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Abstract

According to Lacey’s formula, the width of a natural channel at bankfull flow is proportional to the root of the discharge. It is

a very simple formula that has been confirmed by many authors and which, until now, has had no physical explanation. It

appears that Lacey’s equation is composed of physical and measurable parameters which agree with field observations.

The equation hinges on the fact that the velocity at bankfull discharge is a sole function of the bed material. At bankfull

discharge the average velocity is no longer a function of the discharge, as is assumed in regime theory. At discharges below

bankfull level the stream velocity is a function of the discharge to the power 1/6. However at bankfull discharge a singularity

occurs where the water slope is forced on the slope of the natural levees. The velocity of flow associated with this slope is fully

determined by the bed material, and is independent of the discharge. An analytical expression for Lacey’s coefficient of

proportionality is presented.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

What are the dimensions of a stable channel?

Engineers concerned with the design of such channels

have asked themselves this question for many years.

Kennedy (1894), Lindley (1919), Lacey (1930),

Blench (1952), and Lane (1955) have done pioneering

work in what has become known as the regime

concept. In the 1960s intensive debates were held on

regime concepts among famous hydraulic engineers

including Lacey et al. (1963). As Stevens and Nordin

(1987) and Stevens (1989) pointed out, there is

redundancy in the equations used in regime theory.

Most of the equations are better replaced by the two

physical laws of conservation of mass (one for water

and one for sediment), the two equations for

conservation of momentum (one for water and one

for sediment) and the two geometric functions for

cross-sectional area and discharge. These provide a

set of six equations, which is sufficient to solve the

one-dimensional problem, provided the width is

given. If the width is left free to vary, however,

there are seven dependent variables, and an additional

equation is required to describe the lateral morpho-

logical process. Lacey’s equation which states that

the wetted perimeter P is proportional to the square

root of the bankfull discharge Qb could serve as

the seventh equation since its applicability still stands
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unchallenged. The only problem is that until now it

lacks a physical explanation. Lacey’s equation reads:

P ¼ 4:8Q0:5
b ð1Þ

In alluvial rivers, the wetted perimeter P is only

slightly larger than the surface width B: About a

century after the debate on regime theory started,

there appears to be a convergence of opinion, which is

presented by Cao and Knight (1996). Hence it is now

widely held that width B; average depth h and average

flow velocity over the cross-section U are power

functions of the discharge with the following

exponents: 0.5, 0.33 and 0.17. The first corresponds

with Lacey’s equation (and with that of many others,

see Table 1); the second follows from the combination

of Lacey’s equation with Chezy’s equation (stating

that the flow velocity U is proportional to the root of

the depth of flow h); and the third follows by definition

ðQ ¼ BhUÞ: Cao and Knight (1996) present

the following relation between the width and the

depth:

h ¼
1

h
Bu ð2Þ

where h is a constant and u is an exponent equal to

0.66, i.e. the ratio of the first two exponents (0.33/0.5).

These exponents and the proportionality of Eq. (2)

were presented by Blench (1952) and are considered

to be common knowledge in regime theory.

It is recognised that Lacey’s equation is related to

processes of self-organisation occurring in nature.

One can relate the hydraulic geometry and the channel

pattern to minimum stream power (Chang, 1979) or to

optimal energy expenditure (Molnar and Ramirez,

2002). Rodrigues-Iturbe et al. (1992), based on the

principle of minimum energy expenditure in river

links and constant energy expenditure per unit

channel bed area, determined the exponents of B; h;

and U as being: 0.5, 0.5 and 0. Interestingly, in this

paper, the same exponents are arrived at, but through

a different route. The explanation presented here

Table 1

Values of the exponents belonging to B; h and Ub as power functions of Q: Data are based on Table 1 of Cao and Knight (1996)

