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S U M M A R Y
Fractal theory and related developments have significantly enlightened our understanding of
many natural phenomena and led to an upsurge in research efforts in many different disciplines.
This has unfortunately caused some ambiguities, misunderstandings, and even misuses in the
published literature concerning some new concepts in fractal theory and their actual imple-
mentations. As new applications and ideas arise almost daily, it is important to present the
methods in a common framework to minimize further confusion. In this paper, we scrutinize
and compare two of the most frequently applied methods for characterizing fractal time-series,
namely the rescaled-range (R/S) and the power spectrum method, and describe their proper
applications in wire line well-logging data. We outline the problems related to applications
of these two methods. Based on numerical analysis on fractional Gaussian noise (fGn) and
fractional Brownian motion (fBm), we demonstrate the clear necessity to distinguish between
fGn-like and fBm-like data series. For fBm-like data series, the use of their successive incre-
ments is proposed against using various other alternatives in R/S analysis in order to make the
estimated Hurst exponent (Hu) comparable with the global scaling exponent (H) from power
spectrum analysis. We argue that well-logging data are generally analogous to fBm, and thus
we use their incremental series rather than raw well data themselves to estimate Hu when ap-
plying R/S. We also reveal a connection between the transient zone length in the R/S technique
and the shortest-wavelength that can be included for a linear regression in the power spectrum
method.

Key words: borehole geophysics, Fourier transforms, fractals, geostatistics, numerical
techniques.

1 I N T RO D U C T I O N

Careful studies have revealed some problems in the current appli-
cation of rescaled-range analysis (R/S) and the power spectrum in
determining the Hurst exponent (Hu) and the fractal dimension (D).
In particular, it appears to be evident that R/S and power spectrum
methods rarely give similar estimates of Hu, and in many cases dif-
fer significantly if not performed with particular care. Individually,
both R/S and the spectrum method have been criticized for their
inaccuracies (Fox 1989; Hough 1989; Lo 1991; Bassingthwaighte
& Raymond 1994; North & Halliwell 1994). However, discussions
on the obvious discrepancies between the two are often safely ig-
nored. It is our view that neglecting this issue could hamper true
understanding of Hu and D, and could make less meaningful es-
timates. This paper, through a detailed mathematical analysis and
case studies, is meant to clarify some of the ambiguities involved
in their applications and make results from different authors and/or
techniques more consistent and comparable.

The concept of the Hurst exponent was first introduced by
Hurst (1951) via his well-known empirical relationship, called the
rescaled-range technique, in studying long-term discharge vari-

ations of the River Nile, and later publicized and solidified by
Mandelbrot & Wallis (1969) and Feder (1988). Since then it has
gained popularity and been applied in many subjects, including
network traffic, bioengineering, physical simulation and of course,
geology and geophysics. The key point of this technique is the fol-
lowing empirical relationship:

R/S = (aτ )Hu, (1)

where a is a constant, R is the difference between the maximum and
minimum accumulated departure from the mean within time span
τ , S is the standard deviation serving as a scaling factor and Hu is
the Hurst exponent coined by Mandelbrot (1982). The accumulated
departure with respect to the mathematical mean 〈ξ〉 of a time-series
ξ i is

X (t) =
N∑
i

(ξi − 〈ξ〉), (2)

where t is time, i is the time sample index and N is the number of
time samples. The range R is defined as

R(τ ) = max
1≤t≤τ

X (t) − min
1≤t≤τ

X (t) (3)
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and S(τ ) is the standard deviation

S(τ ) =
[

1

τ

τ∑
t=1

(ξt − 〈ξ〉)2

]1/2

. (4)

Eq. (1) clearly reveals a scaling-invariant property of the data with
respect to the period τ . Specifically, the rescaled range R/S is linearly
proportional to aτ on a log–log plot, the slope of which is equal to
Hu.

