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S U M M A R Y
We carry out high-frequency analyses of Claerbout’s double-square-root equation and its (nu-
merical) solution procedures in heterogeneous media. We show that the double-square-root
equation generates the adjoint of the single-scattering modelling operator upon substituting
the leading term of the generalized Bremmer series for the background Green function. This
adjoint operator yields the process of ‘wave-equation’ imaging. We finally decompose the
wave-equation imaging process into common image point gathers in accordance with the
characteristic strips in the wavefront set of the data.
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1 I N T R O D U C T I O N

Directional wavefield decomposition is a tool for analysing and computing the propagation of waves in configurations with a certain global
directionality, such as waveguiding structures. The method consists of three main steps: (1) decomposing the field into two constituents and
propagating them upward or downward along a principal or preferred direction, (2) computing the interaction (coupling) of the counterprop-
agating constituents and (3) recomposing the constituents into observables at the positions of interest. (The preferred direction is ‘vertical’,
whereas the directions orthogonal to the preferred direction are referred to as the ‘lateral’ directions.) The method allows one to ‘trace’ wave
constituents (see also Thomson 1999) in a global coordinate system in a given medium, and thus distinguish constituents that have been scat-
tered along the up/down direction a different number of times. It also allows the separation of head waves from body waves. The (generalized)
Bremmer series superimposes all the constituents (‘multiples’) to recover the full, original wavefield (De Hoop 1996). Computational aspects
of the Bremmer series can be found in Van Stralen et al. (1998) and Le Rousseau & De Hoop (2001a).

Within the framework of remote sensing and inverse scattering, tracing waves helps in the interpretation and separation of constituents
prior to the inversion of the observed wavefield (De Hoop 1998). Directional decomposition maps the ‘two-way’ wavefield into constituents
that satisfy a coupled system of ‘one-way’ wave or ‘single-square-root’ equations. In large-scale configurations in which the coupling is
weak, wavefield computations can be restricted to a single one-way constituent. In the fields of ocean acoustics (Tappert 1977; Collins 1989),
seismics (Claerbout 1970) and integrated optics (Hadley 1992), this observation has been exploited extensively; for a more complete list of
references in this matter, we refer the reader to Van Stralen et al. (1998). The decomposition procedure is applied in an assumed computational
embedding.

We introduce a sequence of approximate representations of the one-way propagator that in a certain limit converges to the ‘true’ one.
Each member of the sequence corresponds to a finite cascade of thin-slab propagators. We investigate the propagation of singularities by
individual members of the sequence and discover a condition for the proper treatment of caustics. We show that the limit of the sequence
propagates singularities precisely in accordance with ray theory.

The one-way theory is invoked to develop a (sequence of) imaging operator(s). Such an operator follows from an optimization approach
to inverse scattering based on the reciprocity theorem of time-correlation type (De Hoop & De Hoop 2000). The one-way propagator is
applied to the source excitation and the measurement traces simultaneously. The resulting imaging operator kernel solves Claerbout’s (1985)
‘double-square-root’ equation in smoothly varying media (see also Clayton 1978; Popovici 1996) and hence extends the usual constant media
analyses.

We show that (Maslov–)Kirchhoff and wave-equation imaging procedures are microlocally compatible and hence should yield the same
result on the singular support of the image. We analyse the symplectic structure of the wave-equation imaging kernel. We design a wave-
equation imaging scheme honouring the characteristic strips in the wavefront set of seismic data (Stolk & De Hoop 2002), i.e. the redundancy
in the data with two angles as parameters: azimuth and scattering angle at the image point. Thus we can generate scattering-angle/azimuth
common image point gathers (ACIGs) of the type introduced in Kirchhoff-style imaging procedures (Brandsberg-Dahl et al. 2003a). To
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interpret such gathers we develop a method based upon microlocalization to estimate the normal direction to the isochrones. ACIGs are used
for amplitude inversion and in tomography (Brandsberg-Dahl et al. 2003b; De Hoop et al. 2001).

If the medium of the configuration were laterally homogeneous, the directional decomposition would become an algebraic operation
in the lateral Fourier or wavenumber domain (see, e.g., Kennett 1985). In such a medium, the phase-shift method (Gazdag & Sguazzero
1984) is amongst the fastest (and accurate) one-way algorithms. In this method, in the lateral wavenumber domain, the phase shift is simply
proportional to the vertical wavenumber; the vertical and lateral wavenumbers are connected through an algebraic dispersion relation. As
soon as the medium becomes laterally heterogeneous, it is still advantageous to carry out the analysis in the lateral wavenumber domain,
but without leaving the lateral space domain—an observation well established in the field of microlocal analysis (see, e.g., Treves 1980) and
applied by Fishman & McCoy (1984a). The lateral space–wavenumber domain constitutes the (lateral) phase space. Through the Fourier
transforms, the space and wavenumber domains are ‘dual’ to one another. In the directional (de)composition—and in the downward and
upward propagation, and in the reflection and transmission caused by variations in medium properties in the preferred direction—we now
encounter pseudodifferential operators the symbols of which are defined in phase space, and lead to a calculus that generalizes the algebraic
manipulations in the case of a laterally homogeneous medium (De Hoop 1996, and Section 2 below).

Unfortunately, numerical evaluation and application of pseudodifferential operators arising from the wave scattering problem are, in
general, involved. Hence, approximations to their symbols are sought to improve the computational efficiency. We mention the hierarchy of
increasingly accurate approaches: finite difference, i.e. 15◦, 45◦ (Claerbout 1970, 1985) and optimal rational (De Hoop & De Hoop 1992;
Cederberg & Collins 1997; Milinazzo et al. 1997; Lu 1998; Van Stralen et al. 1998), Hale–McLellan filter (Hale 1991), Fourier split-step and
phase and generalized screens (De Hoop et al. 2000; Le Rousseau & De Hoop 2001a,b), phase-shift-plus-interpolation (Gazdag & Sguazzero
1984), uniform asymptotic (Fishman et al. 1997; De Hoop & Gautesen 2000), and spectral projection (normal modes) in conjunction with
complex-contour integral representations (Fishman et al. 2000). In this paper, we treat the exact and approximate cases jointly.

The wave-equation approach to seismic imaging, analysed in this paper, is advantageous, in particular, if the complexity of the Earth’s
properties is such that caustics (and pseudocaustics) develop. Its geometrical-ray counterpart, the high-frequency approach, has been discussed
in Burridge et al. (1998). The approach is applicable, not only in exploration seismology but also in crustal seismology, imaging teleseismic
body waves for detailed lithospheric profiling (Bostock & Rondenay 1999). Examples of subsurface complexities are salt domes and (shallow)
magma chambers.

The outline of the paper is as follows. In Section 2 we discuss the method of directional wavefield decomposition. Such a decomposition
leads to a coupled system of one-way wave equations. It is the objective to image the symbol of the coupling operator occurring in the system.
In Section 3 (and Appendices B and C) we develop a Trotter-product representation for the fundamental solution to the (uncoupled) one-way
wave equation. The Trotter-product representation can be viewed as the composition of Fourier integral operators, each of them being identified
with a ‘thin-slab’ propagator. We derive a condition under which such a composition exists, ensuring the proper propagation of singularities.
This propagation occurs consistently along the bicharacteristics of the original wave equation. In the remote sensing problem (Section 4) one
places sources and receivers at the surface. Sources generate acoustic waves, which scatter in the subsurface and are observed at the surface
as a function of time. To image the observations, the measurements of the sources and the receivers are propagated into the subsurface in
a presumed background medium back to the time when the scattering took place. This continuation is governed by the double-square-root
equation. We develop a Trotter-product representation for the imaging operator. Such an operator can be identified with the fundamental
solution of the double-square-root equation. We recover isochrones from the Trotter-product representation, and relate certain phase variables
in the representation to scattering angle and azimuth. We then modify the imaging operator into an operator that generates multiple images,
namely for each scattering angle and azimuth. Finally, in Section 5 we discuss a procedure to estimate the migration dip while applying
the imaging operator, using a continuous wavelet transform. A numerical example of generating ACIGs with Trotter products is shown in
Section 6. With the tools developed in the main text, we assess in Appendix D the extent to which the reduction to the computationally efficient
‘common azimuth continuation’ approach (Biondi & Palacharla 1996) can be applied. Throughout we will make use of microlocal techniques,
the fundamental concepts of which are introduced in Appendix A.

2 O N E - W A Y W A V E E Q U A T I O N S

First, we discuss the method of directional wavefield decomposition. Such a decomposition leads to a coupled system of one-way wave
equations. Sometimes, the one-way wave equations are referred to as single-square-root equations. Our final purpose is to image the symbol
of the coupling operator occurring in the system.

For the details of the derivation of exact one-way wave equations, we refer the reader to De Hoop (1996). Here, we restrict ourselves to a
summary. Let p be the acoustic pressure (Pa), vr the particle velocity (m s−1), ρ the volume density of mass (kg m−3), κ the compressibility
(Pa−1), q the volume source density of the injection rate (s−1) and f k the volume source density of the force (N m−3). We assume that the
coefficients κ and ρ are smooth and constant outside a compact domain. This provision enables us to formulate the acoustic wave propagation,
when necessary, as a scattering problem in a homogeneous embedding. The smoothness entails that the singularities of the wavefield (in
particular those in the neighbourhood of the wave arrival) arise from those in the signatures of the source distributions. The formation of
caustics, associated with scattering in the lateral directions (‘multipathing’), is captured in the approach developed in this paper.

To be able to make use of the standard calculus of pseudodifferential operators, we should carry out our analysis in the time–Laplace
domain (Widder 1946). To show the notation, we give the expression for the acoustic pressure,
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54 M. V. de Hoop, J. H. Le Rousseau and B. L. Biondi

p̂(x, s) =
∫ ∞

t=0
exp(−st)p(x, t) dt. (1)

Under this transformation, assuming zero initial conditions, we have ∂ t → s. In the Laplace domain, the acoustic wavefield satisfies the system
of first-order equations

∂k p̂ + sρv̂k = f̂k, (2)

sκ p̂ + ∂r v̂r = q̂. (3)

However, for the purpose of the microlocal analysis to follow, we will invoke the Fourier limit, lims→iω.
The evolution of the wavefield in the direction of preference will now be expressed in terms of the changes of the wavefield in the

directions transverse to it. The direction of preference is taken along the x3-axis (or ‘vertical’ axis) pointing into the subsurface and the
remaining (‘lateral’ or ‘horizontal’) coordinates are denoted by xµ, µ = 1, 2. Since we allow the medium to vary with all coordinates and
hence also with the coordinate in the preferred direction, we are forced to carry out the wavefield decomposition from the system of first-order
equations rather than the second-order scalar Helmholtz equation.