Author Year Exponent B Exponent h Exponent Ub

Lacey 1929 0.50 0.33 0.17

Bose 1936 0.50 0.33 0.17

Glover et al. 1951 0.46 0.46 0.08

Leopold et al. 1953 0.45–0.56 0.37–0.45 0.17–0.00

Leopold et al. 1956 0.50 0.28 0.22

Blench, sand 1957 0.50 0.33 0.17

Blench, gravel 1957 0.50 0.40 0.10

Inglis 1957 0.50 0.33 0.17

Nash 1959 0.54 0.27 0.19

Nixon 1959 0.50 0.38 0.12

Simons et al. 1960 0.51 0.36 0.13

Ackers, cohesive 1964 0.53 0.35 0.12

Ackers, experiments 1964 0.42 0.43 0.15

Kellerhals 1967 0.50 0.40 0.10

Lapturev 1969 0.50 0.33 0.17

Bray, regression 1982 0.53 0.33 0.14

Bray, threshold 1982 0.50 0.48 0.02

Hey 1982 0.54 0.41 0.05

Hey and Thorne 1983 0.50 0.39 0.11

Ghosh 1983 0.46 0.46 0.08

Chang 1988 0.50 0.30 0.20

Yalin, sand 1991 0.50 0.33 0.17

Yalin, gravel 1991 0.50 0.43 0.07

Cao and Knight 1995 0.50 0.33 0.17

Savenije, bankfull 2001 0.50 0.50 0.00
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makes use of the theory of stable sections developed

by Lane (1955). These exponents are different from

the exponents: 0.5, 0.33 and 0.17 mentioned earlier. In

this paper the explanation for this difference lies in the

singularity that occurs at bankfull flow. Although it is

not always recognised, Lacey’s formula applies to

bankfull flow, a situation where the water slope is

forced by the slope of the natural levees. This slope is

not necessarily equal to the bottom slope along a

meandering channel. Above bankfull flow, the valley

slope determines the water slope, which can be

significantly larger if the main channel is a mean-

dering channel. Hence at bankfull level a singularity

occurs where the power functions mentioned earlier

no longer apply. It will be demonstrated that at

bankfull level: u ¼ 1:

This paper does not aim at providing a final answer

to the questions raised by Lacey’s equation. Rather it

aims at opening the discussion from a different

perspective. The regime of an alluvial river is

dynamic and never completely stable. However,

bankfull flow is a dominant bed-shaping situation

which a river experiences at regular times and which

is essential for maintaining the river channel.

The following analysis applies to the middle and

lower reaches of meandering alluvial rivers. It

excludes the upper reaches where the river is

primarily eroding or where it has a braided pattern

of channels. Lacey’s width does not apply to braided

channels, or channels with more than one main

channel. Dade (2000) shows that a wide range of

width to depth ratios are possible in alluvial rivers

with similar sediment characteristics. The analysis

below refers to a stable cross-section of minimum

width.

2. The need for a seventh equation

The geometry and the hydraulic characteristics of

alluvial streams (including estuaries) are governed by

the dynamics of water and sediment. The movement

of water and sediment is generally described by a

set of four one-dimensional equations: the conserva-

tion of momentum and mass for water, the conserva-

tion of mass for sediment, and an empirical formula

that relates sediment transport to flow parameters

›Q

›t
þ a0 ›ðQ

2=AÞ

›x
þ gA

›h

›x
þ gA

›zb

›x
þ gA

UlUl
C2h

¼ 0 ð3Þ

›A

›t
þ

›Q

›x
¼ 0 ð4Þ

B
›zb

›t
þ

›Qs

›x
¼ 0 ð5Þ

Qs ¼ BdsU
n ð6Þ

where:

† Q ¼ Qðx; tÞ is the discharge in m3/s;

† a0 is a shape factor (assumed constant) to account

for the spatial variation of the flow velocity over

the cross-section;

† A ¼ Aðx; tÞ is the cross-sectional area in m2;

† h ¼ hðx; tÞ is the mean cross-sectional depth of

flow in m;

† zb ¼ zbðx; tÞ is the mean cross-sectional bottom

elevation in m;

† g is the acceleration due to gravity in m/s2;

† U ¼ Uðx; tÞ is the mean cross-sectional flow

velocity in m/s;

† C ¼ CðxÞ is the coefficient of Chezy in m0.5/s;

† B ¼ Bðx; tÞ is the channel width in m;

† Qs ¼ Qsðx; tÞ is the sediment discharge in m3/s;

† n is an exponent;

† ds ¼ dsðxÞ is a parameter with the dimension

m(22n) s(n21) that depends on sediment character-

istics and channel roughness.

The sediment discharge is defined as the trans-

ported volume of bed material, including pores, per

unit time.