Among various definitions for a fractal time-series, one of the
commonly used ones is

F(σ t) = σ H F(t). (5)

It describes a self-affine process, i.e. a subset of a fractal process
is a scaled version of the fractal set itself. We call H in eq. (5) the
global scaling exponent and σ is a scaling operator. For a self-affine
time-series defined by eq. (5), it can be shown that its power spectral
density S( f ) has a power-law dependence on frequency f :

S( f ) ∝ f −β, (6)

where we call β the spectrum power. Turcotte (1997) showed that
the following relationship between H and β exists:

β = 2H + 1. (7)

We are now confronted with a dilemma as to whether the global
scaling exponent (H) derived from eq. (7) is equal to the Hurst
exponent (Hu) from the R/S technique. In many studied cases no
distinctions are made between H and Hu, and they are often used
interchangeably (Hewett 1986; Shiomi et al. 1997; Dolan et al. 1998;
Taqqu & Teverovsky 1998), while in a few situations H is differen-
tiated from Hu (Turcotte 1997). This conflict has posed confusion
and misinterpretation in estimating Hu. It has been observed that
estimating Hu and H for the same data series, but using two differ-
ent techniques above, can give significantly different results. This
prompts us to consider in what sense H and Hu can be considered
equivalent.

2 I S H E Q UA L T O H u?

To answer this question it is helpful to discuss two basic fractal pro-
cesses that are closely related: the fractional Brownian motion (fBm)
and fractional Gaussian noise (fGn). fGn is the successive steps or
increments of fBm; in other words, the accumulative summation of
fGn gives fBm. While fBm is non-Gaussian and non-stationary, fGn
is Gaussian and stationary.

It is straightforward to prove that for fBm with spectrum power
1 ≤ β fBm ≤ 3, the corresponding fGn has −1 ≤ β fGn ≤ 1. An fBm
series X (t) is nowhere differentiable, but in a distribution when
the subsequent interval 	X = X (t i) − X (t i−1) is sufficiently small
compared with the total length of X , from the definition of the
derivative we can write

G(t) = 	X = X (ti ) − X (ti−1) ∼= 	t X ′(t), (8)

where 	t is a time sampling interval. Taking the first derivative of
X (t) in the time domain is equivalent to multiplying X ( f ), which
is the Fourier transform of X (t), by −i2π f (Bracewell 1965), i =
( − 1)1/2. By taking the Fourier transform of both sides of (8), we
have

G( f ) ∼= 	t[−2π i f X ( f )]. (9)

Here we see that the non-differentiability of fBm can actually be
relaxed in the frequency domain. The power spectra are given by

|G( f )|2 ∼= |	t[−i2π f X ( f )]|2 = −4	t2π 2 f 2|X ( f )|2. (10)

Here | G( f )|2 is the power spectrum of the fGn and |X ( f )|2 is
the power spectrum of the fBm. Because |X ( f )|2 ∝ f −β , we have
|G( f )|2 ∝ f −β+2 = f −(β−2). This proves that

βfGn
∼= βfBm − 2. (11)

Or from eq. (7),

HfGn
∼= HfBm − 1. (12)

The proof of eqs (11) and (12) reveals that β and H are indicators
of the roughness of the data. The larger H is the smoother the data.
By taking a first-order derivative we increase the roughness of the
data but decrease the value of H by 1. Now eq. (7) can be extended
to:

βfBm = 2HfBm + 1

βfGn = 2HfGn + 1 ∼= 2(HfBm − 1) + 1 = 2HfBm − 1.

(13)

While H varies from 1 to −1 from fBm to fGn, we realize from
eqs (1)–(4) that Hu will always lie between 0 and 1 (Mandelbrot
& Van Ness 1968; Mandelbrot & Wallis 1969). Thus, in general, H
should not be considered as equivalent to Hu. Ignoring the difference
between H and Hu can lead to confusing results. What has often been
assumed is to make HufBm = HufGn = H fBm, and because of this,
eq. (3) is often unjustifiably simplified to

βfBm = 2Hu + 1

βfGn = 2Hu − 1.
(14)

In reality, HufGn ≈ H fBm but HufBm �= HufGn and HufBm �= H fBm.
Eq. (14) is to keep Hu unchanged from 1 ≤ β ≤ 3 to −1 ≤ β ≤
1 and is actually a sacrifice, realizing that the meaning of Hu has
been altered from 1 ≤ β ≤ 3 to −1 ≤ β ≤ 1, because theoretically
the relation β = 2H + 1 holds to be true for −∞ < β < +∞. In
order for eq. (14) to be meaningful, one has to assume that Hu of
fBm is Hu from fGn, the successive increments of fBm. Without this
common consensus, results of R/S analysis from different authors
are incompatible and significant differences exist between H and
Hu. To avoid these problems we have to clearly identify whether
the time-series under study is analogous to fBm or fGn. If it is
analogous to a fBm with spectrum power 1 ≤ β ≤ 3, we have to
find the subsequent increments of this time-series and then apply
R/S to the new incremental series. Otherwise, as will be shown
later in the next section, H will not equal Hu and Hu is almost
certainly larger than 0.85, making Hu a very limited quantity to be
used in characterizing fBm-like time-series. This is equivalent to
saying that, in a strict sense, Hu is only better suited for capturing
the properties of noise, such as fGn with Hu between 0 and 1, but
not for random walks such as fBm.