2.1 The reduced system of equations

The decomposition procedure requires a separate handling of the horizontal components of the particle velocity. From eqs (2) and (5) we
obtain

v̂µ = iρ−1ω−1(∂µ p̂ − f̂µ), (4)

leaving, upon substitution, the matrix differential equation

(∂3δI J + iω ÂI J )F̂J = N̂ I , ÂI J = ÂI J (xµ, Dν ; x3), Dν ≡ i

ω
∂ν, (5)

in which δI J is the Kronecker delta, and the elements of the acoustic field matrix are given by

F̂1 = p̂, F̂2 = v̂3, (6)

the elements of the operator matrix of the acoustic system by

Â11 = Â22 = 0, (7)

Â12 = ρ, (8)

Â21 = −Dν

(
ρ−1 Dν

) + κ, (9)

and the elements of the notional source matrix by

N̂ 1 = f̂ 3, N̂ 2 = Dν

(
ρ−1 f̂ ν

) + q̂. (10)

It is observed that the right-hand side of eq. (4) and ÂI J contain the spatial derivatives Dν with respect to the horizontal coordinates only. Dν

is interpreted as the horizontal slowness operator. Furthermore, it is noted that Â12 is simply a multiplicative operator.

2.2 The coupled system of one-way wave equations

To distinguish up- and downgoing constituents in the wavefield, we shall construct an appropriate linear operator L̂ I J with

F̂ I = L̂ I J Ŵ J , (11)

which, with the aid of the commutation relation (∂3 L̂ I J ) = [∂3, L̂ I J ], transforms eq. (5) into

L̂ I J (∂3δJ M + iω�̂J M )Ŵ M = −(∂3 L̂ I J )Ŵ J + N̂ I , (12)

as to make �̂J M , satisfying

ÂI J L̂ J M = L̂ I J �̂J M , (13)

a diagonal operator matrix. We denote L̂ I J as the composition operator and Ŵ M as the wave matrix. The matrix expression in parentheses on
the left-hand side of eq. (12) is diagonal and its diagonal entries are the two so-called one-way wave operators. The first term on the right-hand
side of eq. (12) is representative for the scattering caused by variations of the medium properties in the vertical direction. The scattering
caused by variations of the medium properties in the horizontal directions is contained in �̂J M and, implicitly, in L̂ I J also.

To investigate whether solutions of eq. (13) exist, we introduce the generalized eigenvector operators L̂
(±)

I columnwise according to

L̂
(+)

I = L̂ I 1, L̂
(−)

I = L̂ I 2. (14)
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Upon writing the diagonal entries of �̂J M , the generalized eigenvalue operators, as

�̂11 = ̂(+), �̂22 = ̂(−), (15)

eq. (13) decomposes into the two systems of equations

ÂI J L̂
(±)

J = L̂
(±)

I ̂(±). (16)

By analogy with the case where the medium is translationally invariant in the horizontal directions, we shall denote ̂(±) as the vertical slowness

operators. Note that the operators L̂
(±)

1 compose the acoustic pressure and that the operators L̂
(±)

2 compose the vertical particle velocity from
the elements of Ŵ M associated with the up- and downgoing constituents.

In De Hoop (1996) an ansatz procedure has been followed to solve the generalized eigenvalue-eigenvector problem eq. (16) in the
operator sense: choosing the acoustic-pressure normalization analogue, we satisfy the commutation rule[
Â12 L̂

(±)

2 , Â12 Â21

] = 0. (17)

In this normalization, we find the vertical slowness operator or generalized eigenvalues to be

̂(+) = −̂(−) = ̂ = Â1/2, Â ≡ Â12 Â21; ̂2 = Â (18)

is the characteristic operator equation, while the generalized eigenvectors constitute the composition operator

L̂ =
(

I I

Ŷ −Ŷ

)
, (19)

with Ŷ = Â
−1

12 ̂ denoting the vertical acoustic impedance operator. With respect to the normalization, note that we have decomposed the
pressure, namely according to F̂1 = Ŵ 1 + Ŵ 2. In terms of the inverse vertical acoustic impedance operator, the decomposition operator then
follows as

L̂
−1 = 1

2

(
I Ŷ −1

I −Ŷ −1

)
. (20)

The (de)composition operators account for the radiation patterns of the different source mechanisms and receiver types.
Using the decomposition operator, eq. (12) transforms into

(∂3δI M + iω�̂I M )Ŵ M = − (L̂
−1

)I M (∂3 L̂ M K )︸ ︷︷ ︸
image ⇐ coupling

Ŵ K + (L̂
−1

)I M N̂ M︸ ︷︷ ︸
initial values

, (21)

which can be interpreted as a coupled system of one-way wave equations. The coupling between the counter-propagating components, Ŵ 1

and Ŵ 2, is apparent in the first source-like term on the right-hand side, which can be written as

−L̂
−1

(∂3 L̂) =
(

T̂ R̂

R̂ T̂

)
, (22)

in which T̂ and R̂ represent the transmission and reflection operators, respectively. (The goal of the double-square-root propagation, to be
explained in Section 4, is to image the kernel of the coupling operator.) In the acoustic-pressure normalization analogue, we find

R̂ = −T̂ = 1

2
Ŷ −1(∂3Ŷ ). (23)

The second, primary, source term on the right-hand side of eq. (21) is chosen in accordance with the Helmholtz Green function: a volume
injection point source will result in N̂ 1 = 0, N̂ 2 = δ(x − x′) and hence the inhomogeneous term in eq. (21) will reduce to a vector with
components

(L̂
−1

)12 N̂ 2 = −(L̂
−1

)22 N̂ 2 = 1

2
(Ŷ−1)(xµ, x ′

ν ; x ′
3) ⊗ δ(x3 − x ′

3), (24)

where Ŷ−1 indicates the Schwartz kernel of Ŷ −1.

3 T R O T T E R - P R O D U C T O N E - W A Y W A V E P R O P A G A T O R

We develop a Trotter-product representation for the fundamental solution to the (uncoupled) one-way wave equation. The propagation
of singularities is governed by the principal symbol of the one-way wave operator, which defines the Hamiltonian. The Trotter-product
representation can be viewed as the composition of Fourier integral operators, each of them being identified with a ‘thin-slab’ propagator. We
derive a condition under which such a composition exists, ensuring the proper propagation of singularities.

To analyse the solutions of the system of one-way wave equations, we introduce the inverse of the one-way wave operator, Ĝ(±) =
(∂3 + iω̂(±))−1. The one-sided elementary kernels Ĝ(±)(xµ, x3; x ′

ν, x ′
3) associated with these operators are the so-called one-way Green

functions. They satisfy the equations(
∂3 + iω̂(±)

)
Ĝ(±) = δ(xν − x ′

ν)δ(x3 − x ′
3), (25)
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together with the condition of causality enforcing that Ĝ(±) decays as x3 → ±∞. Now, consider the case Ĝ = Ĝ(+), Ĝ = Ĝ(+) and ̂ = ̂(+).
The operator Ĝ acts on a test field û as

(Ĝû)(xµ, x3) =
∫

ζ∈R

∫
x ′
ν∈R

Ĝ(xµ, x3; x ′
ν, ζ )û(x ′

ν, ζ ) dx ′
1 dx ′

2 dζ. (26)

Let us define the initial-value problem of determining the function Û (xµ, x3; ζ ):

(∂3 + iω̂)Û = 0 for x3 ≥ ζ, Û (xµ, ζ ; ζ ) = û(xµ, ζ ). (27)

Then it is observed that

(Ĝû)(xµ, x3) =
∫ x3

ζ=−∞
Û (xµ, x3; ζ ) dζ. (28)

3.1 The product integral

We note that the vertical slowness operators at different levels of x3 do not necessarily commute with one another owing to the heterogeneity
of the medium. Thus we arrive at a ‘time’-ordered product integral representation (De Witte-Morette et al. 1979) of the one-sided propagators
(cf. eq. 27) associated with the one-way wave equations (Fishman & McCoy 1984a,b; De Hoop 1996; Fishman et al. 1997) where ‘time’ here
refers to the vertical coordinate x3,

Û (±)(·, x3; x ′
3) = ±H (∓[x ′

3 − x3])

 x3∏
ζ=x ′

3

exp
[ − iω̂(±)(·, ζ ) dζ

] û(·, x ′
3), (29)

where H denotes the Heaviside function. In this expression, the operator ordering is initiated by exp[−iω̂(·, x ′
3) dζ ] acting on û(·, x ′

3)
followed by applying exp[−iω̂(·, ζ ) dζ ] to the result, successively for increasing ζ . The functional integral serves, here, as a framework for
the further analysis of propagation of singularities.

3.2 The ‘square-root’ or vertical slowness operator symbol, the Trotter product

If the medium in the interval [x ′
3, x3] were weakly varying in the vertical direction, the Trotter-product formula could be applied to the product

integral in eq. (29). This results in the Hamiltonian path integral representations (De Witte-Morette et al. 1979) with ‘measure’ D for the
Green functions,

Ĝ(±)(xµ, x3; x ′
ν, x ′

3) = ±H (∓[x ′
3 − x3])

∫
P
D(x ′′

µ, α′′
ν )exp

{
− iω

∫ x3

ζ=x ′
3

dζ
[
α′′

σ (dζ x ′′
σ ) + γ̂ (±)(x ′′

µ, ζ, α′′
ν )

]}
, (30)

where P is a set of paths (x ′ ′
µ(ζ ), α′ ′

ν(ζ )) in (horizontal) phase space satisfying x ′ ′
µ(ζ = x ′

3) = x ′
µ, x ′ ′

µ(ζ = x3) = xµ; see also Schlottmann
(1999). In eq. (30), γ̂ (±) is the left symbol∗ of ̂(±), i.e.

̂(±)(xµ, Dν ; ζ ) exp(−iωασ xσ ) = γ̂ (±)(xµ, ζ, αν) exp(−iωασ xσ ), (31)

where αν indicate the horizontal slownesses. The path integral in eq. (30) is to be interpreted as the lattice multi-variate integral

Ĝ(±)(xµ, x3; x ′
ν, x ′

3) = ±H (∓[x ′
3 − x3]) lim

M→∞

∫ M∏
i=1

(ω/2π )2 dα
(i)
1 dα

(i)
2

M−1∏
j=1

dx ( j)
1 dx ( j)

2

× exp

{
−iω

M∑
k=1

[
α(k)

σ

(
x (k)

σ − x (k−1)
σ

) + γ̂ (±)
(
x (k)

µ , ζ̄k, α
(k)
ν

)
M−1�x3

]}
, (32)

where

ζ̄k = ζk − 1

2
M−1�x3 (33)

with x (0)
µ = x ′

µ, x (M)
µ = xµ and �x3 = x3 − x ′

3. All the integrations are taken over the interval (−∞, ∞), M−1�x3 is the step size in ζ , and
(x ( j)

µ , α( j)
ν ) are the coordinates of a path at the discrete values ζ j of ζ as j = 1, . . . , M . The limit M → ∞ is a formal limit; the rigorous

convergence of some path integral representations have been analysed by Ichinose (1997, 1999, 2000).

