu
2D�2b21e2b21DQ2

þ½�cs 2a13�½Rfu
2D�1b11eb11DQ1

Eqs. (16) and (18) can be solved for the two

unknowns, a12 and a22 which can then be used to

find a11 and a21 using Eqs. (14) and (15). For ease of

notation Eq. (16) can be rewritten as,

a22K1 þa12K2 ¼K3 ð19Þ

and Eq. (18) as

a12L1 þa22L2 ¼L3 ð20Þ

where the K’s can be found by matching terms in Eq.

(19) with those in Eq. (16) and the L’s by matching

Eq. (20) with Eq. (18).

Solving Eqs. (19) and (20) yields,

a12 ¼
L3 2 K3L2=K1

L1 2 K2L2=K1

ð21Þ

and

a22 ¼
½K3 2 a12K2�

K1

ð22Þ

2.2.3.2. Prescribed surface flux. Expressions for Eq.

(12)’s coefficients can also be calculated for when

there is a fixed flux of solute at the surface, qco,

starting with the following definition,

�qco ¼ 2½Rfu
2D�

d�f

dQ
þ q�f

� �
Q¼0

ð23Þ

Substitution of Eq. (12) for layer 1 leads to

�qco ¼ a11ðqo1 2 ½Rfu
2D�1b11Þ

þ a12ðqo1 2 ½Rfu
2D�1b12Þ þ qo1a13 ð24Þ

with the layer definitions for water content and

dispersivity.Or in terms of a11,

a11 ¼ ½�qco 2 a12ðqo1 2 ½Rfu
2D�1b12Þ

2 qo1a13�=ðqo1 2 ½Rfu
2D�1b11Þ ð25Þ

Substitution of a11 into the expressions for flux and
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dependent variable continuity leads to the following,

K1 ¼ ½Rfu
2D�2½b21eðb222b21ÞDQ2 2 b22� ð26Þ

K2 ¼ ½Rfu
2D�1

� b12eb12DQ1 2 b11eb11DQ1
qo1 2 ½Rfu

2D�1b12

qo1 2 ½Rfu
2D�1b11

" #

K3 ¼ ð�cL 2 a23Þe
2b21DQ2 b21½Rfu

2D�2

2
�qco 2 qo1a13

qo1 2 ½Rfu
2D�1b11

b11½Rfu
2D�1eb11DQ1

L1 ¼ e2b12DQ1 2
qo1 2 ½Rfu

2D�1b12

qo1 2 ½Rfu
2D�1b11

eb11DQ1

L3 ¼ a23 2 a13 2
qco 2 qo1a13

qo1 2 ½Rfu
2D�1b11

eb11DQ1

þ ð�cL 2 a23Þe
2b21DQ2

where L2 is the same definition as for the constant

concentration surface boundary condition.

2.2.4. Semi-infinite domain

While the two-layer solution presented above was

for the finite domain bounded by the soil surface and

the watertable, a two-layer solution can also be derived

for an semi-infinite domain for the lower layer. From

Eq. (12), the solution in Laplace space for layer one is,

�f1 ¼ a11eb11Q1 þ a12eb12Q1 þ a13 ð27Þ

and for layer two,

�f2 ¼ a21eb21Q2 þ a23 ð28Þ

where

b11 ¼
b1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þ 4a1ðs 2 g1Þ
q

2a1

;

b12 ¼
b1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þ 4a1ðs 2 g1Þ
q

2a1

;

b21 ¼
b2 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 þ 4a2ðs 2 g2Þ
q

2a2

and

a13 ¼ f1o=ðs 2 g1Þ; a23 ¼ f2o=ðs 2 g2Þ:

ð29Þ

For a Dirichlet boundary condition and applying

conditions of flux and concentration continuity across

the boundary between layer one and two leads to,

or substituted into Eq. (28) and for zero initial

conditions,

where DQ1 is the thickness of the root zone layer.

