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Abstract

This paper analyzes the deformational behavior of mutually interacting spherical inclusions in a multiple inclusion system, considering

two physical factors: viscosity ratio between inclusion and matrix (m) and the ratio of inclusion diameter to mean inter-inclusion distance

(a/b). For a given value of m, the strain partitioning between a stiff inclusion and the bulk system (i.e. ratio of their natural extension rates)

increases non-linearly with increasing a/b ratios and the gradient of increase becomes steeper when the inter-inclusion distance is less than

about twice their diameter (i.e. a/b . about 0.5). The strain distribution within a deformed inclusion is homogeneous when the a/b ratio is

less than about 0.6. For larger values of a/b, the internal deformation becomes heterogeneous, with the strain increasing or decreasing

towards the core in the case of stiff (m . 1) and soft (m , 1) inclusions, respectively. The deformed shape of inclusions in section also shows

departure from an ideal ellipse with an increase in the a/b ratio. Stiff inclusions develop shapes similar to that of a super-ellipse in contrast to

soft inclusions that resemble a sub-ellipse. The heterogeneity of internal deformation is also reflected in the distortion of passive foliations

initially at right angles to the bulk extension direction, which become curved with convexity outward and inward, respectively, within stiff

and soft inclusions.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Deformed objects, e.g. pebbles, ooids, are widely used in

the estimation of geological strain of rocks (Ramsay, 1967;

Gay, 1968b; Gay and Fripp, 1976; Lisle et al., 1983;

Ramsay and Huber, 1983; Lisle, 1985; Freeman, 1987;

Ramsay and Lisle, 2000). To be able to determine strain, we

need to know how an inclusion deforms depending upon its

initial shape and its competence contrast with the matrix.

According to theoretical results, isolated inclusions of

ellipsoidal initial shape deform homogeneously, and the

axial ratios of their flattened shapes depend on the ratio of

inclusion and matrix viscosities, in addition to the bulk

strain (Eshelby, 1957; Gay, 1968a; Bilby et al., 1975). In a

recent study Treagus and Treagus (2001) have shown that

the finite strain of ellipsoidal inclusions depends also on

their initial axial ratios. For a given finite bulk strain,

competent inclusions with axial ratios of three or more

undergo more strain than equant inclusions of the same

viscosity, whereas the reverse is true when the inclusions are

incompetent. The deformational behavior of inclusions with

non-ellipsoidal initial shapes is much more complex

(Treagus et al., 1996; Treagus and Lan, 2000; Treagus,

2002). The strain in them is heterogeneous, and their

deformed shapes are remarkably different from those that

would have been developed by an overall homogeneous

strain.

All the studies discussed above deal with isolated

inclusions. In this paper we study the deformational

behavior of mechanically interacting spherical inclusions

in a multiple inclusion system undergoing pure shear. With

the help of Lamb’s (1932) theory we derive the velocity

functions for flow inside and outside an inclusion in their

interacting state (Happel, 1957), and analyze the strain

partitioning between a stiff inclusion and the matrix. The

results are used in two-dimensional numerical models to

show how the concentration of inclusions affects strain
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partitioning, deformed, inclusion shape, and the strain

distribution and distortion patterns of passive foliations in

both stiff and soft inclusions. The numerical simulations are

compared with results of laboratory experiments.

2. Theoretical model

We consider a system of deformable, spherical

inclusions of diameter 2a within a Newtonian viscous

matrix with coherent interfaces (Fig. 1). The inclusions are

uniformly distributed with their centers spaced at an interval

of 2b. The system is subjected to pure shear deformation at a

rate _e . To describe the flow field around an inclusion a

Cartesian coordinate frame is chosen at the center of an

inclusion with the x axis parallel to the bulk extension

direction, y axis along the direction of principal shortening,

and z axis along the direction of no bulk flow (Fig. 1). We

adopt Lamb’s (1932) method of analysis that expresses the

velocity field in terms of solid harmonic functions, and

derive the velocity functions in three dimensions for flow

inside and outside an inclusion in a multiple inclusion

system (details given in Appendix A). In the numerical

analysis, for convenience, we consider the velocity func-

tions on a two-dimensional section perpendicular to the

direction of no bulk strain. The section is chosen at z ¼ 0.

The following analysis deals with the circular cross-section

of the inclusion on that plane. The velocity functions (Eqs.

(A5) and (A6a)–(A6c)) on the z ¼ 0 plane are as follows.
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Velocity components of flow inside the inclusion:
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where r2 ¼ x2 þ y2 and a is the radius of inclusion. K, C2,

A23, B23, A2, B2 are constants, the expressions for which

involve the ratio of inclusion diameter and mean inter-

inclusion distance (a/b) and the viscosity ratio between

inclusion and matrix (m) (Eq. (A19) of Appendix A). The

velocity functions in Eqs. (2a) and (2b) reflect the nature of

deformation of an inclusion in inclusion-matrix systems. In

these equations, A2 becomes nearly zero when the a/b ratio

is extremely low, indicating a homogeneous deformation

inside the inclusion as in the case of a single inclusion

system (cf. Eshelby, 1957; Gay, 1968a). But, A2 becomes a

non-zero quantity for higher values of a/b, implying that the

deformation is heterogeneous when the inclusions are closer

to one another in the system.