∗To highlight (medium) symmetries the Weyl symbol is the preferred choice (Fishman et al. 1997, 2000), whereas the dual symbol has algorithmic advantages
(Le Rousseau & De Hoop 2003).
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To account for the source-radiation pattern (cf. eq. 24), we invoke the Volterra composition

Ĝ(±)(xµ, x3; x ′
ν, x ′

3) →
∫

Ĝ(±)(xµ, x3; x ′′
ν , x ′

3)
1

2
(Ŷ−1)(x ′′

ν , x ′
ν ; x ′

3) dx ′′
1 dx ′′

2 =
∫

Ĝ(±)
(
xµ, x3; x (0)

ν , x ′
3

)
(ω/2π )2 dα

(0)
1 dα

(0)
2

× 1

2
ŷ−1

(
x ′

ν, α
(0)
ν ; x ′

3

)
exp

{−iωα(0)
σ

[
x (0)

σ − x ′
σ

]}
︸ ︷︷ ︸

R(x (0)
ν ,α

(0)
ν ;x′)

dx (0)
1 dx (0)

2 , (34)

where ŷ−1 is the dual (or right) symbol of Ŷ −1. Then eq. (32) changes to

Ĝ(±)(xµ, x3; x ′
ν, x ′

3) = ±H (∓[x ′
3 − x3]) lim

M→∞

∫ M∏
i=0

(ω/2π )2 dα
(i)
1 dα

(i)
2

M−1∏
j=0

dx ( j)
1 dx ( j)

2 R

× exp

{
− iω

M∑
k=1

[
α(k)

σ

(
x (k)

σ − x (k−1)
σ

) + γ̂ (±)
(
x (k)

µ , ζ̄k, α
(k)
ν

)
M−1�x3

] }
, (35)

In preparation of the microlocal analysis of the Green functions, we now introduce the wavevectors

K (k)
ν = ωα(k)

ν , K (±)
3 = ωγ̂ (±), (36)

for k = 1, . . . , M , for which components together at k = M will relate to the cotangent vectors appearing in the wavefront set of G(±). Note
that K (±)

3 = K (±)
3 (xµ, ζ , K ν ; ω). Then, in the time domain, the Trotter-product formula can be written as the limit of a sequence of the form

G(±);M (xµ, x3, t ; x ′
ν, x ′

3) = ±H (∓[x ′
3 − x3])

∫
R

1

2π
dω

∫ M∏
i=0

(
1

2π

)2

d K (i)
1 d K (i)

2

M−1∏
j=0

dx ( j)
1 dx ( j)

2 R

× exp

{
−i

M∑
k=1

[
K (k)

σ

(
x (k)

σ − x (k−1)
σ

) + K (±)
3

(
x (k)

µ , ζ̄k, K (k)
ν ; ω

)
M−1�x3

]}
exp(iωt), (37)

and similarly without the radiation pattern R. We have assumed that the source is operative at t = 0. In general, shifting this instance to t ′,
yields

G(±);M (xµ, x3, t ; x ′
ν, x ′

3, t ′) = ±H (∓[x ′
3 − x3])

∫
R

1

2π
dω

∫ M∏
i=0

(
1

2π

)2

d K (i)
1 d K (i)

2︸ ︷︷ ︸
distributions

M−1∏
j=0

dx ( j)
1 dx ( j)

2︸ ︷︷ ︸
compositions

R

× exp

{
−i

M∑
k=1

[
K (k)

σ

(
x (k)

σ − x (k−1)
σ

) + K (±)
3

(
x (k)

µ , ζ̄k, K (k)
ν ; ω

)
M−1�x3

]}
exp[iω(t − t ′)].

(38)

As before, for simplicity of notation, we will restrict our analysis again to G = G(+), K 3 = K (+)
3. Eq. (38) is a simplified representation of

the actual compositions of thin-slab propagators: we consider eq. (38) to be the composition of M Fourier integral operators (Le Rousseau
et al. 2001). Each composition is in horizontal space and time. However, the integrals over the successive times result in Dirac measures in the
difference of successive frequencies. Those measures have been integrated out in eqs (37) and (38), conveying the conservation of frequency.

3.3 The canonical relation

For operators with kernels of the form eq. (38), the propagation of singularities is controlled by the phase function. This is described by
the canonical relation. With the canonical relation we recover the geometrical (ray) aspect of wave propagation. The canonical relation is a
Lagrangian manifold (see also Kendall & Thomson 1993).

The phase function in eqs (37) and (38) is given by

φ
(
x, t, s′, t ′,

〈
x (l)

µ

〉
1≤l≤M−1

,
〈
K (k)

ν

〉
1≤k≤M

, ω
) = ω(t − t ′) −

M∑
k=1

[
K (k)

σ

(
x (k)

σ − x (k−1)
σ

) + K prin
3

(
x (k)

µ , ζ̄k, K (k)
ν , ω

)
M−1�x3

]
, (39)

with

K prin
3

(
x (k)

µ , ζ̄k, K (k)
ν , ω

) =
√

ω2c
(
x (k)

µ , ζ̄k

)−2 − K (k)
σ K (k)

σ , (40)

in accordance with the eikonal equation, and where x′ = (s′, s3) with s3 = 0 (corresponding to k = 0), x corresponds to k = M , and where
µ = 1, 2 and ν = 1, 2. We have �x3 = x3 − s3 = x3. We have also introduced the principal part K prin

3 of K 3; the remaining exponentials

exp
{−i

[
K3

(
x (k)

µ , ζ̄k, K (k)
ν , ω

) − K prin
3

(
x (k)

µ , ζ̄k, K (k)
ν , ω

)]
M−1�x3

}
are contained in the ‘amplitude’ of G and account for phenomena not associated with the wavefront set. This remaining exponential factor is
(a symbol) of order −1 and can therefore be considered as an amplitude.
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58 M. V. de Hoop, J. H. Le Rousseau and B. L. Biondi

Figure 1. The one-way scattering process: the true bicharacteristic is approached by a finite-difference square-root Hamiltonian system. To each depth level

is associated a position vector (x (k)
1 , x (k)

2 ) and a wave (cotangent) vector (K (k+1)
1 , K (k+1)

2 ).

Then the phase is homogeneous in (〈K (k)
ν〉1≤k≤M ,ω)† (see also Duistermaat 1996). Note that the operatorR in eq. (38) is pseudodifferential

and does not move the wavefront set. Let us collect the phase variables according to

θ = (〈
x (l)

µ

〉
1≤l≤M−1

,
〈
K (k)

ν

〉
1≤k≤M

, ω
)
. (41)

The stationary point set, �φ , is defined as (a ‘prime’ indicates taking the gradient)

�φ = {(x, t, s′, t ′, θ )|(φ′)θ (x, t, s′, t ′, θ ) = 0}. (42)

Thus, the defining equations of the stationary point set, �φ , are

(φ′)
x

(l)
σ

= −K (l)
σ + K (l+1)

σ − M−1�x3

(
K prin

3

′)
xσ

(
x (l)

µ , ζ̄l , K (l)
ν , ω

) = 0,

(φ′)
K

(k)
σ

= −x (k)
σ + x (k−1)

σ − M−1�x3

(
K prin

3

′)
Kσ

(
x (k)

µ , ζ̄k, K (k)
ν , ω

) = 0,

(φ′)ω = (t − t ′) − M−1�x3
∑M

k=1

(
K prin

3

′)
ω

(
x (k)

µ , ζ̄k, K (k)
ν , ω

) = 0, (43)

for σ = 1, 2 and l = 1, . . . , M − 1, k = 1, . . . , M .
In Appendix B, it is shown that the phase is non-degenerate for M sufficiently large. Hence the phase is clean with excess 0, and the

mapping

�φ → �φ, (x, t, s′, t ′, θ ) �→ (
x, t, −K (M+1)

1,2 , −K3, ω; s′, t ′, K (1)
1,2, −ω

) = (x, t, (φ′)x, (φ′)t ; s′, t ′, (φ′)s′ , (φ′)t ′ ), (44)

is a diffeomorphism. The stationary point set, �φ , is a submanifold of the manifold of points {(x, t, s′, t ′, θ )}. �φ is the associated Lagrangian
submanifold in the cotangent bundle associated with the manifold of points {(x, t, s′, t ′)}. In the mapping above, K (M+1)

1,2 is given by

K (M+1)
1,2 = K (M)

1,2 + M−1�x3

(
K prin

3

′)
x1,2

(
x (M)

µ , ζ̄M , K (M)
ν , ω

)
, (45)

following eqs (43) while for M large enough,

(φ′)x3 � −K3 ≡ −K prin
3

(
x (M)

µ , ζ̄M , K (M+1)
ν , ω

)
(46)

(cf. Appendix C) on the stationary point set.
Observe that the (finite) system of equations defining the stationary point set, �φ , is derived from a complex-analytic square-root Hamil-

tonian, K prin
3 , see Subsection 3.5 below. The solution of this system can be interpreted as a set of bicharacteristics on a lattice as illustrated in

Fig. 1. Omitting so-called turning rays, through a finite-difference approximation in the vertical (x3) coordinate, this system yields in the limit
M → ∞ the Hamilton system that defines the geometry of the asymptotic ray and Maslov high-frequency solutions (Kendall & Thomson
1993; De Hoop & Brandsberg-Dahl 2000) to the wave equation.

The canonical relation, Cφ , is then obtained by twisting the Lagrangian submanifold �φ

Cφ = {(
x, t, −K (M+1)

1,2 , −K3, ω; s′, t ′, −K (1)
1,2, ω

)∣∣(x, t, −K (M+1)
1,2 , −K3, ω; s′, t ′, K (1)

1,2, −ω) ∈ �φ

}
, K3 = K prin

3

(
x, K (M+1)

1,2 , ω
)
.

†Note that the ‘intermediate’ space variables, 〈x (l)
µ 〉1≤l≤M−1, in eq. (38) behave appropriately through the composition of Fourier integral operators (Hörmander

1985a, p. 295; Hörmander 1985b, p. 20).
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3.4 Propagation of singularities

Let G denote the time-domain counterpart of the previously defined Ĝ (cf. eq. 26). Then G(·, ·, ·; s′
0, 0, t ′

0) = G(δ(s′ − s′
0) ⊗ δ(t ′ − t ′

0)). We
denote the wavefront set of this Green function as WF(G). With the aid of the canonical relation Cφ , we find that

WF(G) = Cφ ◦ WF[δ(s′ − s′
0) ⊗ δ(t ′ − t ′

0)] (47)

so that

WF(G) = {
(x, t, ξ, −ω) | ∃s′

0, t ′
0, K (1)

1,2 such that (x, t, ξ, −ω; s′
0, t ′

0, K (1)
1,2, −ω) ∈ Cφ

}
, (48)

which means that the cotangent vector, ξ, is the cotangent vector at x associated with the bicharacteristic joining the source, s′
0, and the point

x, with initial ‘slope’ or ‘slant’ given by ω−1 K (1)
ν , and ‘one-way’ traveltime (t − t ′

0).