Because of the delicate relationship between Hu and H , extra cau-
tion needs to be taken in relating Hu and H to the fractal dimension
(D). For self-affine time-series, Voss (1985) derived the following
approximate relationship between the spectrum power β and the
fractal dimension D for fBm (1 ≤ β ≤ 3):

β = 5 − 2D. (15)

From eq. (7), we have the much celebrated relationship

D = 2 − H. (16)
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A direct analytical relationship between D and Hu has not been
observed. However, for fGn, because HufGn ≈ H fBm, eq. (16) can
be extended to Hu so we can have

D ≈ 2 − Hu. (17)

This relationship cannot be extended for fBm because HufBm �=
H fBm. In order for eq. (17) to be applicable for fBm, we first need
to obtain the associated fGn from fBm, calculate Hu from fGn, and
take it as Hu of fBm.

We wish to point out that practically there is nothing wrong with
applying R/S to fBm directly, but the Hu so obtained is not com-
parable to H from the power spectrum. In geophysical applications
such as reservoir simulations, we value H as a better quantity than
Hu because H captures the complexities of the data more accurately,
while Hu is confined between 0 and 1. It is more realistic to say that
R/S approximates the true scaling exponent H in eq. (5), but care
must be taken when we relate H to Hu because these two quantities
are not always interchangeable. The R/S technique can be used as
a secondary method to roughly estimate H , mainly to validate the
results from the spectrum method.

3 N U M E R I C A L S I M U L AT I O N S

Using a frequency domain algorithm, we simulate 21 fBm series,
each with 4096 data points. The input H for fBm ranges from 0
to 1 with a constant interval of 0.05. We could also simulate 21
fGn series using the same algorithm, but for the purpose of this
article, we obtain the 21 fGn series directly from the 21 fBm series
by taking successive increments. We then apply the R/S method to
both fGn and fBm series to estimate Hu. It is expected that the H
value from the power spectrum should be very close to the input
H , for the simulation is itself based on a spectrum algorithm. It
is nevertheless meaningful for us to check the robustness of our
power spectrum method by estimating H on simulated fBm with
the spectrum method. We also apply a third independent method
called the variance of increment method to estimate H and validate
our simulation.

Table 1. Results from R/S and power spectrum analyses on simulated fBm/fGn.

fBm no Input H R/S on fGn (Hu) R/S on fBm (Hu) Power Variance of β of fBm β of fGn
spectrum (H) increment (H)

1 0.0 0.173 0.900 0.012 0.054 1.024 −0.783
2 0.05 0.155 0.890 0.043 0.034 1.087 −0.763
3 0.1 0.226 0.938 0.114 0.139 1.228 −0.572
4 0.15 0.261 0.952 0.186 0.186 1.372 −0.452
5 0.2 0.309 0.947 0.206 0.219 1.411 −0.397
6 0.25 0.285 0.939 0.248 0.164 1.497 −0.327
7 0.3 0.323 0.970 0.324 0.272 1.648 −0.171
8 0.35 0.365 0.965 0.370 0.373 1.740 −0.104
9 0.4 0.443 0.995 0.411 0.371 1.822 0.000
10 0.45 0.508 0.996 0.463 0.529 1.927 0.117
11 0.5 0.569 1.004 0.504 0.531 2.009 0.197
12 0.55 0.580 0.991 0.541 0.561 2.081 0.261
13 0.6 0.676 0.999 0.631 0.576 2.261 0.407
14 0.65 0.670 0.993 0.654 0.575 2.308 0.485
15 0.7 0.764 0.999 0.700 0.756 2.399 0.579
16 0.75 0.786 0.997 0.772 0.702 2.543 0.714
17 0.8 0.784 1.000 0.807 0.688 2.614 0.763
18 0.85 0.789 0.966 0.849 0.637 2.699 0.855
19 0.9 0.837 1.005 0.922 0.714 2.844 1.003
20 0.95 0.863 1.000 0.986 0.618 2.971 1.097
21 1.0 0.886 1.000 1.012 0.542 3.024 1.188