For a prescribed flux and zero initial conditions,

�f2ðQ2; sÞ ¼
�qcoeDQ1b11þb21Q2½V2 b11�

ðqo1 2 ½Rfu
2D�1b11Þ V2

½Rfu
2D�2b21

½Rfu
2D�1

" #

ð32Þ

where

2.3. Steady-state concentration

Eqs. (31) or (32) could be used with numerical

Laplace inversion to calculate the concentration

through time at the watertable depth and thus the

time at which regulatory limits (for example) are

exceeded. Another approach would be to calculate the

steady-state concentration and use this with a treat-

ment of parameter uncertainty to estimate

a21 ¼
½Rfu

2D�1{ða13 2 a23Þðb11eb11DQ1 2 b12eb12DQ1 Þ þ eDQ1b12þDQ1b11ð �Co 2 a13Þðb11 2 b12Þ}

eDQ1b11 ð½Rfu
2D�1b11 2 ½Rfu

2D�2b21Þ þ eDQ1b12 ð½Rfu
2D�2b21 2 ½Rfu

2D�1b12Þ
ð30Þ

�f2ðQ2; sÞ ¼
½Rfu

2D�1 �Coðb11 2 b12Þe
DQ1ðb12þb11Þþb21Q2

eDQ1b11ð½Rfu
2D�1b11 2 ½Rfu

2D�2b21Þ þ eDQ1b12ð½Rfu
2D�2b21 2 ½Rfu

2D�1b12Þ
ð31Þ

V ¼
b12eb12DQ1 qo1 2 ½Rfu

2D�1b11

� �
2 b11eb11DQ1 qo1 2 ½Rfu

2D�1b12

� �
eb12DQ1 qo1 2 ½Rfu

2D�1b11

� �
2 eb11DQ1 qo1 2 ½Rfu

2D�1b12

� � ð33Þ

L.D. Connell, G. van den Daele / Journal of Hydrology 276 (2003) 71–88 77



the maximum risk posed by a contaminant source. By

definition,

f2STDðQ2Þ ¼ lim
s!0

½s�f2ðQ2; sÞ� ð34Þ

where f 2STD is f 2 at steady-state. With Eqs. (31) and

(34), and �Co ¼ Co=s (a constant concentration at the

surface) f 2STD can be defined,

where b0
11; b0

12; and b0
21 are the steady state forms of

the coefficients defined in Eq. (29) (given in Eq. (A1)

in Appendix A).

Since b0
11 p b0

12; then eb011DQ1 p eb012DQ1 and Eq.

(35) can be approximated by the following,

f2STDðQ2Þ ¼
½Rfu

2D�1Coðb
0
11 2b0

12Þe
DQ1b011þb021Q2

½Rfu
2D�2b0

21 2 ½Rfu
2D�1b0

12

ð36Þ

and from Eq. (32), for a prescribed flux and zero initial

conditions,

f2STDðQ2Þ ¼
qcoeDQ1b011þb021Q2 ½b0

12 2b0
11�

ðqo1 2 ½Rfu
2D�1b0

11Þ b0
12 2

½Rfu
2D�2b0

21

½Rfu
2D�1

" #

ð37Þ

2.3.1. Numerical Laplace inversion

In order to find the concentration with respect to

time using Eqs. (31) and (32) the de Hoog algorithm

(de Hoog et al., 1982) was used to numerically

invert from Laplace space. With this procedure, the

function is evaluated at a number of locations in

Laplace space and these values used to calculate the

inverse.

In this paper the semi-analytical finite domain two-

layer solution will be tested by comparison with an

equivalent numerical analysis calculated using

SWIMv2 (Verburg et al., 1996).

2.4. Steady state water content profile

In order to move from Q to z space requires the water

content and retardation factor depth profiles at the time

of interest. Earlier it was reasoned that transient

variations in water movement in response to climate

were smoothed as water moves through the unsaturated

profile, such that, as an approximation, the water

content profile at depth is a result of the average of the

surface conditions. Various steady state solutions to

unsaturated water movement have been derived (e.g.

Gardner, 1958). Here a simple solution is presented

that allows for layering and root water uptake.