3.5 Square-root Hamiltonian system

Let H be the Hamiltonian associated with the (original wave equation’s) propagation process: H = H (x, K, ω). By the implicit function
theorem, if (H ′)K3 �= 0 at (x0, K0, ω0), there exists a neighbourhood U of (x0, K0, ω0) and a unique function, H 3, such that H (x, K, ω) = 0
is equivalent to K3 − H3(x, K1,2, ω) = 0 and H3(x, K1,2, ω) has the same degree of smoothness as H (x, K, ω). Also, the implicit function
theorem states that

(H ′
3)xi = −(H ′)xi

/
(H ′)K3 , i = 1, 2, 3, (49)

(H ′
3)Ki = −(H ′)Ki

/
(H ′)K3 , i = 1, 2, (50)

(H ′
3)t = 0, (51)

(H ′
3)ω = −(H ′)ω

/
(H ′)K3 . (52)

We set

F(x, K, ω) = K3 − H3(x, K1,2, ω).

Then, in the considered neighbourhood U , F and H have the same Hamiltonian flow:

dxi

dζ
= (F ′)Ki = −(H3

′)Ki = (H ′)Ki

/
(H ′)K3 , i = 1, 2, (53)

dx3

dζ
= (F ′)K3 = 1, (54)

d Ki

dζ
= −(F ′)xi = (H3

′)xi = −(H ′)xi

/
(H ′)K3 , i = 1, 2, 3, (55)

dt

dζ
= (F ′)ω = −(H3

′)ω = (H ′)ω
/

(H ′)K3 , (56)

dω

dζ
= −(F ′)t = 0. (57)

Because of eq. (54), the flow of F is parametrized by ζ = x3. Now, if τ is the parameter for the Hamiltonian flow associated with H , we have

dx3

dτ
= (H ′)K3 , (58)

which implies

dζ = (H ′)K3 dτ, (59)

which relates evolution in depth to evolution in time. (This relation is at the basis of the theory of one-way wave propagation.) Hence the
equivalence of the two Hamilton systems and their solutions.

In the present case,

H (x, K, ω) = −ω + c(x)‖K‖ (60)

and (H ′)K3 = 0 implies that K 3 = 0. In view of eqs (49)–(52), for the equivalence of Hamiltonian flows to apply, any bicharacteristic for
which K 3 vanishes at some point, a so-called turning ray, must be excluded (see also Appendix A). In an open set U ⊂ R

3 ×R
3 which closure

is away from these bicharacteristics, F is then simply defined as
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60 M. V. de Hoop, J. H. Le Rousseau and B. L. Biondi

F(x, K, ω) = K3 −
√

ω2c(x)−2 − Kν Kν . (61)

In the present case, we therefore have H 3 = K prin
3 .

In the process of discretizing the system (53)–(56) we take �ζ = M−1�x3 and subdivide the depth or vertical range into M steps. We
recover system (43), hence the earlier interpretation of flow in terms of bicharacteristics on a lattice.

3.6 Amplitude of the propagator kernel

To analyse the amplitude behaviour of the Trotter-product representation for the one-way Green function, we consider eq. (38) to be the
composition of M Fourier integral operators (Le Rousseau et al. 2003). The kernel of each constituent operator is a distribution with an
oscillatory integral representation. The phase of each such representation is of the form (cf. eq. 39)

φ(k) = −K (k)
σ

(
x (k)

σ − x (k−1)
σ

) − K prin
3

(
x (k)

µ , ζ̄k, K (k)
ν ; ω(k)

)
M−1�x3 + ω(k)

(
t (k) − t (k−1)

)
. (62)

In the composition it follows that all ω(k) = ω; we have t (M) = t and t (0) = 0.
We will first establish that, in the stationary phase approximation, the oscillatory integral representation of each constituent distribution

yields a change of coordinates on the Lagrangian manifold �φ(k) . The stationary point set, �φ(k) , follows from(
φ(k)

)′
K

(k)
σ

= − (
x (k)

σ − x (k−1)
σ

) + K (k)
σ

K prin
3

(
x (k)

µ , ζ̄k, K (k)
ν ; ω(k)

) M−1�x3 = 0,

and a similar equation for (φ(k))′
ω(k) = 0 determining the traveltime. The above equation can be solved for x (k)

σ as a function of K (k)
σ if the

Hessian(
φ(k)

)′′
K

(k)
µ x

(k)
ν

= −δµν − K (k)
µ(

K prin
3

)2

∂K prin
3

∂x (k)
ν

M−1�x3 = −δµν − K (k)
µ

(
ω(k)

)2(
K prin

3

)3 c−1 ∂c−1

∂x (k)
ν

M−1�x3, (63)

is non-singular (by virtue of the implicit function theorem (Dieudonné 1969)). Here, the speed c is evaluated at (x (k)
1,2, ζ̄k). Having the functions

x (k)
σ implicitly defined, we apply the chain rule to arrive at∂

K
(k)
1

x (k)
1 ∂

K
(k)
2

x (k)
1

∂
K

(k)
1

x (k)
2 ∂

K
(k)
2

x (k)
2

 = −
(

φ(k)
)′′

K
(k)
1 x

(k)
1

(
φ(k)

)′′
K

(k)
1 x

(k)
2(

φ(k)
)′′

K
(k)
2 x

(k)
1

(
φ(k)

)′′
K

(k)
2 x

(k)
2

−1 (
φ(k)

)′′
K

(k)
1 K

(k)
1

(
φ(k)

)′′
K

(k)
1 K

(k)
2(

φ(k)
)′′

K
(k)
2 K

(k)
1

(
φ(k)

)′′
K

(k)
2 K

(k)
2

. (64)

Since

lim
M→∞

det

(
φ(k)

)′′
K

(k)
1 x

(k)
1

(
φ(k)

)′′
K

(k)
1 x

(k)
2(

φ(k)
)′′

K
(k)
2 x

(k)
1

(
φ(k)

)′′
K

(k)
2 x

(k)
2

 = 1,

we conclude that as M → ∞,

det

∂
K

(k)
1

x (k)
1 ∂

K
(k)
2

x (k)
1

∂
K

(k)
1

x (k)
2 ∂

K
(k)
2

x (k)
2

 → det

(
φ(k)

)′′
K

(k)
1 K

(k)
1

(
φ(k)

)′′
K

(k)
1 K

(k)
2(

φ(k)
)′′

K
(k)
2 K

(k)
1

(
φ(k)

)′′
K

(k)
2 K

(k)
2

,

which confirms that in the stationary phase approximation (generating the determinant on the right-hand side) we retain a coordinate transfor-
mation (generating the determinant on the left-hand side) in accordance with the Maslov representation of the Green function. The condition
of non-singularity is satisfied if we enforce (cf. eq. 63)

M−1�x3 <

(
K prin

3

)3∥∥K (k)
1,2

∥∥(ω(k))2

∥∥∥c−1∂
x

(k)
1,2

c−1
∥∥∥−1

, (65)

where the first factor on the right-hand side is bounded in view of its homogeneity property (degree 0). Observe that if the medium were
laterally homogeneous, M could simply be chosen to be equal to 1. The same condition appears in the proof that the compositions in eq. (38)
preserve the geometrical aspects of the propagation of the singularities (Le Rousseau et al. 2003). Note that the vertical stepsize is bounded
in terms of a norm of horizontal medium derivatives.

Secondly, we establish that the stationary phase approximation of each constituent oscillatory integral representation, in particular the
initial one (k = 1), reproduces the geometrical spreading i.e. the solution of the transport equation. Using eq. (62), we find that

det

(
φ(k)

)′′
K

(k)
1 K

(k)
1

(
φ(k)

)′′
K

(k)
1 K

(k)
2(

φ(k)
)′′

K
(k)
2 K

(k)
1

(
φ(k)

)′′
K

(k)
2 K

(k)
2

 =
(
ω(k)

)2

c2
(
K prin

3

)4

(
�x3

M

)2

. (66)

The equation (φ(k))′
ω(k) = 0 leads to the relation

t (k) − t (k−1) = ω(k)

c2 K prin
3

�x3

M
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so that

�x3

M
=

(
t (k) − t (k−1)

)
c2 K prin

3

ω(k)
. (67)

Substituting this equation into eq. (66) then yields∣∣∣∣∣∣det

(
φ(k)

)′′
K

(k)
1 K

(k)
1

(
φ(k)

)′′
K

(k)
1 K

(k)
2(

φ(k)
)′′

K
(k)
2 K

(k)
1

(
φ(k)

)′′
K

(k)
2 K

(k)
2

∣∣∣∣∣∣
−1/2

= c
(
K prin

3

)2

ω(k)

M

�x3
= K prin

3

c
(
t (k) − t (k−1)

) , (68)

in which t (k) − t (k−1) represents the traveltime to cross the kth slab. We recognize the geometrical spreading—for x (k−1),ω(k) fixed—and the
radiation pattern of a vertical force (ω−1 K prin

3 ) which is removed by the initial decomposition introduced in eqs (24) and (35)—the factor ω−1

accounts for the fact that we employ the particle velocity rather than displacement.

4 T R O T T E R - P R O D U C T D O U B L E - S Q U A R E - R O O T P R O P A G A T O R

In the remote sensing problem one places sources and receivers at the surface (x3 = 0). Sources (at s1,2) generate acoustic waves, which scatter
at points x = (x1,2, z) in the subsurface and are observed at r 1,2 as a function of time t. (The x3-axis points into the subsurface.) To image the
observations, the measurements of the sources and the receivers measurements are propagated into the subsurface in a presumed background
medium back to the time when the scattering took place (Claerbout 1985). The operator thus obtained is composed of a propagator of the
previous type associated with the source and a propagator of the previous type associated with the receiver.

We develop a Trotter-product representation for the imaging operator. Such an operator can be identified with the fundamental solution
of the double-square-root equation. We recover isochrones from the Trotter-product representation, and relate certain phase variables in
the representation to scattering angle and azimuth. We then modify the imaging operator into an operator that generates multiple images,
namely for each scattering angle and azimuth. This yields the ‘wave-equation’ counterpart of asymptotic imaging with the generalized Radon
transform. Finally, we deduce from the latter operator annihilators of the data.