In the last term of Eq. (3) the depth h is used

instead of the hydraulic radius. This assumption is

justified if the channel is wide in relation to its depth

ðB q hÞ: In alluvial channels this is generally the case.

The coefficient a0 is larger than unity. The more

irregular a cross-section and the more the variation in

flow velocity over the cross-section, the larger a0: In a

regularly shaped, single channel, alluvial stream, a0 is

usually close to unity (Jansen et al., 1979, p. 43).

The fourth equation appears in several forms in the

literature. The most widespread formula, which is
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highly appreciated for its applicability in alluvial

rivers and for its simplicity, is the formula of

Engelund and Hansen (1967), where the exponent n

equals 5 and the parameter ds is defined by:

ds ¼
0:05

D50D
2C3 ffiffi

g
p ð7Þ

where D50 is the diameter in m of the bed material that

is exceeded by 50% of the sample by weight, and D is

the relative density of submerged sediment (generally

D ¼ ð2600 2 1000Þ=1000 ¼ 1:6). In addition, the

following geometric functions define A and Q as:

A ¼ hB ð8Þ

Q ¼ UA ð9Þ

Assuming that a0; C; g; n; D; D50 and hence ds are

known, the list of dependent variables consists of the

following seven parameters:

† the mean cross-sectional flow velocity Uðx; tÞ

† the mean cross-sectional depth of flow hðx; tÞ

† the mean cross-sectional bottom elevation zbðx; tÞ

† the channel width Bðx; tÞ

† the cross-sectional area Aðx; tÞ

† the discharge Qðx; tÞ

† the sediment discharge Qsðx; tÞ:

Hence, there are six equations (Eqs. (3)–(6), (8)

and (9)) with seven dependent variables. Conse-

quently, one more equation is required to solve the set

of equations for the seven dependent variables. In

general, in computational hydraulics, the seventh

equation used is one that fixes the width as a function

of distance x and the water level elevation ðzb þ hÞ:

For a freely varying width, however, a ‘seventh

equation’ is needed. In stable channel design, Lacey’s

formula is often proposed as the seventh equation.

2.1. The seventh equation

Although several efforts have been made to relate

the width B to flow parameters, to the disappointment

of many researchers, no unequivocal physically based

method has, as yet, been developed. For alluvial

channels, Lacey, in 1930, formulated a theory based

on earlier work by Kennedy (1894) and Lindley

(1919) which became known as ‘regime’ theory and

which was based on the assumption that an alluvial

channel adjusts its width, depth and slope in

accordance to the amount of water and the amount

and kind of sediment supplied (Stevens and Nordin,

1987). Lacey’s theory is almost entirely empirical and

supplies simple power expressions that relate stream

depth, width, slope and velocity to the discharge.

Regime theory has been relatively successful in India

and Pakistan in the design of stable irrigation channels

under natural regime. On the other hand, regime

theory has been widely criticised, mainly because of

its lack of physical basis, its empirical character and

the scanty and incomplete database used for its

derivation (Stevens and Nordin, 1987). Investigations

by Stevens (1989) on stream width, however,

indicated that, although there still is no satisfactory

physical backing, there is also no reason to reject the

empirical relation between stream width and

discharge.

For his stream width formula, Lacey made use of

the wetted perimeter P instead of the width B: The

wetted perimeter is somewhat larger than the width: in

a rectangular profile P ¼ B þ 2h; and in alluvial

streams, where the width is generally much larger

than the depth ðB q hÞ the wetted perimeter is

approximately equal to the stream width ðP ø BÞ:

Hence:

P < B ¼ 4:8Q0:5
b ð10Þ

The bankfull discharge is the discharge at which the

river starts spilling over the natural levees. It is the

discharge above which the river can deposit sediments

on its banks. Regular overtopping is necessary for the

river to maintain its bed.

Leopold and Maddock (1953), who extended the

regime concept to American rivers, confirmed that the

width is proportional to the square root of the bankfull

discharge. Blench (1952) arrived at the same con-

clusion and gave an expression for Lacey’s coefficient

ks; which he related to the bed material and tractive

force acting on the sides of the river bed. Later studies

in American streams by Simons and Albertson (1963)

showed similar results:

B ¼ ksQ
0:51
b ð11Þ

albeit that the exponent was slightly increased. The

coefficient of proportionality ks appeared to vary with

H.H.G. Savenije / Journal of Hydrology 276 (2003) 176–183 179



the soil properties of the banks. The value of ks varied

between 3.1 for banks with coarse non-cohesive

material and 6.3 for sandy banks (in metric units). The

former value is lower than the latter because sandy

banks are easier to erode. Lacey (1963), in the

following discussion of the paper, maintained that an

exponent of 0.5 is correct.