Within the root zone, conservation of water mass

can be written as,

dq

dz
¼ Swa ð38Þ

Below the root zone Swa ¼ 0:

Eq. (38) can be integrated to,

q ¼ Swaz þ qo ð39Þ

Substitution of the Buckingham–Darcy relation for

the water flux leads to,

KðhÞ
dh

dz
2 1

� �
¼ 2Swaz 2 qo ð40Þ

With the transform variable, h0 ¼ h 2 z; Eq. (40)

becomes,

Kðh0 þ zÞ
dh0

dz
¼ 2Swaz 2 qo ð41Þ

With the hydraulic conductivity defined by,

KðhÞ ¼ Kse
agh ð42Þ

Eq. (41) can be re-written as,

ðh0L

h0
Kse

ag
�h0d�h0 ¼ 2

ðzL

z
½Swa�z þ qo�e

2agzdz ð43Þ

Integrating Eq. (43) leads to the following,

h ¼
1

ag

ln eagðhLþz2zLÞ þ
1

Ks

Swa

ag

þ Swaz

 "

þ qo 2 eagðz2zLÞ
Swa

ag

þ SwazL þ qo

" #!#
ð44Þ

f2STDðQ2Þ ¼
½Rfu

2D�1Coðb
0
11 2 b0

12Þe
DQ1ðb

0
12þb011Þþb021þQ2

eDQ1b0
11 ð½Rfu

2D�1b0
11 2 ½Rfu

2D�2b0
21Þ þ eDQ1b0

12ð½Rfu
2D�2b0

21 2 ½Rfu
2D�1b0

12Þ
ð35Þ
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Eq. (44) relates matric potential to depth for a

constant root water uptake. Layering (that can

allow for vertical variation in hydraulic properties

and root water uptake) can be incorporated by

using Eq. (44) for each layer and solving upwards

from the watertable, at which hL ¼ 0; and

equating h at the top of each layer with the

overlying layer’s hL.

The use of Eq. (42) for the hydraulic conductivity

is an approximation. Philip (1969) noted that “even

though it cannot be claimed that [Eq. (42)] is

universally exact, it does model in a reasonably

convincing way the quite generally observed rapid

non-linear decrease with h:”

The water content profile is required in order to

use the Q transformed transport equation presented

above. The matric potential profile defined by

Eq. (44) can be used with the moisture retention

relationship, uðhÞ; to calculate the moisture

content profile. The van Genuchten moisture

retention relation can be written as (van Genuchten,

1980),

u2 ur

us 2 ur

¼
1

1 þ
h

hg

 !n" #m ð45Þ

where m ¼ 1 2 1=n:

3. Testing of 2-layer solution

3.1. Accuracy of de Hoog inversion

The accuracy of the de Hoog numerical Laplace

inversion is partly related to the number of inversion

points at which the function is calculated. A first sep

in the application of the 2-layer solution is determin-

ing the number of function evaluations in the

inversion that yield the greatest mathematical accu-

racy. This was done by comparing the 2-layer results

(using vertically uniform properties) with an equiv-

alent analytical solution to the advection–dispersion

equation for a range of numbers of function

evaluations. The analytical solution that was used in

this analysis comes from Bear (1979) and is for a semi-

infinite domain with a fixed surface concentration and

a constant vertical water flux,

cðz; tÞ ¼
cs

2
exp

qz

2uD

� �

£ e2yzerfc
z2 t=uRf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 2 4mu2D

p
2
ffiffiffiffiffiffiffi
Dt=Rf

p

" #(

þ eyzerfc
zþ t=uRf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 2 4mu2D

p
2
ffiffiffiffiffiffiffi
Dt=Rf

p

" #)
ð46Þ

where

y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

2uD

� �2

2
m

D

s

where q is the uniform, profile constant water flux.

Fig. 1 presents the differences between the results

of Eq. (46) and those calculated using the 2-layer

solution, Eq. (12) with coefficients defined by Eqs.

(13)–(15),(21), and (22) for a conservative, non-

reactive solute at several times for a surface

concentration of 1, q ¼ 0:1 cm/h, aL ¼ 1; a problem

domain of 200 cm, and volumetric water content set to

1. The use of this water content is not intended to be

physically realistic, but in this hypothetical test, since

there is no degradation, its only influence is on the

transport velocity through the ratio q=u: Thus the

transport velocity is equal to the water flux of 1 cm/h,

a rate that, in a very broad sense, is appropriate for

field soils.