4.1 The imaging kernel

Using, for example, arguments based on reciprocity (De Hoop & De Hoop 2000), it follows that the process of seismic imaging based upon
the first-order term of the generalized Bremmer series (De Hoop 1996) can be written in the operator form

(IW2)(x1,2, z) = (1/2π )
∫ ∫ ∫

I(x1,2, z; s1,2, r1,2, t)W2(s1,2, r1,2, t) dt ds1 ds2 dr1 dr2, (69)

where W 2 represents the (upgoing component of the) data. Here, I denotes the distributional imaging kernel that can be written as the
Trotter-product representation

IM (x1,2, z; s1,2, r1,2, t) =
∫

R

(1/2π ) dω

∫
R4(M+1)

∫
R4M

M∏
i=0

(1/2π )2 d K̃ (i)
1 d K̃ (i)

2 (1/2π )2 d K̂ (i)
1 d K̂ (i)

2

M−1∏
j=0

ds( j)
1 ds( j)

2 dr ( j)
1 dr ( j)

2 R̃R̂

× exp

[
−i

M∑
k=1

{
K̃ (k)

σ

(
s(k)
σ − s(k−1)

σ

) + K̂ (k)
σ

(
r (k)
σ − r (k−1)

σ

) + [
K3

(
s(k)
µ , ζ̄k, K̃ (k)

ν , ω
) + K3

(
r (k)
µ , ζ̄k, K̂ (k)

ν , ω
)]

M−1�x3

}]
exp(iωt) (70)

forming a sequence, with �x3 = z and

s(0)
1,2 = s1,2,︸︷︷︸

s′

r (0)
1,2 = r1,2,︸︷︷︸

r′

s(M)
1,2 = r (M)

1,2 = x1,2, ζ0 = 0, ζM = z. (71)

The imaging kernel follows the simultaneous downward continuation of sources (variables with .̃) and receivers (variables with .̂ ) in accordance
with the one-way Trotter product represented by eq. (37). In the absence of turning rays, in the high-frequency approximation, the kernel will
approach δ(t − T ((r1,2, 0), (x1,2, z), (s1,2, 0))), where T denotes the two-way traveltime. (This expression has the form of a pull-back within
the distributions in x.)

Let us now rotate coordinates at each level to (intermediate) ‘mid-point’ and ‘offset’, i.e.

y(k)
1,2 = 1

2

(
r (k)

1,2 + s(k)
1,2

)
, h(k)

1,2 = 1

2

(
r (k)

1,2 − s(k)
1,2

)
,

K (k)
1,2 = K̂ (k)

1,2 + K̃ (k)
1,2, k(k)

1,2 = K̂ (k)
1,2 − K̃ (k)

1,2. (72)

Such a change anticipates the estimation of the wavefront set of the imaging kernel. We have

ds( j)
1 ds( j)

2 dr ( j)
1 dr ( j)

2 = 16 dy( j)
1 dy( j)

2 dh( j)
1 dh( j)

2 , d K̃ (i)
1 d K̃ (i)

2 d K̂ (i)
1 d K̂ (i)

2 = 1

16
d K (i)

1 d K (i)
2 dk(i)

1 dk(i)
2
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and we write the distribution kernel of the double-square-root propagator, J, as the sequence

J M
(
x1,2, z; y1,2, h1,2, t ; him

1,2

) =
∫

R

(1/2π ) dω
1

16

∫
R4(M+1)

∫
R4M

M∏
i=0

(1/2π )2d K (i)
1 d K (i)

2 (1/2π )2dk(i)
1 dk(i)

2

M−1∏
j=0

dy( j)
1 dy( j)

2 dh( j)
1 dh( j)

2 R̃R̂

× exp

[
−i

M∑
k=1

{
K (k)

σ y(k)
σ − K (k)

σ y(k−1)
σ + k(k)

σ h(k)
σ − k(k)

σ h(k−1)
σ +

[
K3

(
y(k)
µ − h(k)

µ , ζ̄k,
1

2

(
K (k)

ν − k(k)
ν

)
, ω

)

+ K3

(
y(k)
µ + h(k)

µ , ζ̄k,
1

2

(
K (k)

ν + k(k)
ν

)
, ω

)]
M−1�x3

}]
exp(iωt) (73)

subject to

y(0)
1,2 = y1,2︸︷︷︸

y′

(mid-point), y(M)
1,2 = x1,2, h(0)

1,2 = h1,2︸︷︷︸
h′

(offset), h(M)
1,2 = him

1,2. (74)

In the limit M → ∞, we write

(JW2)
(
x1,2, z; him

1,2

) = (1/2π )16
∫ ∫ ∫

J
(
x1,2, z; y1,2, h1,2, t ; him

1,2

)
W2(y1,2 − h1,2, y1,2 + h1,2, t) dy1dy2 dh1 dh2 dt (75)

and the image with the sequence in eq. (70) is obtained at him
1,2 = 0 (J |him

1,2=0 = I).

4.2 The canonical relation of the imaging operator (him
1,2 = 0)

The phase function associated with distribution (73) is given by

�
(
x, y1,2, h1,2, t,

〈
y(l)
µ

〉
1≤l≤M−1

,
〈
K (k)

ν

〉
1≤k≤M

,
〈
h(l)

µ

〉
1≤l≤M−1

,
〈
k(k)

ν

〉
1≤k≤M

, ω
) = ωt −

M∑
k=1

{
K (k)

σ

(
y(k)
σ − y(k−1)

σ

) + k(k)
σ

(
h(k)

σ − h(k−1)
σ

)
+ M−1�x3

[
K prin

3

(
y(k)
µ − h(k)

µ , ζ̄k,
1

2

(
K (k)

ν − k(k)
ν

)
, ω

)
+ K prin

3

(
y(k)
µ + h(k)

µ , ζ̄k,
1

2

(
K (k)

ν + k(k)
ν

)
, ω

)] }
, (76)

where µ = 1, 2 and ν = 1, 2 and x = (y(M)
1,2 , z). If we collect the phase variables,

θ = (〈
y(l)
µ

〉
1≤l≤M−1

,
〈
K (k)

ν

〉
1≤k≤M

,
〈
h(l)

µ

〉
1≤l≤M−1

,
〈
k(k)

ν

〉
1≤k≤M

, ω
)
, (77)

the stationary point set, ��, is defined as

�� = {(x, y1,2, h1,2, t, θ ) | (φ′)θ (x, y1,2, h1,2, t, θ ) = 0}. (78)

The defining equations of the stationary point set, ��, are then

(�′)
y

(l)
σ

= − K (l)
σ + K (l+1)

σ − M−1�x3

[(
K prin

3

′)
xσ

(
y(l)
µ − h(l)

µ , ζ̄l ,
1

2

(
K (l)

ν − k(l)
ν

)
, ω

)
+

(
K prin

3

′)
xσ

(
y(l)
µ + h(l)

µ , ζ̄l ,
1

2

(
K (l)

ν + k(l)
ν

)
, ω

)]
= 0,

(79)

(�′)
K

(k)
σ

= − y(k)
σ + y(k−1)

σ − 1

2
M−1�x3

[(
K prin

3

′)
Kσ

(
y(k)
µ − h(k)

µ , ζ̄k,
1

2

(
K (k)

ν − k(k)
ν

)
, ω

)
+ (

K prin
3

′)
Kσ

(
y(k)
µ + h(k)

µ , ζ̄k,
1

2

(
K (k)

ν + k(k)
ν

)
, ω

)]
= 0

(80)

(�′)
h

(l)
σ

= − k(l)
σ + k(l+1)

σ − M−1�x3

[
−(

K prin
3

′)
xσ

(
y(l)
µ − h(l)

µ , ζ̄l ,
1

2

(
K (l)

ν − k(l)
ν

)
, ω

)
+ (

K prin
3

′)
xσ

(
y(l)
µ + h(l)

µ , ζ̄l ,
1

2

(
K (l)

ν + k(l)
ν

)
, ω

)]
= 0,

(81)

(�′)
k

(k)
σ

= −h(k)
σ + h(k−1)

σ − 1

2
M−1�x3

[
−(

K prin
3

′)
Kσ

(
y(k)
µ − h(k)

µ , ζ̄k,
1

2

(
K (k)

ν − k(k)
ν

)
, ω

)
+ (

K prin
3

′)
Kσ

(
y(k)
µ + h(k)

µ , ζ̄k,
1

2

(
K (k)

ν + k(k)
ν

)
, ω

)]
= 0,

(82)

(�′)ω = t − M−1�x3

M∑
k=1

[(
K prin

3

′)
ω

(
y(k)
µ − h(k)

µ , ζ̄k,
1

2

(
K (k)

ν − k(k)
ν

)
, ω

)
+ (

K prin
3

′)
ω

(
y(k)
µ + h(k)

µ , ζ̄k,
1

2

(
K (k)

ν + k(k)
ν

)
, ω

)]
= 0, (83)

for σ = 1, 2 and l = 1, . . . , M − 1, k = 1, . . . , M . In analogy with the analysis of the one-way wave propagator, one can view the solution of
the system of eqs (79)–(83) as an approximation on a lattice of the geometry of the Maslov high-frequency solution of the two-way scattering
process, as represented in Fig. 2.

An extension of the proof of Appendix B shows that the phase � is non-degenerate. The associated Lagrangian submanifold of the
cotangent bundle associated with the manifold of points {(x, y1,2, h1,2, t)}, is now given by

�� → �� (x, y1,2, h1,2, t, θ ) �→ (
x, −K (M+1)

1,2 , −K3; y1,2, h1,2, t, K (1)
1,2, k(1)

1,2, ω
) = (

x, (�′)x; y1,2, h1,2, t, (�′)y1,2 , (�′)h1,2 , (�′)t

)
, (84)

C© 2003 RAS, GJI, 153, 52–74

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/153/1/52/621634 by guest on 11 M

arch 2019



Symplectic structure of wave-equation imaging 63

Figure 2. Bicharacteristics and wave vectors in the two-way scattering process.

Figure 3. Isochrone: illustration of a subsurface section of the canonical relation in the two-way scattering process.

following eqs (45)–(46) for the source and receiver contributions: −K (M+1)
ν = −(K̃ (M+1)

ν + K̂ (M+1)
ν ) in accordance with the transformation to

the mid-point; K 3 is given by

K prin
3

(
x1,2, z,

1

2

(
K (M+1)

ν − k(M+1)
ν

)
, ω

)
+ K prin

3

(
x1,2, z,

1

2

(
K (M+1)

ν + k(M+1)
ν

)
, ω

)
.

As before, the canonical relation, C�, is obtained by twisting the Lagrangian submanifold ��,

C� = {(
x, −K (M+1)

1,2 , −K3; y1,2, h1,2, t, −K (1)
1,2, −k(1)

1,2, −ω)
∣∣(x, −K (M+1)

1,2 , −K3; y1,2, h1,2, t, K (1)
1,2, k(1)

1,2, ω
) ∈ ��

}
.

The so-called isochrone, the projection of the canonical relation on to the subsurface for fixed two-way traveltime t and source and receiver,
i.e. fixed h1,2 and y1,2, is shown in Fig. 3.