Table 1 shows the results of analysis on simulated data. A
rescaled-range analysis is applied on both fGn and fBm. We can
immediately realize that R/S analysis on fBm almost surely gives an
estimate of Hu > 0.85, as predicted. On the other hand R/S-estimated
Hu from fGn is close to the estimate from the power spectrum and
the variance of the increment analysis on fBm (Fig. 1). This further
proves our earlier statement that, in order to make the estimate of
Hu from R/S comparable to H from the power spectrum, we should
apply R/S to the corresponding fGn series of fBm rather than to fBm
itself. The final two columns of Table 1 show the spectrum power
β of fBm and fGn. We can see that the relationships between β and
Hu for fBm, β fBm ≈ 2Hu + 1, and for fGn, β fGn ≈ 2Hu − 1 are
approximately true for our simulations, when the correct meaning
of Hu is assigned.

Fig. 1 shows clearly that the rescaled range tends to overestimate
the lower H values (for H<∼ 0.7) and underestimate high H values
(for H>∼ 0.7). This agrees well with results from other studies (Man-
delbrot & Wallis 1969; Bassingthwaighte & Raymond 1994). Fig.
1 also shows an obvious linear correlation between Hu and H . An
empirical relationship between Hu and H for fBm/fGn based on the
least-squaresx regression is

H = 1.23Hu − 0.16. (18)

Eq. (18) provides a simple way to roughly estimate the true scaling
exponent H from a rescaled-range analysis for fGn/fBm. It is now
straightforward to determine the crossover point where H = Hu.
We find that when H = Hu ≈ 0.7, the two methods should be able
to give nearly identical results.

The initial ‘transient zone’ for the R/S technique persists when
the input H is less than or equal to 0.5 (Fig. 2). Visually, the length
of the transient zone is increasing from a lag spacing of 31 data
points to approximately 63 data points when H increases from 0 to
0.5. The gradient of this zone is always higher than that of the rest
of the data.

We find that when input H becomes larger than 0.5, the transient
zone can no longer be clearly discernible from the rest, and it is safe
to include this zone to calculate Hu. Meanwhile, however, another
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Figure 1. Results from R/S and power spectrum analyses on simulated fBm/fGn. The dashed horizontal line is H = 0.7. Note that results from R/S analysis
on fBm is erroneously too high, but applying R/S on fGn gives good estimates of true H values.

problem may arise with increasing H . Fig. 3 shows the R/S plot
for input H = 0.85. It may appear that there is an initial transient
zone with large lag spacing. In fact, the low gradient zone at large
lag spacing is another artefact that can be identified as the ‘final
tightening’ in R/S analysis (Mandelbrot & Wallis 1969; Goggin
et al. 1992). It is now vital how we treat these two parts. We may
pick up the low gradient section in Fig. 3 to estimate Hu and take
the high gradient section as the transient zone; it is expected that the
result will be totally wrong if done this way. When the estimated Hu
is large and when the high gradient zone extends to a wide range
of lag spacing, we have to be very cautious in determining whether
this high gradient zone can indeed be considered as the transient
zone. It is most likely in these situations that we need to use the
initial high gradient zone to estimate Hu, rather than using the low
gradient part. On this point we agree with North & Halliwell (1994).

The variance of the increment method agrees excellently with the
input H all the way from 0 to approximately 0.75, before making a
sharp drop afterwards. This departure needs to be further analysed
to understand its causes. It appears that both R/S and the variance of
increment techniques tend to give very biased estimates for simula-
tions at high H . Therefore, we should always be careful in accept-
ing estimations from various techniques. Two or more independent
techniques should be applied whenever possible for validating the
results.

4 W E L L - L O G G I N G DATA A N A LY S I S

In the last section we focus primarily on fGn and fBm. Next, we study
how our findings in earlier sections can contribute to solving real
problems. For well-logging data even larger discrepancies between
R/S and the power spectrum analysis could occur owing to the more
complex nature of the real data. The noticeable intermittency and
non-stationarity of well log data could bias the results of R/S or

the power spectrum analysis in a profound way (North & Halliwell
1994). This brought to our attention that we need to be very cautious
in extending the results of fGn/fBm to the real well data.