In Fig. 1 the differences between the analytical

results (Eq. (46)) and those involving the numerical

Laplace inversion are consistently minimized for 210

function evaluations in the de Hoog inversion.

3.2. Testing with transient water movement

In the derivation presented above it was proposed

that the advective migration of solute could be

represented using the averages of the surface and

transpiration fluxes. This is a significant approxi-

mation to a complex, dynamic process. For a soil

exposed to climate, rainfall occurs as distinct events

interspersed with periods of transpiration. The

accuracy of a steady state approach for explaining

the water movement behaviour in the 2-layer solution

is largely dependent on flow at depth being slow in its

response and due more to the average of the surface

processes than event related. This will be directly
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related to the rate of water migration, the result of a

combination of event magnitudes and hydraulic

properties.

The accuracy of the 2-layer solution using the

average surface and transpiration fluxes with steady-

state water movement will be investigated using

hypothetical simulations. The basis of comparison for

these analyses will be the SWIMv2 model of Verburg

et al. (1996) that numerically solves the advection–

dispersion equation coupled to Richards’ equation. In

the SWIM simulations the van Genuchten moisture

retention relationship was used with the Mualem

hydraulic conductivity function. Fig. 2 presents the

cumulative water infiltration and transpiration

imposed in the SWIM simulations. In a manner

intended to replicate natural conditions, infiltration is

composed of a series of discrete events of varying

magnitude and time of separation. Transpiration is

applied in a more continuous fashion but still varying

through time. To appreciate the role of the hydraulic

properties on the accuracy of the 2-layer solutions two

sets of the properties are used (see Table 1); Grenoble

Fig. 1. Accuracy of the de Hoog numerical Laplace inversion. The difference between analytical (using Eq. (46)) and 2-layer results calculated

using de Hoog inversion with respect to dimensionless time and number of function evaluations in the de Hoog inversion.

Fig. 2. Surface boundary conditions used for the SWIMv2 simulations. The infiltration and transpiration expressed here as cumulative water

volumes through time.
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sand has a high permeability, while Guelph loam is

less permeable.

The simulations were for a vertical column of 10 m

with vertically uniform hydraulic properties and a root

zone of 50 cm. The initial water content profile for

SWIMv2 was calculated using the steady state

solution, Eq. (44), with the average of the infiltration

and transpiration time series.

The mathematical accuracy of the solution pro-

cedures used in SWIMv2 has been extensively

established with over 50 publications using it and

closely related versions (see Verburg et al. (1996) for a

listing). Therefore there is no need to re-establish this

mathematical accuracy in this paper, however the

model’s behaviour with respect to the number of nodes

will be investigated in order to identify the appropriate

discretization for the subsequent simulations. In Fig. 3

the concentration profiles at two times are presented

for two simulations using the surface driving con-

ditions presented in Fig. 2 and the Grenoble sand

properties in Table 1. These two simulations involve

spatial discretizations with 100 and 250 nodes,

respectively, for the 10 m profile described above.

There are no discernable differences between the

results presented for the two spatial discretizations. In

the subsequent SWIMv2 simulations 250 nodes were

used to maximize the spatial resolution of the results of

flow and transport solutions.

3.2.1. Guelph loam hydraulic properties

Fig. 4 presents the vertical solute concentration

profile at several times for transport in soil with

Guelph loam hydraulic properties under the infiltra-

tion and transpiration time series presented in Fig. 2.

Each profile is calculated using the average flux over

the time of interest, i.e. for 2400 h the average flux is

calculated from the infiltration and transpiration up to

that time, with the steady state water content profile

calculated at each time level with the fluxes for that

time. In Fig. 5 the range of water content variation is

presented with the average, maximum and minimum

vertical water content profiles from the SWIM results

compared with the steady state water content profile

calculated with Eq. (44).