4.3 The isochrone and its cotangent directions

The isochrone is given as the singular support of I0 = I(δ(s′ − s′
0) ⊗ δ(r′ − r′

0) ⊗ δ(t − t0)) (cf. eq. 69), which is distributional in (x1,2, z) for
given s′

0, r′
0 and t0. Here, we are not just interested in the singular support but rather in its wavefront set: WF(I0). With the aid of the canonical

relation previously defined, we have

WF(I0) = C� ◦ WF[δ(s′ − s′
0) ⊗ δ(r′ − r′

0) ⊗ δ(t − t0)] (85)

so that

WF(I0) = {
(x,Ξ) | ∃y′

0, h′
0, t0, K (1)

1,2, k(1)
1,2, ω :

(
x,Ξ; y′

0, h′
0, t0, K (1)

1,2, k(1)
1,2, −ω

) ∈ C�

}
, (86)

which means that the cotangent vector, Ξ, is the sum of the two cotangent vectors at x associated with the two bicharacteristics joining the
source, s′

0, the scattering point, x, and the receiver, r′
0 with initial ‘slopes’ given by ω−1 K̃ (1)

ν , ω−1 K̂ (1)
ν , and ‘two-way’ traveltime t0 as illustrated

in Fig. 3. The limit M → ∞ can be understood with the use of Appendix C.
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64 M. V. de Hoop, J. H. Le Rousseau and B. L. Biondi

To find a parametrization for the canonical relation and an expression for the cotangent vectors Ξ, we reconsider the wave vectors (k = 1)

K̃ (1)
1,2 = ωps1,2 , K̂ (1)

1,2 = ωpr1,2 , ω,

dual to (s1,2, r 1,2, t), and (k = M)(
K̃ (M+1)

1,2 , K prin
3

(
s(M)

1,2 , ζ̄M , K̃ (M+1)
1,2

)) = ξ̃ at (x1,2, z),(
K̂ (M+1)

1,2 , K prin
3

(
r (M)

1,2 , ζ̄M , K̂ (M+1)
1,2

)) = ξ̂ at (x1,2, z),

defining, through the canonical relation,

Ξ = ξ̃ + ξ̂,

dual to (x1,2, z).
The polar angles associated with the covector Ξ are denoted by (θΞ, ψΞ). We now introduce the parameters scattering angle and azimuth

{ϑ , ψ} at (x1,2, z) according to

cos ϑ = ‖ξ̃‖−1ξ̃ · ‖ξ̂‖−1ξ̂,

cos ψ = r0 · rψ,

where

rψ = (sin ϑ)−1‖Ξ‖−1Ξ ∧ ‖ξ̃‖−1ξ̃ ∧ ‖ξ̂‖−1ξ̂, (87)

and r0 is given as the vertical vector pointing up (negative x3 direction) in the plane orthogonal to Ξ as illustrated in Fig. 4.
By analysing Fig. 4, we find that through the canonical relation

k(M+1)
1

WF= ξ̂ 1 − ξ̃1 = − 2ω

c(x1,2, z)
sin

(
1

2
ϑ

)
[sin(ψΞ) sin(ψ) + cos(θΞ) cos(ψΞ) cos(ψ)],

k(M+1)
2

WF= ξ̂ 2 − ξ̃2 = 2ω

c(x1,2, z)
sin

(
1

2
ϑ

)
[cos(ψΞ) sin(ψ) − cos(θΞ) sin(ψΞ) cos(ψ)], (88)

which define, given (θΞ, ψΞ), a mapping (ϑ , ψ) �→ (k(M+1)
1 , k(M+1)

2 ). On the other hand, we have

K (M+1)
1

WF= �1 = 2ω

c(x1,2, z)
cos

(
1

2
ϑ

)
cos(ψΞ) sin(θΞ),

K (M+1)
2

WF= �2 = 2ω

c(x1,2, z)
cos

(
1

2
ϑ

)
sin(ψΞ) sin(θΞ), (89)

Figure 4. Euler angles associated with the two-way scattering process. Left-hand side, the unit vector with the positive first component along the intersection
of the vertical plane containing Ξ and the horizontal plane is denoted by rπ/2. We then denote r0 = Ξ ∧ rπ/2. Right-hand side, call rψ the unit vector in the

direction ξ̃ − ξ̂. It lies along the intersection of the scattering plane (ξ̃, ξ̂) with the plane orthogonal to Ξ, i.e. (r0, rπ/2). The azimuth angle is defined as the

angle between rψ and r0, while the scattering angle ϑ is defined as the angle between ξ̃ and ξ̂.
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while

K3

(
y(M)

1,2 , ζ̄M ,
1

2

[
K (M+1)

1,2 − k(M+1)
1,2

]) + K3

(
y(M)

1,2 , ζ̄M ,
1

2

[
K (M+1)

1,2 + k(M+1)
1,2

]) WF= �3 = 2ω

c(x1,2, z)
cos

(
1

2
ϑ

)
cos(θΞ). (90)

We observe that the construction of �3 out of ξ̃, ξ̂ is independent of azimuth in view of the isotropy of the medium here.
In general, we will have four unknown angles (ϑ, ψ), (θΞ, ψΞ) and four accessible spectral variables, (k(M+1)

1,2 , K (M+1)
1,2 ). They are a

manifestation of offset and mid-point in the subsurface. The mentioned scattering angle and azimuth together form the set of parameters along
the characteristic strips in the wavefront set of the single-scattered seismic data (see Stolk & De Hoop 2002). It is along these characteristic
strips that we can verify the velocity model by differential semblance.

4.4 Angle-gather imaging condition

The process of imaging, through the path integral, induces a composite mapping

h1,2
J�→ him

1,2
dual�→ k(M+1)

1,2
WF�→(ϑ, ψ).

To highlight the redundancy in the data, the redundancy being parametrized by (ϑ , ψ), we will create images for each (ϑ , ψ). To this end, we
carry out a final Fourier transform of the kernel of the double-square-root propagator, J M , with respect to (h(M)

1 , h(M)
2 ), namely

J̄ M (x1,2, z; y1,2, h1,2, t ; (ϑ, ψ)) =
∫

R

(1/2π ) dω

∫
R2

dh(M)
1 dh(M)

2

1

16

∫
R4(M+1)

∫
R4M

M∏
i=0

(1/2π )2 d K (i)
1 d K (i)

2 (1/2π )2 dk(i)
1 dk(i)

2

×
M−1∏
j=0

dy( j)
1 dy( j)

2 dh( j)
1 dh( j)

2 R̃R̂ exp

[
−i

M∑
k=1

{
K (k)

σ y(k)
σ − K (k)

σ y(k−1)
σ + k(k)

σ h(k)
σ − k(k)

σ h(k−1)
σ +

[
K3

(
y(k)
µ − h(k)

µ , ζ̄k,
1

2

[
K (k)

ν − k(k)
ν

])

+ K3

(
y(k)
µ + h(k)

µ , ζ̄k,
1

2

[
K (k)

ν + k(k)
ν

])]
M−1�x3

}]
exp

(
ik(M+1)

σ h(M)
σ

)
exp(iωt) (91)

subject to the substitution

k(M+1)
1 = − 2ω

c(x1,2, z)
sin

(
1

2
ϑ

)
[sin(ψΞ) sin(ψ) + cos(θΞ) cos(ψΞ) cos(ψ)],

k(M+1)
2 = 2ω

c(x1,2, z)
sin

(
1

2
ϑ

)
[cos(ψΞ) sin(ψ) − cos(θΞ) sin(ψΞ) cos(ψ)].

We consider the outcome at y(M)
1,2 = x1,2 as a function of (ϑ , ψ), which defines the angle common image point gather at depth z. The redundancy

in the data is made apparent by applying an operator of the type eq. (91) with the final line replaced by(
hM

1 , hM
2

)
exp

[
ik(M+1)

σ h(M)
σ

]
exp(iωt).

Such an operator annihilates the data in accordance with the differential semblance (Symes 1991)criterion applied in (ϑ , ψ) (Stolk & De
Hoop 2002).

The angle gathers are controlled by dip (θΞ, ψΞ). To create these gathers we therefore need to determine the direction of the isochrone
cotangent vector, which is the subject of the next section.

5 M U L T I - R E S O L U T I O N A P P R O A C H T O D E T E R M I N I N G T H E M I G R A T I O N D I P
( I S O C H R O N E C O T A N G E N T D I R E C T I O N )

We discuss a procedure to estimate the migration dip while applying the imaging operator, using a continuous wavelet transform.
In the simplest situation, let ψ = ψ� = 0 (‘in-line’ scattering). Then we obtain the angle ϑ out of the ratio

tan

(
1

2
ϑ

)
= k(M)

1

�3
(92)

and we just have to determine �3. In general, we will have to determine both (θ�, ψ�). We will do so by a careful windowed Fourier analysis.
The estimation of the isochrone cotangent direction, known in seismology as the migration dip, can be carried out with the aid of a

continuous wavelet transform. Let

φτ (x) = τ 3/4φ(τ 1/2x) (93)

be a symmetric, smooth function (Gaussian for example), and define the spatial Fourier transform (indicated by .̃) Pτ
φ combined with a cut-off

φ as

Pτ
φ f (ξ, x) = exp

(
1

2
iξ j x j

)
f̃ ∗ ψ̃x,τ (ξ) (94)
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66 M. V. de Hoop, J. H. Le Rousseau and B. L. Biondi

with

ψx,τ (y) = φτ (y − x). (95)

If φ is Gaussian, its Fourier transform ψ̃x,t is also Gaussian.
For f we now substitute the distribution imaging kernel I, and employ the Fourier transform x0 = (y(M)

1,2 , z) �→ (K (M+1)
1,2 , K3) = Ξ0. Then

(x0,Ξ0) does not belong to the wavefront set of I if there is a conical neighbourhood of (x0,Ξ0) such that on this neighbourhood for all a,
N ≥ 1,∣∣Pτ

φ I(x, τΞ)
∣∣ ≤ Ca,N τ−N for τ ≥ 1, a−1 ≤ |Ξ| ≤ a,

a result owing to Folland, and Córdoba & Fefferman (Folland 1989). Taking the complement of such conical neighbourhoods yields the
singular direction associated with the isochrone.

6 N U M E R I C A L E X A M P L E

We will briefly discuss an example of applying the method to synthetic data in the presence of caustics. The model (Brandsberg-Dahl et al.
2003a) (2-D) contains a low-velocity lens (Fig. 5). It further consists of two layers separated by a ramp-like interface that represent a target
reflector with an adjacent fault.

The upper layer has constant gradients. The seismic data were generated by a time-domain finite-difference approach (the dominant
frequency of the source signature was 35 Hz). The vertical component of a typical shot gather over the lens is shown in Fig. 6 (the direct
arrival has been removed from the shot gathers by remodelling without the reflector being present).
For the imaging we invoked the generalized screen approximation for the Trotter product (De Hoop et al. 2000; Le Rousseau & De Hoop
2001a). We focus on a horizontal location where multipathing dominates. The ACIG generated using the true wave speed model is shown in
Fig. 7(a). The seismic event is unfolded and the alignment (‘flatness’) confirms the redundancy in the data. Since we used the true model,
applying the annihilator results in the disappearance of the seismic event, see Fig. 7(b).

0
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Figure 5. Wave speed model for P waves with a low wave speed zone.
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Figure 6. Typical shot record, the source location is at location (1) of Fig. 5.
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Figure 7. (a) ACIG, in the true model; (b) annihilation, in the true model; (c) ACIG, in the model with the lens removed; (d) annihilation, in the model with
the lens removed, at location (1) of Fig. 5.