From the well log literature, we find that the Hurst exponents
reported vary widely from 0 (Dolan et al. 1998) to greater than 1
(Goggin et al. 1992; Pang & North 1996). In cases where the R/S
technique is applied alone the estimated Hu is consistently much
larger then 0.5 (Hewett 1986; Leary 1991; Pang & North 1996),
and in cases where the power spectrum technique is applied only
the estimated Hu is consistently much less than 0.5 (Holliger 1996;
Shiomi et al. 1997). This does not appear to be a coincidence. Only
a few cases can be found where both R/S and the power spectrum
are applied to give close estimations of H (Dolan & Bean 1997;
Dolan et al. 1998). The wide range of Hu could indicate that differ-
ent well-logging data at different regions could be either persistent
(Hu > 0.5) or antipersistent (Hu < 0.5). And we also know that
R/S tends to give biased result if Hu is not close to 0.7 (Mandelbrot
& Wallis 1969; Feder 1988; Bassingthwaighte & Raymond 1994).
However, this large discrepancy between these two techniques in-
dicates technical problems in their applications. In one case, both
Leary (1991) and Holliger (1996) analysed sonic log data from the
Cajon Pass borehole located in southern California. Leary (1991)
estimated Hu to be 0.7 using the R/S method, while Holliger (1996)
obtained a much lower estimate of 0.11 from the power spectrum.
The difference is so large that it prevents any correlation between
the results. In particular, Holliger (1996) noticed that the high Hu
estimate from Leary (1991) does ‘not allow for the generation of
synthetic data sets that bear any close resemblance to the observed
sonic-log data’.

We see two main causes for these problems. First, fGn is assumed
for what is actually an fBm process; that is, the R/S method is applied
directly to time-series, which should be considered to be of fBm
type. This leads to an erroneously high estimate of Hu. It is clear
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Figure 2. Plots showing the transient zone in the R/S analysis. (a) Simulated fBm no 3 with input H = 0.1. (b) R/S analysis on the simulation.

that from various studies that the spectrum powers β of raw well data
are consistently greater than 1 (Dolan & Bean 1997; Dolan et al.
1998; Shiomi et al. 1997). Based on these observations and our own
studies on wavelet-based multiscale analysis, we argue that raw well
logs are fBm-type data. Obviously, if R/S is applied directly to raw
well-log data instead of their incremental series, the estimated Hu
will always be very large (>0.85), and become incomparable to the
power spectrum analysis.

The second major causes for the discrepancy is that the estimated
Hu is biased when R/S is applied to some modified forms of raw
time-series. These modifications include trend removal and nor-
malization. R/S is known to be sensitive to short-term dependences
(Hipel & McLeod 1978; McLeod & Hipel 1978; Lo 1991), and this
drawback can sometimes produce a profound bias (Moody & Wu
1996). The non-Gaussianity and the non-stationarity of raw well data
can cause major problems in R/S analysis (North & Halliwell 1994;
Taqqu & Teverovsky 1998). Taqqu & Teverovsky (1998) noted that
for non-Gaussian series, R/S analysis becomes so inaccurate that it
should only be used to obtain a very rough idea of the intensity of
the long-range dependence. Trend removal is used to reduce the ef-
fect of short-wavelength variability by removing a moving average
(MA) or low-order polynomial fitting of the data (Holliger 1996).
This also effectively modifies the raw well data to be approximately

Gaussian and stationary. Normalization is another way to reduce the
effect of short-wavelength variability (Hewett 1986; Leary 1991).
Well-logging data are generally non-Gaussian and non-stationary.
By normalization we tend to obtain a normalized series of zero mean
and unit variance. In these respects, we see the values for trend
removal and normalization because these operations are likely to
produce more accurate estimates of Hu from R/S.

However, we have learned in earlier sections that the appropriate
way for estimating Hu of fBm-type data is to apply R/S to the incre-
mental series. Would the data after trend removal or normalization
be equivalent to an incremental series in terms of Hu estimation?
In the following two case studies based on real well log examples,
we find that Hu from well data after trend removal and normaliza-
tion is lower compared with Hu obtained directly from the raw data.
We will also illustrate that, by trend removal and normalization, we
actually try to estimate Hu from successive increments of raw well
data. Even so, we conclude that R/S on successive increments of
raw well data should be used in estimating Hu. There are two main
reasons for doing this. First, it is more objective to obtain increments
than trend removal or normalization because unlike trend removal
or normalization, there is only one incremental series for each raw
data set. Secondly, estimating Hu on incremental series is easier and
more accurate.
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Figure 3. Plots showing the final tightening in the R/S analysis. (a) Simulated fBm no 18 with input H = 0.85. (b) R/S analysis on the simulation.