Table 1

Soil hydraulic properties used in model simulations (properties for Grenoble sand are from Fuentes et al. (1992); Guelph loam properties are

from van Genuchten (1980))

us(cm3/cm3) ur(cm3/cm3) Ks(cm/h) hg(cm) m ag(cm21)

Grenoble sand 0.312 0.0 15.32 216.39 0.2838 0.09

Guelph loam 0.434 0.218 1.32 250 0.275 0.12

Fig. 3. Effect of the number of nodes in the SWIMv2 solution for solute concentration. Concentrations are presented for two times and with

simulations involving 100 and 250 nodes. The surface conditions presented in Fig. 2 were used as the surface boundary conditions for the

simulations and Grenoble sand hydraulic properties were used.
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In terms of the position of the solute front, the

SWIM and 2-layer solution results are consistently

close as the front moves down the soil profile, even for

early times when the infiltration and transpiration time

series has been highly heterogeneous. This supports

the use of average surface water fluxes, calculated at

each time of interest, and the use of the steady state

solution for the water content profile to transform

from Q to z space. While the front positions are close

they are more dispersed than the two layer results,

particularly for the early time profiles, at 1200 and

2400 h. One explanation for this is that the SWIM

Fig. 4. Solute concentration variation with depth from the SWIMv2 and 2-layer simulations for Guelph Loam hydraulic properties and with the

water boundary conditions as given in Fig. 2. The depth profiles are presented for four evenly spaced times. The 2-layer results are calculated

using the averages of the water boundary conditions up to the time presented.

Fig. 5. The range of variation in water content from the SWIMv2 simulations for Fig. 3 compared with the steady-state solution for the water

content results used with the 2-layer results. The overall maximum, minimum and average water content profiles from SWIMv2 are presented.
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water content profile tends to be changing rapidly with

depth up to around 300 cm. With the 2-layer result the

transformation from Q to z space is based on the

nearly flat steady state water content profile presented

in Fig. 5. This will act to ‘compress’ the solute front in

z space relative to the SWIM results. At greater depths

the average SWIM water content and steady state

profiles are relatively flat with a similar rate of

change. At these depths the concentration profiles are

in close agreement.

Fig. 6 presents the solute concentration variation

with time, for the two approaches, at a series of

Fig. 6. A comparison between the SWIMv2 and 2-layer solution solute concentration results with time at a number of depths for Guelph loam

hydraulic properties. The simulations are the same as those presented in Fig. 4 with the surface boundary conditions presented in Fig. 2. The 2-

layer results are calculated using the average of the water flux up to the time of interest.

Fig. 7. Solute concentration variation with depth calculated using Grenoble sand hydraulic properties. SWIMv2 results are compared with those

of 2-layer solution and use the surface water fluxes presented in Fig. 2. The 2-layer results are based on using the average of the surface water

fluxes up to the time of interest.
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depths. Each 2-layer result is calculated using the

average of the infiltration and transpiration fluxes up

to the time of interest. In general the results from the

two procedures are in close agreement. Both sets of

results show strong, infiltration event related, pulses

of solute moving past the selected depths. The SWIM

results show how these pulses become more dispersed

the deeper they travel. The 2-layer solution does not

accurately represent this dispersion behaviour, a

consequence of using the steady water assumption

with average water fluxes. However, the results from

the two approaches converge rapidly following the

arrival of each pulse.

3.2.2. Grenoble sand hydraulic properties

Fig. 7 presents the vertical solute concentration

profiles at several times from SWIMv2 and the 2-layer

solution. The vertical water content profiles from

SWIM (the average, maximum and minimum) and

the steady states solution are presented in Fig. 8.

Fig. 8. The range of variation in water content from the SWIMv2 simulations for Fig. 7 is compared with the steady-state solution for water

content profile used with the 2-layer results. The overall maximum, minimum and average water content profiles from SWIMv2 are presented.

Fig. 9. Solute concentration results from Fig. 7 presented in Q space. In Q space, differences in solute concentration as a result of differences in

the approaches to explaining water movement in SWIMv2 and the 2-layer solution are reduced.
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While the shapes of the solute fronts are very close for

the two procedures, the front positions are not as close

as for the Guelph loam simulations presented above.