An incorrect model results in ‘non-flat’ events in the ACIG, see Fig. 7(c) where we removed the lens from the wave speed model; applying
the annihilator results in Fig. 7(d). Clearly, the annihilator can be used as a mismatch criterion for tomographic inversion (Brandsberg-Dahl
et al. 2003b; De Hoop et al. 2001).

7 D I S C U S S I O N

In this paper, we have presented a microlocal (high-frequency) analysis of the double-square-root equation and its possible solution schemes.
The double-square-root equation generates the wave-equation seismic imaging procedure. In particular, we found that (Maslov–)Kirchhoff
and wave-equation imaging procedures are microlocally compatible and hence should yield the same result on the singular support of the
image. More precisely they are equivalent if all the data are used (and the data set is complete, i.e. 5-D). However, high-frequency methods
(Brandsberg-Dahl et al. 2003a,b) show artefacts in ACIGs with a moveout (with angle) that are not visible in the results of Section 6. Such
differences suggest that in the angle domain the two methods are not fully equivalent. This is analysed in detail in Stolk & De Hoop (2001).

As far as the solution schemes of the double-square-root equation are concerned, we found a fundamental condition for the step size
in depth that plays an important role in complex (strongly heterogeneous) velocity models. Finally, we designed a wave-equation imaging
scheme honouring the characteristic strips in the wavefront set of seismic data, thus generating scattering-angle/azimuth common image point
gathers of the type introduced in Kirchhoff-style imaging procedures. ACIGs are used for amplitude inversion and in tomography.

With our approach, ‘true-amplitude’ aspects of the imaging procedure in inhomogeneous media can also be addressed, namely via the
composition of the adjoint (solution of the double-square-root equation) and the forward scattering operator (the first term of the generalized
Bremmer coupling series). In the case of laterally homogeneous media such an analysis has been carried out (Deregowski & Rocca 1981;
Dubrulle 1983; Ekren & Ursin 1999). In the case of heterogenous media, see Stolk & De Hoop (2001).

We analysed the case of acoustic waves. We have applied the imaging procedure to real exploration data (Le Rousseau et al. 2002). The
tools needed to extend the current theory to mode-coupled elastic waves may be found in Le Rousseau & De Hoop (2003).
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A P P E N D I X A : S O M E C O N C E P T S F R O M M I C R O L O C A L A N A L Y S I S
A N D S Y M P L E C T I C G E O M E T R Y

Microlocal analysis is the study of singularities (of a wavefield for instance) and their ‘high-frequency’ orientations (directions of propagation);
the two combined form the wavefront set. In direct and inverse wave propagation problems, microlocal analysis provides mathematical tools
to follow the propagation of singularities, even in rather complex media (in the presence of caustics). In a remote sensing experiment, most
of the information is contained in the wavefront set of the data. Microlocal analysis thus offers a suitable framework for inverse scattering
theory. The wavefront set of u is denoted by WF(u).

For a basic reference on the theory of distributions we refer the reader to Schwartz (1966b). For more advanced treatments see Schwartz
(1966a), Treves (1967) and Hörmander (1990). For basic references on manifolds and differential geometry see Spivak (1965) and Choquet-
Bruhat et al. (1996). For more advanced sources we refer the reader to Dieudonné (1972). For a treatment of symplectic geometry we refer
the reader to Abraham & Marsden (1978) and Hörmander (1985a, chapter 21).

A1 The tangent and cotangent bundles

Manifolds generalize the concept of surfaces. At every point x of a manifold X of finite dimension we can define the tangent space, TxX , for
instance as the set of all vectors tangent, at x, to smooth curves on X passing through x. We then define the tangent bundle of X as

T X =
⋃
x∈X

{x} × Tx X.

The tangent space of X at x is a vector space of the same dimension as X , say n. One can therefore introduce its dual T ∗
x X and then

define the so-called cotangent bundle as

T ∗ X =
⋃
x∈X

{x} × T ∗
x X.

For R
n we have T ∗

R
n � R

n × R
n . In the forward and inverse Fourier transforms we encounter the inner product 〈x , ξ〉. Since on R

n the
tangent space is identified with the space itself, ξ is then considered as a dual variable of x, i.e. the cotangent variable. Since the directions of
the singularities of distributions on R

n are given by Fourier analysis (Hörmander 1990, Section 8.1)—and hence are cotangent directions—we
are allowed to define the wavefront set as a subspace of T ∗

R
n . A subset  of T ∗

R
n is said to be conical if it is not affected by positive scaling

in the ξ direction, i.e. if (x , ξ ) ∈  then for all t > 0 (x , tξ ) ∈ .

A2 Symplectic and Lagrangian manifolds

The archetypical example of a symplectic manifold, S say, is given by T ∗
R

n along with the 2-form σ with the local representation

σ =
∑

i

dξi ∧ dxi ,

i.e. if (u, v) and (u′, v′) are in the tangent plane, T(x,ξ )T ∗
R

n , of T ∗
R

n at (x , ξ ),

σ ((u, v), (u′, v′)) = 〈u′, v〉 − 〈u, v′〉.
A submanifold L is Lagrangian if its dimension is n, i.e. half the dimension of S, and σ |L = 0, i.e. for all x ∈ L, TxL is its own orthogonal
with respect to σ . An example of a Lagrangian submanifold of T ∗

R
n is the conormal bundle, NX , of a submanifold X of R

n .
If (S1, σ 1) and (S2, σ 2) are two symplectic manifolds, a Lagrangian submanifold of S1 × S2 with respect to the symplectic form σ 1 −

σ 2 is called a canonical relation from S2 to S1.

A3 Rays, bicharacteristics

It is common to refer to the cotangent bundle T ∗ X as phase space. When solving a Hamiltonian system, i.e. tracing rays in phase space, one
actually builds a correspondence ‘table’ C between points in phase space. Two points (x0, ξ 0) and (x , ξ ) are related to each other if there is a
ray (bicharacteristic) that connects them with traveltime t and frequency τ , then (x , t , ξ , τ ; x0, ξ 0) ∈ C . The ‘table’ C is a canonical relation
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in T ∗(X × R) × T ∗ X . With this simple example we see that canonical relations are therefore important geometrical objects that control the
propagation of singularities.

A4 Phase functions

Let X be a manifold of dimension n, e.g. R
n , and φ(x , θ ) a smooth real-valued function in an open conical set  ⊂ X × (RN \0) which is

homogeneous of degree 1 in θ , i.e. φ(x ,λθ ) = λφ(x , θ ) for all λ ∈ R. Then φ is called a clean phase function if dφ �= 0 and the stationary
point set

Sφ = {(x, θ ) | (φ′)θ (x, θ ) = 0}
is a smooth manifold with tangent space defined by the equations d((φ′)θ ) = 0. If the number of linearly independent equations d((φ′)θ ) = 0
is N − e we call e the excess of the phase. The phase is said to be non-degenerate if e = 0. The dimension of the stationary point set, Sφ , is n
+ e. Furthermore, the set

�φ = {(x, ξ ) | ξ = (φ′)x (x, θ ), (φ′)θ (x, θ ) = 0 for some θ ∈ R
N \0}

has dimension n and is a locally conical Lagrangian submanifold of T ∗ X .
Conversely, given a conical Lagrangian submanifold � in T ∗ X , at every point of �, (x , ξ ) say in local coordinates, we can locally

parametrize � by a non-degenerate phase function φ in a conical neighbourhood of (x , ξ ) (Hörmander 1985a, theorem 21.2.16). Hence a
high-dimensional object such as a Lagrangian submanifold (or a canonical relation) can be locally represented by a single function.

For illustration, let us come back to the previous example of a canonical relation generated by bicharacteristics:

C = {(x(x0, ξ0, t), t, ξ (x0, ξ0, t), τ ; x0, ξ0)},
where the functions x(x0, ξ 0, t) and ξ (x0, ξ 0, t) are the solutions of the Hamiltonian system. A convenient choice of a phase function is
described in Maslov & Fedoriuk (1981). They state that one can always use a subset of the cotangent vector components as phase variables.
Let us choose coordinates of the form (xI , x0, ξ J , τ ), where I ∪ J is a partition of {1, 2, . . . , n}. It follows from theorem 4.21 in Maslov &
Fedoriuk (1981) that there exists a function S such that locally C is given by

xJ = − ∂S

∂ξJ
, t = −∂S

∂τ
,

ξI = ∂S

∂xI
, ξ0 = − ∂S

∂x0
.

Such a function S is called a generating function for the canonical relation C. It is a generalization of traveltime in the presence of caustics.
A non-degenerate phase function is then found to be

φ(x, x0, t, ξJ , τ ) = S(xI , x0, ξJ , τ ) + 〈ξJ , xJ 〉 + τ t.

A5 Oscillatory integrals and Fourier integral operators

Oscillatory integrals (OIs) are (finite) distributions on an open set ! of R
n with an integral representation that makes sense via regularization

(see Hörmander 1990, Section 7.8, Hörmander 1971, Section 1.2 and see below). Let φ be a non-critical‡ phase function on an open cone 

of ! × (RN \0) for some N , i.e. φ = φ(x , θ ) is real,§ smooth, and homogeneous of degree 1 in θ . Let also a ∈ Sm(! × R
N ), i.e. let a be a

symbol of order m:∣∣∂α
ξ ∂α

x a(x, ξ )
∣∣ ≤ Cα,β,K (1 + |ξ |)m−α, x ∈ K , ξ ∈ R

n, for K ⊂ ! compact.

Then for u ∈ C ∞
c (!) the integral

Iφ(au) =
∫ ∫

eiφ(x,θ )a(x, θ )u(x) dx dθ,

is well defined. It is clearly defined if, for instance, a is rapidly decreasing and from this I φ can be extended to symbols of any order in a unique
manner. Such an integral is then called an OI. The symbol a is also referred to as the amplitude of the OI. A way to perform the regularization
procedure is as follows: if χ is a given compactly supported smooth function on R

N (∈ C∞
c (RN )), we have

Iφ(au) = lim
t→∞

∫ ∫
eiφ(x,θ )a(x, θ ) χ (θ/t) u(x) dx dθ.

Such a procedure thus gives the proper definition of the OI,

I(·) =
∫

eiφ(x,θ )a(·, θ ) dθ,

‡dφ �= 0.
§Or of positive imaginary part.
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as a distribution. The wavefront set of the OI can be estimated through the phase function as

WF(I) ⊂ {(x, (φ′)x (x, θ )) | (x, θ ) ∈ Sφ ∩ supp(a)}.
When the phase is clean the stationary point set, Sφ , of the phase function is a submanifold (Hörmander 1985a, definition 21.2.15). Then

�φ = {(x, (φ′)x (x, θ )) | (x, θ ) ∈ Sφ},
is locally a Lagrangian submanifold of T ∗(!). In the case when ! = X × Y , with X and Y open subsets of R

m and R
p for some m and p (m

+ p = n), the OI defined by such a phase function, φ and a symbol, a, may be viewed as the kernel of an operator (Schwartz 1966a; Treves
1967; Hörmander 1990), A, from C∞

c (Y ) (the space of compactly supported smooth functions on Y ) into D′(X ) (the space of distributions
on X ). Such an operator is called a (local) Fourier integral operator. If φ has no stationary points as a function of (y, θ ) for all x ∈ X , A
maps C∞

c (Y ) into C∞(X ). If φ has no stationary points as a function of (x , θ ) for all y ∈ Y , A can then be extended from E ′(Y ) (the space of
compactly supported distributions on Y ) into D′(X ). A phase function that satisfies both these properties is called an operator phase function
(Hörmander 1971, definition 1.4.4).