4.1 Gamma-ray data

The data, sampled at a constant rate of 0.5 ft for a total interval of
1984 ft, is from a well located in Panoma gas field, Grant County,
southwest Kansas. Formation rocks penetrated by this well include
shale, sandstone, siltstone, gypsum, anhydrite and dolomite. Fig. 4
shows the raw gamma-ray data (a), normalized data (b), data after
moving average trend removal (c) and successive increments (d)
from the raw data. To the right of these data series in Fig. 4 are
their respective histograms. The raw data does not have a normal
distribution, but all the others in the panel have distributions close
to normal distributions. Unlike the raw gamma-ray data, we observe
that modified data sets can be considered to be Gaussian/normal and
stationary. Note here that normalization is not simply to extract the
mean from the data and then divide the data by its standard deviation,
because this will have little effect on removing short-wavelength
variability. In fact, we estimate the time-varying variance and find
the trend of the variance of non-stationary time-series data. We then
normalize the data using the estimated variance.

Fig. 5 shows the rescaled range analysis on all data sets in Fig. 4.
First, we see no transient zone for raw gamma-ray data, but distinct
transient zones of various lengths (n) exist for modified data sets (b,
c and d). Incremental series (d) gives the shortest transient zone. All
observable transient zones are overlapping with the R/S plot of the

raw data; in other words, transient zones from different data sets (b,
c and d) have the same gradient on the R/S plot. For the raw gamma-
ray data (Fig. 6a), the blindness of R/S to the transient zone may have
an adverse effect on the Hu estimation if R/S is applied directly to
raw data. This may also help to explain why various modifications to
the raw data are necessary. Secondly, R/S analyses on modified data
sets (b, c and d) give similar estimates of Hu regardless of how the
raw data are modified. In this example, Huincrement, Hunormalized and
HuMA are 0.518, 0.378 and 0.54, respectively. On the other hand,
Hu estimated from raw data is 0.91, which is substantially higher.
Finally, we find that the incremental data (d) gives the best estimate
of Hu because it has the shortest transient zone and the highest
correlation coefficient (R = 0.998) from least-squares regression.
In contrast, data with normalization (b) gives the lowest correlation
coefficient of 0.955 and data with moving average trend removal
(c) has the fewest data points for regression and has a correlation
coefficient of 0.993. This leads to our conclusion that, while all the
modified data give close estimates of Hu, the incremental series
from the raw data gives the best estimate of Hu.

Unlike simulated fGn/fBm, well data suffer from the moving av-
erage effect of the logging tools (Shiomi et al. 1997). This effect
will induce an abrupt drop of power at large wavenumbers (or fre-
quencies) on the power spectrum plot (Fig. 6). The location of this
breaking point is dependent on the resolution of the logging tools.
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Figure 4. Gamma-ray data and its modified versions. (a) Raw gamma-ray logging data. (b) Normalized gamma-ray data. (c) Data after moving average removal
with a window length of 100 ft. (d) Data after taking successive increments. To the right of the data sets are their respective histograms.
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in panel a’ is the linear least-squares fit at long wavelengths for estimating H . Solid arrows in b’ and c’ indicate the wavelengths that are equal to the transient
zone lengths in the R/S analysis as shown in (b) and (c) in Fig. 5.

For all plots in Fig. 6 we observe that sudden drop-offs at high
wavenumbers occur at a fixed location that is independent of the
way the data are modified. Suitable lengths for regression in the
spectrum plot are consistent with the regression lengths in the R/S
method. This consistency reveals close relationships between these
two methods for a monoscaling analysis. This can be observed by
comparing Fig. 5 with Fig. 6. Transient zone lengths in Fig. 5 for
data after normalization (b), moving average trend removal (c) and
the increment (d) occur at a lag spacing of 70, 94.6 and 9.3 ft,
respectively. Accordingly, on power spectrum plots, these lengths
correspond roughly to the shortest wavelengths that can be possibly
included for accurate linear regressions (Fig. 6).

Comparing between R/S and the power spectrum method we can
draw the following conclusions.

(1) When making least-squares regressions at long-wavelength
ranges to calculate H , we realize that (a) and (d) have wider ranges of
wavelengths for linear regressions than (b) and (c). Instead of having
two distinct segments as in (a) and (d), (b) and (c) appear to have
three linear segments. We find that an incremental data series is still
a better choice for estimating H /Hu owing to its broadest range of
frequencies/wavenumbers for linear regression on the power spec-
trum, even though all three types of modified data sets (b, c, d) have
similar gradients for linear regression.