This could be a result of inaccuracies in the use of the

averaged surface water fluxes for the advective flux or

the use of the steady state water solution in the Q to z

space transformation. Fig. 9 presents the same

concentration results as Fig. 7 in Q space. In Q

space the positions of the solute front are in much

closer agreement, indicating that the inaccuracies in

front position evident in Fig. 7 are a result of using the

steady state approximation in the Q to z transform-

ation. Grenoble sand has a high hydraulic conduc-

tivity; infiltration events lead to pulses of water and

solute that travel rapidly down the soil profile. In

addition there is a wide range over which the water

content varies in response to infiltration and transpira-

tion, so while the average and steady state water

content profiles are close over most of the profile in

Fig. 8, at a particular time there could be significant

differences.

Another aspect to this rapid flow behaviour is the

difference in the solute concentration below the root

zone and behind the front. At each time level the

concentration for this region is either slightly above

the 2-layer solute results or less than these, as

the solute concentration over the vertical profile is

affected by the current state at the surface. The 2-layer

solution therefore represents the average response.

This conclusion is supported by the results in Fig. 10

where the solute concentration at several depths over

time is presented for the 2-layer solution and SWIM.

For these simulations the 2-layer and the steady state

water content solutions are calculated at series of

times using the average infiltration and transpiration

up to that time. While the 2-layer results fail to

represent the true arrival and temporal dispersion of

the solute pulses, as with Guelph loam properties

there is good overall agreement.

Within the root zone solute concentration is

significantly affected by the current surface conditions

and, due to the use of averaged water movement, the

2-layer solution cannot reliably estimate this

behaviour.

4. Discussion and conclusions

This paper investigates the use of analytical

solutions for unsaturated solute migration, and pre-

sents a simple approach for calculating the transport

of contaminants to groundwater that could prove

Fig. 10. A comparison between the solute concentration results with time calculated using SWIMv2 and the 2-layer solution. These simulations

used Grenoble sand hydraulic properties and the surface boundary conditions presented in Fig. 2. The 2-layer results are calculated using the

average of the water flux up to the time of interest.
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suitable for risk mapping. Root zone processes are

represented including water loss due to plant tran-

spiration that can act to concentrate solutes that the

excluded by the root system. In addition, higher

organic matter contents, microbial populations and

oxygen concentrations within the root zone lead to

solute transport properties that are different to the rest

of the soil profile. In the solution presented in this

paper, the unsaturated profile is divided into two

layers, with the upper layer to represent the root zone

effects. A common assumption made with existing

analytical solutions to the advection–dispersion

equation is that the soil profile is homogeneous and

thus the localised effect of root zone processes is not

accurately represented.

An interesting aspect to the approach presented in

this paper is how water movement is characterised in

the solute transport solution. The solutions are based on

the Q transformed advection–dispersion equation (Eq.

(8)) where, for a conservative solute, the water

movement properties are the averages of the infiltra-

tion rate (qo) and the transpiration rate (Swa). However,

in order to invert from Q space back to depth, z,

requires the water content profile, but only at the same

time that the concentration is required. In the paper, a

steady-state water content profile was used to invert

from Q space. However, it is also possible to base the Q

to z space inversion on direct field measurement of the

water content profile. This, along with measurement of

the average infiltration and transpiration rates for the

period of interest, would allow the solute transport to

be calculated without a water flow solution.

The underlying assumption in the water movement

modelling, and some aspects of the solute transport

modelling, is that the unsaturated profile behaves as a

porous medium. However, in many soils and aquifer

structuresmacroporesexist that allowpreferentialflow,

and this deviates from the porous media assumptions.

Preferential flow can be an important process since it

has the potential to provide a rapid pathway for

contaminants to reach the watertable. A complication

with representing preferential flow is that transport

within the macropores can be linked to the surrounding

matrix. In some situations, while water may move

rapidly, solutes are lost to the matrix and the net vertical

migration of chemicals is effectively retarded by this

matrix diffusion (as with the Chalk of northern Europe).

The model presented here would have to be modified to

represent this preferential flow and matrix diffusion

process, possibly along the lines of the dual porosity

approach of Hantush et al. (2002). However, if the

preferential flow involves no significant matrix diffu-

sion then the method presented in this paper could still

be used with appropriate water fluxes and porosities.