3. Lacey’s formula explained

A first intuitive explanation of Lacey’s equation

can be obtained if we reformulate the equation as: the

discharge is proportional to the square of the width.

Because Q ¼ UhB; this situation occurs if the velocity

at bankfull discharge is not a function of Q and if the

depth is proportional to the width. The latter indeed

follows from Lane’s analysis of stable cross-sections.

The derivation is presented below. The former

requires further explanation. This is done in Section

4 of this paper.

The theory of stable cross-sections was initially

developed by Lane (1955) and duly described in the

textbooks of Raudkivi (1967, 1976) and Graf (1971,

1998). It is not considered useful to go into the

derivation of this formula; it follows from the

equilibrium of forces acting on a particle in a channel

cross-section, subject to gravity and the drag force of

the flow. The resulting shape of a stable cross-section

is a sinusoid, given by:

hðyÞ

hm

¼ cos
tan w

hm

y

� �
ð12Þ

where hðyÞ is the depth as a function of the lateral

ordinate y; hm is the maximum depth at the centre of

the channel, and w is the natural angle of repose of the

sediment material in still water, which is a function of

sediment characteristics (see Fig. 1). It follows from

integration of Eq. (12) that:

A ¼ 2h2
m=tan w ð13Þ

and:

B ¼ phm=tan w ð14Þ

These are two straightforward expressions that one

comes across in several textbooks. What is surprising,

however, is that the obvious next step: the derivation

of the average depth h from Eqs. (13) and (14) is not

encountered in the literature. Combination of Eqs.

(13) and (14) yields:

h ¼
A

B
¼

2h2
m

tan w

tan w

phm

¼
2hm

p
ð15Þ

By simple elimination of hm from Eqs. (14) and (15)

the required relation between h and B is obtained:

h ¼
2 tan w

p2
B ð16Þ

This equation is straightforward and is a linear

relation between the average depth of flow, the

surface width and the natural angle of repose of the

sediment. Maybe the reason why this derivation has

not been presented in the literature is that it is in

conflict with Eq. (2) which states that, according to the

current regime theory, the depth is proportional to the

width to the power 0.66.

4. The singularity of bankfull flow

If however Eq. (16) is correct, then Lacey’s

equation for bankfull flow follows directly from the

geometric functions (Eqs. (8) and (9)). Substitution of

Eq. (16) in Eq. (8) and subsequently in Eq. (9) yields:

Qb ¼
2 tan w

p2
B2Ub ð17Þ

where Qb and Ub are the discharge and velocity

belonging to the design situation. These are the

bankfull discharge and the corresponding cross-

sectional average velocity, which is the velocity that

occurs in a channel that is just overtopping its banks.

Fig. 1. Definition sketch for a stable cross-section.
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This velocity is in lowland alluvial channels in the

order of 1–2 m/s.

Although in the regular regime theory the velocity

is considered to be a function of the discharge to the

power 0.17, this is no longer the case at the bankfull

situation. At bankfull level, the water slope is forced

on the slope of the natural levees, which is not

necessarily equal to the equilibrium slope of the

Chezy equation.

Alluvial rivers need to spill over the banks

regularly to maintain the dynamic equilibrium of

sediment accumulation and erosion. The longitudinal

profile of the river bottom has a convex shape since

the bottom slope reduces along the river axis. Hence

the sediment transport capacity reduces as the water

flows downstream, leading to continuous deposition.

For the dynamic equilibrium of the riverbed it is

required that, at regular times, bed material is lifted

from the bottom and deposited on the banks. As a rule

of thumb this occurs on average once every 1.5 years.