(2) The rolling-off effect caused by the logging tool appears to
be a major contributor to the existence of a transient zone for incre-
mental data series. The transient zone can also exist for simulated

fGn/fBm, but apparently their causes are different from the causes
in real well data. From (b) and (c), normalization and trend removal
also introduce long transient zones, in addition to that caused by the
resolution limitations of logging tools.

(3) Compared with spectrum method, R/S is less sensitive to the
moving average effects caused by logging tools. In cases where the
roll-off on spectra are not severe, and where the linear section for
regression has a gradient that is of the same sign as that of the roll-off
part, R/S is unable to differentiate between transient zones caused
by modifications on the raw data and those caused by logging tools.
This reveals the insensitivity of R/S to minor gradient changes on
the power spectrum plots. Overall we find that the spectrum method
is less problematic than R/S. This statement is in agreement with
the results from some other studies (Dolan et al. 1998; Taqqu &
Teverovsky 1998).

4.2 Sonic data

To test whether our findings from gamma-ray data are general
enough to be applicable to other types of logging data, we studied a
sonic log with a length of 4249.5 ft, also sampled at a constant inter-
val of 0.5 ft. This well is located in Big Bow oil field, Stanton county,
southwest Kansas. The rock formation is characterized mainly by
interbedded deposits of carbonates and shale. Identical data process-
ing and analysing procedures as for the gamma-ray case are carried
out. Fig. 7 shows raw sonic log data and all modified versions, alone
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Figure 7. Sonic velocity data and its modified versions. (a2) Raw sonic velocity logging data. (b2) Normalized sonic velocity data. (c2) Data after moving
average removal data with a window length of 200 ft. (d2) Data after taking successive increments. To the right of the data sets are their corresponding
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with their respective histograms to the right. The raw sonic log is ob-
viously not Gaussian, but is modified to a Gaussian or Gaussian-like
series by normalization (b2), moving average trend removal (c2) or
by taking the successive increments (d2). Both b2 and c2 have very
short ranges of lag spacing for regression (Fig. 8), compared with
a2 and d2. Although in last example the normalization gives an es-
timate of Hu (=0.38) closer to H (=0.27) from the power spectrum,
for this sonic data series, Hu (=0.51) estimated from normalization
is too high compared with H (=0.017) estimated from the spectrum.
Meanwhile, Hu (=0.25) from the incremental series becomes closer
to H . This clearly indicates that various types of modifications can
significantly change the outcomes of R/S analyses. Since different
authors could resort to different ways of performing the normaliza-
tion or moving average, the R/S results are unlikely to be stable and
consistent in different cases. This could make the results from R/S
analysis meaningless under some situations. To avoid these prob-
lems, we consider that the incremental series is a superior choice
for R/S analysis. Analysis on incremental data is more objective and
stable. It also has the shortest transient zone, which leads to more
accurate least-squares fitting.

The transient zone lengths for b2, c2, d2 are 212.7, 212.7 and
11.2 ft, respectively (Fig. 8). Once we find the wavelengths equal to
these transient zone lengths on the power spectrum plots for b2, c2
and d2, respectively (Fig. 9), we see immediately that transient zone
lengths are roughly equal to the shortest wavelengths that can be
included for successful linear regressions in Fig. 9. This shows again

the underlying ties between these two methods. The combination of
these two methods helps identify the transient zones and the final
tightening, and helps determine which linear part on the R/S plot
should be considered for regression in cases where a fake transient
zone might exist, such as in Fig. 3(b).

It is important to make some effort to identify the transient zone
and exclude it from the Hu estimation. Otherwise the result could
be totally different. For R/S analysis on normalized data (b2) in this
example, it could also be performed with a regression that spans the
whole lag spacing range yet still maintains a high correlation coef-
ficient of 0.99 (Fig. 10). Such a high correlation coefficient seems
to warrant a good regression without the necessity of identifying
a transient zone, but the estimated Hu is too high (Hu = 0.75).
We therefore strongly urge that serious efforts should be taken to
identify the possible existence of a transient zone that appears to be
always existent for various modified data.

The fractal dimensions, along with estimated H and Hu for two
well data sets are shown in Table 2. First, we calculate D using D =
2 − H or D = 2 − Hu. Then we calculated both the box-counting di-
mension (Db) and the regularization dimension (Dr) independently
to double check our results. Although Db and Dr are not quite equal
to each other (as expected), it is still clear to us that they are closer
to the estimated D using Hu from the incremental data than to D
estimated directly from the raw logging data. Taking the sonic data,
for example, the fractal dimension calculated from successive in-
crements of the sonic log using D = 2 − Hu is 1.75, which falls in
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Table 2. Hu, H and D calculated from two well-logging data. (D is the fractal dimension.)