To the Lagrangian submanifold, �φ , one can associate the canonical relation,

Cφ = {(x, ξ, y, −η) | (x, ξ, y, η) ∈ �φ}.
This canonical relation gives the proper geometric tool to follow the propagation of singularities through the application of the FIO by the
algebraic composition of Cφ and WF (u):

WF(Au) ⊂ Cφ ◦ WF(u) = {(x, ξ ) | ∃(y, η) ∈ WF(u) such that (x, ξ, y, η) ∈ Cφ}.
In the case of the example of Section A3, where bicharacteristics build the canonical relation, one then sees that the composition of the
canonical relation and the wavefront set just expresses that the singularities propagate along the bicharacteristics.

Two properly supported FIOs associated with operator phases can be composed, and the resulting operator will be an FIO with clean
phase, if their canonical relations compose cleanly (Treves 1980; Hörmander 1985b).

A P P E N D I X B : N O N - D E G E N E R A C Y O F T H E P H A S E F U N C T I O N

For φ in eq. (39) to be a clean phase function, we have to check that the stationary point set, �φ , is a submanifold. We do so by checking that
the system of differentials d(φ′)θ , for all the parameters θ of the phase function, has constant rank. If so, the number of linearly independent
differentials is then equal to 4M − 1 − e, with e the excess. Then �φ , as defined in eq. (44) is a Lagrangian submanifold of dimension seven,
and the stationary point set, �φ , is of dimension 7 + e (Hörmander 1985a, p. 292). We shall prove here that the excess, e, is zero, i.e. the
phase function is non-degenerate, for M large enough in a sense that we shall clarify.

The structure of the matrix of the components of the differentials d(φ′)θ is shown in Fig. A1. The block matrices with the stars in Fig. A1
are given by−1 − M−1�x3

(
K prin

3

′′)
x1 K1

(
x (l)

µ , ζ̄l , K (l)
ν , ω

) −M−1�x3

(
K prin

3

′′)
x2 K1

(
x (l)

µ , ζ̄l , K (l)
ν , ω

)
−M−1�x3

(
K prin

3

′′)
x1 K2

(
x (l)

µ , ζ̄l , K (l)
ν , ω

) −1 − M−1�x3

(
K prin

3

′′)
x2 K2

(
x (l)

µ , ζ̄l , K (l)
ν , ω

)
.

If we can enforce these blocks to have a dominant diagonal by choosing M large enough, the columns of the matrix in Fig. A1 are then linearly
independent. To this end, it is sufficient to prove that(
K prin

3

′′)
xµ Kν

= ω2 Kν

K prin
3

c−1 ∂c−1

∂xµ

(B1)

is bounded. In the scattering region considered, ∂c−1/∂xµ is bounded, and so is c−1. Also, ω2 K ν/K prin
3 is homogeneous of degree 0 in (ω, K ν)

for K ν and ω large, and bounded for K ν and ω small since we restrict ourselves to an open region on the canonical relation which closure is
away from the ‘turning’ rays, i.e. where K prin

3 ≥ ε1> 0.¶ The second-order derivative (K prin
3

′′
)xµ Kν

is therefore bounded, which completes the
proof.

Remark. The same argument proves that one can globally parametrize the stationary point set, and subsequently the canonical relation,
by (x (M)

1,2 , x3, K (M+1)
1,2 , t , ω) using the implicit function theorem applied to the discrete square-root Hamiltonian system of eq. (43) characterizing

the stationary point set, �φ . Because of this global parametrization of the canonical relation we do not have to explicitly account for caustics,
as needs to be done with asymptotic methods.

¶Such a restriction is accomplished with the help of a cut-off function χ multiplied to the amplitude in eq. (38).
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Figure A1. Matrix of the differentials of (φ′)θ .

A P P E N D I X C : A P P R O X I M A T I O N O F T H E C O T A N G E N T V E C T O R (φ′)X3

O N T H E C A N O N I C A L R E L A T I O N

First, recall that

ζ̄k =
(

k − 1

2

)
M−1(x3 − x ′

3) + x ′
3. (C1)

The partial derivative of the phase function with respect to x3 is then given by

(φ′)x3 = −M−1
M∑

k=1

K prin
3

(
x (k)

µ , ζ̄k, K (k)
ν , ω

) − M−1(x3 − x ′
3)

M∑
k=1

M−1

(
k − 1

2

)(
K prin

3

′)
x3

(
x (k)

µ , ζ̄k, K (k)
ν , ω

)
= −M−1

{
M∑

k=1

K prin
3

(
x (k)

µ , ζ̄k, K (k)
ν , ω

) + (
ζ̄k − x ′

3

)(
K prin

3

′)
x3

(
x (k)

µ , ζ̄k, K (k)
ν , ω

)}
. (C2)

We may interpret the (x3 − x ′
3)(φ′)x3 as a Riemann sum along the bicharacteristic, B, parametrized by ζ (as it is in the present square-root

Hamiltonian system), which gives us the limit as M → ∞:

lim
M→∞

(φ′)x3 = −(x3 − x ′
3)−1

∫
B

[
K prin

3 + (ζ − x ′
3)

(
K prin

3

′)
x3

](
xµ(ζ ), ζ, Kν(ζ ), ω

)
dζ. (C3)

Note that, here, we face two limiting processes: one corresponds to the Riemann sum converging to the integral, the other one to the discrete
bicharacteristics approaching the ‘true’ bicharacteristics.

Now, on the bicharacteristics we have
d

dζ

[
(ζ − x ′

3)K prin
3 (xµ(ζ ), ζ, Kν(ζ ), ω)

] = [
K prin

3 + (ζ − x ′
3)

(
K prin

3

′)
x3

]
(xµ(ζ ), ζ, Kν(ζ ), ω), (C4)

since(
K prin

3

′)
xσ

dxσ

dζ
+ (

K prin
3

′)
Kσ

d Kσ

dζ
= 0 (C5)

(set up the Hamiltonian system for F defined in equations 53–56). We therefore obtain

lim
M→∞

(φ′)x3 = −K prin
3 (xµ(x3), x3, Kν(x3), ω). (C6)
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For M large enough (in the compact region considered) we therefore have the following approximation:

(φ′)x3 � −K prin
3

(
x (M)

µ , ζ̄M , K (M+1)
ν , ω

)
. (C7)

A P P E N D I X D : T H E C O M M O N - A Z I M U T H A P P R O A C H

As a special case of the analysis presented in this paper, let us consider data (the scattered field) that is restricted to h2 = 0 (‘common azimuth’).
After the restriction, we apply the imaging operator with kernel eq. (73) to the data, subject to

him
1,2 = 0, M = 1.

Removing the radiation patterns, for the sake of simplification, we obtain

I1(x1,2, z; y1,2, h1, 0, t ; 0, 0) =
∫

R

(1/2π ) dω
1

16

∫
R4

(1/2π )2 d K (1)
1 d K (1)

2 (1/2π )2 dk(1)
1 dk(1)

2

× exp

[
−i

{
K (1)

σ xσ − K (1)
σ yσ − k(1)

1 h1 +
[

K3

(
xµ, ζ̄1,

1

2

(
K (1)

ν − k(1)
ν

)
, ω

)
+ K3

(
xµ, ζ̄1,

1

2

(
K (1)

ν + k(1)
ν

)
, ω

)]
�x3

}]
exp(iωt). (D1)

We will now integrate out the phase variable k(1)
2 with the aid of the stationary phase. The stationary phase condition follows simply from

eq. (82):(
K prin

3

′)
K2

(
xµ, ζ̄1,

1

2

(
K (1)

ν − k(1)
ν

)
, ω

)
= (

K prin
3

′)
K2

(
xµ, ζ̄1,

1

2

(
K (1)

ν + k(1)
ν

)
, ω

)
, (D2)

which can be rewritten as

K (1)
2 − k(1)

2

K prin
3

(
xµ, ζ̄1,

1
2

(
K (1)

ν − k(1)
ν

)
, ω

) = K (1)
2 + k(1)

2

K prin
3

(
xµ, ζ̄1,

1
2

(
K (1)

ν + k(1)
ν

)
, ω

) . (D3)

On the wavefront set, this equality implies that the slowness (cotangent) vectors associated with the rays from the source and the receiver at
depth ζ̄1 restricted to the (2, 3)-plane must have the same direction.

The solution k̂(1)
2 for k(1)

2 is given by

k̂(1)
2 = K (1)

2

K prin
3

(
xµ, ζ̄1,

1
2

(
K (1)

1 + k(1)
1

)
, 0, ω

) − K prin
3

(
xµ, ζ̄1,

1
2

(
K (1)

1 − k(1)
1

)
, 0, ω

)
K prin

3

(
xµ, ζ̄1,

1
2

(
K (1)

1 + k(1)
1

)
, 0, ω

) + K prin
3

(
xµ, ζ̄1,

1
2

(
K (1)

1 − k(1)
1

)
, 0, ω

) . (D4)

We leave the computation of the Hessian to the reader.
Extending these results to M > 1 invokes the assumption that on the stationary point set,

h(k)
2 = h(0)

2 = h2 = 0 for 2 ≤ k ≤ M − 1,

i.e. h(k)
2 does not change (Biondi & Palacharla 1996). Then the expression between braces in eq. (82) must vanish. This requires that, on the

stationary point set, the relation

k̂(k)
2 = K (k)

2

P (k,−)

P (k,+)
, (D5)

where

P (k,±) = K prin
3

(
y(k)
µ + h(k)

µ , ζ̄k,
1

2

(
K (k)

1 + k(k)
1

)
, 0, ω

)
± K prin

3

(
y(k)
µ − h(k)

µ , ζ̄k,
1

2

(
K (k)

1 − k(k)
1

)
, 0, ω

)
holds. On the wavefront set, this equality implies that the slowness (cotangent) vectors associated with the rays from the source and the
receiver at any depth ζ̄k restricted to the (2, 3)-plane must have the same direction (but jointly could differ from one depth level to another),
see Fig. A2.

An alternative approximation is the offset-plane-wave approach (Mosher et al. 1997). There the assumption is invoked that, on the
stationary point set,

k(k)
1,2 = k(0)

1,2 for 2 ≤ k ≤ M.

Then the expression between braces in eq. (81) must vanish, which is certainly possible in a horizontally layered medium.
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Figure A2. Bicharacteristics satisfying the common azimuth assumption.
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