The water which spills over the banks deposits the

coarsest sediments directly on the natural levee,

the size of which is related to the lifting capacity of

the water flow at bankfull flow. As a result, we see, as

we move with the water along the river, a decreasing

slope and a sieving process of bottom sediments,

which is determined by Ub: Hence Ub is not a function

of Qb but of the median sediment size D50:

Lacey’s equation follows directly from Eq. (17)

provided the bankfull velocity is a constant that

merely depends on the bed material characteristics

B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2Ub tan w

s ffiffiffiffi
Qb

p
ð18Þ

This is Eq. (11) of Simons and Albertson (1963),

providing a physical and dimensionally sound

expression for ks

ks ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2Ub tan w

s
ð19Þ

Comparison of Eq. (19) with the documented values

of ks shows that for sandy banks Ub tan w should equal

0.12, whereas in coarse material it should equal 0.51

(see Table 2).

In the Dutch estuaries, observations of natural

angles of repose at various land-fill projects in still

water yielded a relation between the angle of repose

and the average grain size (CUR, 1992; Fig. 56 on p.

86), which can be described by an approximate

regression line (derived for grain sizes between 100

and 500 mm):

tan w ¼ 5:4 £ 105D1:88
50 ð20Þ

With a velocity in the order of 1–2 m/s this would

mean that the coefficients of Simons and Albertson

relate to grain sizes of 620–430 mm for coarse sand

and 290–200 mm for fine sand respectively (see

Table 2). Similarly, Lacey’s coefficient of 4.8 yields

an average grain size of 390–270 mm. These are very

acceptable results.

Hence Lacey’s relation is nothing more than a

combination of the lateral stability in a cross-section

and the observation that the average velocity over the

cross-section at bankfull discharge is solely a function

of the bed material (in the order of 1–2 m/s in lowland

rivers).

Combination of Lacey’s equation with Eq. (16)

leads to the following exponents of the power

functions for B; h; and Ub; respectively: 0.5, 0.5 and

0, instead of: 0.5, 0.33 and 0.17. One can see in Table 1

that some researchers arrived at a similar result (Bray,

Table 2

Values of the constants of proportionality ðksÞ and the related angle of repose f and median grain size D50

Author Observation ks Ub tan wa D50
b ðU ¼ 1–2 m=sÞ (mm)

Simons and Albertson Sand 6.3 0.12 290–200

Simons and Albertson Coarse sand 3.1 0.51 620–430

Lacey 4.8 0.21 390–270

a Derived from Eq. (18).
b Median grain size derived from Eq. (19) assuming Ub ¼ 1–2 m=s:
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Ghosh, and Glover). The author suspects that these

authors indeed looked at bankfull flow, whereas the

others may have looked at lower discharges.

The question remains why the theory for a stable

cross-section of Lane, which has been derived for a

one-dimensional stable canal, appears to apply to

the bankfull discharge of a naturally meandering

channel. Clearly the derivation is not applicable to

the erosion and deposition process in the bends of a

meandering channel. However, the theory does

apply to the straight stretches between meanders,

and that is where the relation should be apparent.

Also one may observe that the system of river

channel, levees and overbank storage is never

regular and not in agreement with a uniform channel

that overtops its banks at a given flow velocity. But

that is not necessary. In a natural channel, the river

may overtop the bank at a certain location in one

year, and at another location in a subsequent year,

after sediments have been deposited on the levee. In

fact the river requires this dynamics to maintain its

levees.

5. Conclusions

Lacey’s equation has been explained and the

resulting physical description for Lacey’s constant

has been derived. In fact, Lacey’s constant appears

to be a function of the bed material, in line with the

conclusions of Simons and Albertson (1963). As a

result, the applicability of Lacey’s equation hinges

on the assumption that the bankfull cross-sectional

average flow velocity is a sole function of the bed

material. At bankfull discharge, a singularity occurs,

whereby the water slope equals the longitudinal

slope of the natural levee. The latter is a function of

the bed material, and not the discharge. There is a

bed-shaping flow velocity that has just sufficient

power to lift the bottom material to the natural

levee. This velocity is a function of the bed

material. Above bankfull level a new situation

occurs, with a different slope (the valley slope), a

different width (the valley width) and a new stage

discharge relation.

For stages below the bankfull level the equili-

brium cross-section, where B and h are directly

proportional to each other, does not occur. It is

possible that within the river channel different

(combinations of) temporarily stable cross-sections

occur with a total stream width smaller than the

bankfull width, i.e. the width that corresponds with

the bed-shaping discharge.
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