Raw Normalized MA Increment Spectrum (H)

GR Hu 0.91 0.38 0.54 0.52 0.27
D = 2 − Hu (or H) 1.09 1.62 1.46 1.48 1.73
Box counting Db 1.37
Regularization Dr 1.65
Transient zone lengths (ft) 0 70 94.6 9.3

Sonic Hu 0.89 0.51 0.3 0.25 0.017
D = 2 − Hu (or H) 1.11 1.49 1.7 1.75 1.983
Box counting Db 1.60
Regularization Dr 1.94
Transient zone lengths (ft) 0 212.7 170.3 11.2

between Db = 1.60 and Dr = 1.94. However, using D = 2 − Hu
based on the raw data, the estimated D is only 1.11, much smaller
than Db and Dr. Db and Dr are also reasonably close to the fractal
dimension D (=1.983) from D = 2 − H . This once again demon-
strates that R/S analysis directly on the raw data is not appropriate
for determining the fractal dimension.

5 C O N C L U S I O N S A N D S U G G E S T I O N S

In this paper, we examined the paradoxical results often found in the
literature concerning the Hurst exponent estimation, and provided
an acceptable framework for more accurate analyses. Our arguments
were made based on theoretical considerations, analyses from sim-
ulations of a group of fGn/fBm and studies on real data examples.
We gained a better understanding of the nature of the well log data
and argued that raw well-logging data should be considered as fBm-
type time-series, which have a spectrum power β ≥ 1. Consequently,
for fBm-like data, in order to make the results from rescaled-range
and power spectrum techniques consistent and comparable, and to

make meaningful fractal dimension estimates, we need to use their
incremental series, rather than the raw time-series themselves for
R/S analysis. R/S analyses applied directly on the raw well data al-
ways tend to give erroneously high estimates of Hu (>0.85), making
the technique itself less useful. On the other hand, R/S analyses on
the incremental series give estimates of Hu close to H from power
spectrum analyses on the raw data.

Other types of data modification, such as normalization or trend
removal, could also be used to improve the analysis, and these modi-
fied new data series including the incremental series can give similar
estimates of Hu. However, the increments have the shortest transient
zones that make R/S analyses more accurate. It is also more objec-
tive to use the incremental series, because for each raw data series
there exists only one unique incremental series that is also very easy
to obtain. Data from normalization or trend removal could vary a lot
depending on the specific data processing procedures. The degree
of accuracy can also be viewed on the power spectrum plot where
the increments have the broadest wavenumber/frequency ranges for
linear regression.
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Since these modifications to raw well data introduce transient
zones in the R/S analysis, it is very important to identify this zone
and exclude it from calculating Hu; otherwise it will also result
in erroneously high estimates of Hu. Comparing with the power
spectrum analysis, we find that the transient zone lengths are closely
connected to the regression lengths at long-wavelength region in
the power spectrum. This reveals the close tie between these two
independent data analysis methods.

Fractal models have been used for reservoir simulation (Hewett
1986; Hewett & Behrens 1990; Goggin et al. 1992). The decision
in choosing the correct Hu/H is very important. For example, a
realization based on Hu = 0.11 (Holliger 1996) will be quite dif-
ferent from a realization using Hu = 0.7 (Leary 1991), even for the
same sonic data in Cajon Pass, CA. While we argue that raw well-
logging data are of fBm type, in practice, for a new unknown data
series it is wise to use the power spectrum method first to determine
whether the spectrum power β is larger or smaller than 1. If β ≥
1, the data need to be considered as fBm-like and we use its incre-
ments for R/S analysis. There might be cases where the calculated
β < 1 even for fBm-type data. This is most probably caused by an
insufficient number of data points in the calculation. Both R/S and
spectrum methods require a sufficient number of registered points
for an accurate estimation. At least two independent methods are
necessary for an accurate scaling analysis because they can provide
a double-checking mechanism.

Finally, we realize that the Hurst exponent (Hu) should not be
confused with the global scaling exponent (H) in practice. While
these two quantities have some connections, they are fundamentally
different and can only be considered equivalent under some con-
straints. The many discrepancies and conflicts in reported studies
are a result of a lack of genuine understanding of the nature of both
the data and the analysing techniques.
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