One of the key obstacles in the application of any

process based approach, such as that proposed in this

paper, is the estimation of the location specific

properties that affect transport. To replicate the area

covered by existing vulnerability maps would involve

estimating very large sets of properties. Some of these

are physico-chemical characteristics, such as the

organic carbon content that could play a role in the

transport of a large number of substances. While

others could be site and contaminant specific, such as

the degradation rate which can be affected by the

oxygen concentration. While we are improving our

knowledge of these properties through various efforts,

it must be recognised that they will only ever be

known with a degree of uncertainty. It may be that

many can be estimated from similar situations or, at

best, through expert opinion. Therefore, inherent in

any mapping approach must be a treatment of

parameter uncertainty; this would allow an estimate

of the probability that regulatory limits could be

exceeded and this would then be the property mapped.

Overall, the accuracy of the combined approach of

two-layer transport equation and semi-steady state

water movement is a function of the soil hydraulic

properties and the depth of observation. The pro-

cedure had greater accuracy for the Guelph loam soil

hydraulic properties than for the more permeable

Grenoble sand properties. For Grenoble sand it was

shown that while the use of the averages of the

infiltration and transpiration rates without any tem-

poral resolution of the behaviour of these properties

could lead to very close agreement in the Q transform

space, the use of the steady water movement solution

introduced differences. These differences arose from

the highly transient nature of water movement for this

soil, with the vertical water profile being strongly

influenced by infiltration events. For this soil, the

steady state solution tended to smooth out wetting

fronts and thus not represent the true arrival of the

associated pulses of solute. However, this inaccuracy

became less with depth, such that at a depth of 650 cm

the two-layer results were close to the numerical.
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Therefore, for highly permeable soils the approach of

steady state water movement with the two-layer

solution can provide useful solute transport results

for deeper profiles. More work is required to

determine the relationship between accuracy, profile

depth, climate, and hydraulic properties.

The accuracy of the developed procedure will

therefore be strongly linked to the depth to watertable.

For areas with a shallow watertable and permeable

soils the model results will be approximate and more

sensitive modelling procedures will be required to

accurately represent the aquifer vulnerability. How-

ever, for deeper watertables the approach is shown to

be accurate and offers an efficient approach to

estimating the vulnerability.

Another aspect to the 2-layer solution is that it

allows for time varying surface boundary conditions

for solute concentration or flux. Thus the seasonal

loading that occurs with fertiliser or pesticide

application, for example, can be represented.

Various forms of the two-layer solution were

presented. One solution described solute transport in

the finite domain represented by the soil surface and

the watertable. With this the groundwater had a fixed

concentration, unaffected by the solute arriving from

the unsaturated zone. In reality solute would disperse

through the receiving aquifer and the lower boundary

on the two-layer solution would be a function of the

rate of this dispersion. The current form, if the lower

boundary has a fixed concentration, is therefore

approximate and represents the situation where the

solute is transported away from the watertable at a

much greater rate than at which material arrives.

However, the lower boundary concentration can be a

function of time, which would allow more sophisti-

cated representations of the aquifer dispersion.

A much simpler form of solution was derived for

the semi-infinite domain. While this solution neglects

the effect of the watertable as possible boundary to the

flow system, it could be used to represent the concen-

tration of solute arriving at some critical depth. An

example of this is the watertable where regulatory

limits on contaminant concentration are often applied.

The most appropriate basis for a risk or vulner-

ability mapping procedure would be the steady-state

form of the semi-analytical solutions (Eqs. (36) or

(37)). These simple relations are analytic and would

provide a means of efficiently calculating the risk

(for example; the probability of exceeding a regulat-

ory limit). A risk calculation would mean that the

transport relation would have to be combined with a

treatment for parameter uncertainty like Monte Carlo

or approximate procedures such as first-order second

moment (Dettinger and Wilson, 1981).
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Appendix A

Steady-state form of coefficients defined in Eq.

(29),

b0
i1 ¼

bi 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

i 2 4aigi

q
2ai

and

b0
i2 ¼

bi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

i 2 4aigi

q
2ai

ðA1Þ
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