We analyzed deformation of an inclusion in two

dimensions using the velocity functions (Eqs. (2a) and

(2b)) by varying the viscosity ratio between inclusion and

matrix (m) and the a/b ratio, which is considered a measure

of concentration of inclusions in the inclusion-matrix

system. The results are presented in the following sections.

3. Deformation of ductile inclusions

3.1. Strain partitioning between stiff inclusions and the bulk

rock

This analysis can be applied to understand the control of

inclusion concentration in a multiple-inclusion system (i.e.

a/b ratio) on strain partitioning between matrix and

inclusion. Differentiating Eq. (A8a) with respect to r and

substituting r ¼ a and u ¼ 0 in the derived equation, we

Fig. 1. (a) Model of the inclusion–matrix system under theoretical

considerations. (b) Consideration of Cartesian and spherical coordinates on

the central section of an inclusion normal to the direction of no bulk flow (z

axis). _e: pure shear rate of bulk deformation. 2a: diameter of inclusions

(shaded) and 2b: average inter-inclusion distance.
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obtain:
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Q ¼ ð19m þ 16Þ:

_e i is the natural rate of stretching of the inclusion diameter

along the bulk extension direction.

Eq. (3) shows that the strain-rate partitioning between a

stiff inclusion and the bulk medium, i.e. _e i= _e , increases non-

linearly with the a/b ratio, and the non-linear variations

depend on the viscosity contrast (m) (Fig. 2). For any m, the

variation of strain partitioning factor ( _e i= _e) with a/b is not

significant when a/b is low, but it becomes significant at a

higher a/b, the value of which increases with increasing m.

Again, the rate of change of the strain partitioning factor

with a/b at high a/b is much greater at higher m than at lower

m (Fig. 2). The mathematical calculations reveal that the

effect of mechanical interaction on the strain partitioning

can be significant when the inter-inclusion distance is low,

generally less than about twice their diameter (cf.

Shimammoto, 1975, see discussion in Treagus et al.,

1996; Treagus and Treagus, 2001).

In order to compare the effect of inter-inclusion distance

on the strain partitioning with that of viscosity contrast, we

consider a system with inclusions at a very low volume

concentration (a/b , 0.05). In this case, the ratio of strain

rates of inclusion and bulk system increases from 0.04 to 0.4

as the viscosity ratio (m) decreases from 40 to 5. On the

other hand, for m ¼ 40, the strain ratio increases to nearly

0.8 as the a/b ratio is increased up to 0.9. This implies that

the concentration of inclusions influences the strain

partitioning relatively more than the viscosity contrast.

3.2. Shapes of deformed inclusions

Using Eqs. (2a) and (2b) and a simple computer program

on Visual Basic we performed numerical simulations to

study the nature of shape changes during deformation of an

inclusion in an interacting system. These reveal that the

deformed shapes of inclusions stiffer than the matrix

(m . 1) show elliptical geometry at low values of a/b

ratio (,0.5), as in the case of isolated inclusions (Gay,

1968a). With increase in inclusion concentration, the

deformed shapes depart from an ideal ellipse, and tend to

assume the geometry of a super-ellipse (Fig. 3; cf. Lisle,

1988). Again, for a given a/b ratio the departure of the

deformed shapes from elliptical geometry becomes more

pronounced with increasing viscosity contrast (m) (Fig. 3).

In contrast to stiff inclusions, inclusions softer than the

matrix (m , 1) develop deformed shapes resembling a sub-

ellipse for large values of a/b (Fig. 4), as noticed in naturally

deformed inclusions (fig. 7.3, Ramsay and Huber, 1983; fig.

39.20, Ramsay and Lisle, 2000). Such non-ideal geometry is

more obvious with a decrease in viscosity ratio m (Fig. 4).

However, for low concentrations of inclusions (a/b , 0.5)

the deformed shapes show little departure from an ideal

elliptical geometry with changing viscosity ratio m.

In summary, circular cross-sections of inclusions in an

interacting state generally deform into non-ideal elliptical

shapes. The deformed shapes of stiff (m . 1) inclusions

superscribe an ideal ellipse (cf. super-ellipse), whereas

those of soft (m , 1) inclusions inscribe an ideal ellipse

Fig. 2. Calculated plots of the ratio of natural extension rates of stiff inclusions to that of the bulk system as a function of a/b ratios for different viscosity ratios

m.
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Fig. 3. Deformed shapes of stiff (m . 1) circular inclusions in numerical models. a/b: ratio of inclusion diameter to inter-inclusion distance; m: viscosity ratio between inclusion and matrix. Thin solid lines show

the shape of corresponding ideal ellipses. Finite strain of models ¼ 0.4.
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Fig. 4. Deformed shapes of soft (m , 1) inclusions in numerical models. Thin solid lines show the shape of the corresponding ideal ellipse. Finite strain of models ¼ 0.4.
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(cf. sub-ellipse). Inclusions occurring in low concentrations

(a/b , 0.5) deform into ideal elliptical shapes, irrespective

of the viscosity contrast between the inclusion and matrix.

3.3. Strain distribution inside deformed inclusions

Using the numerical models, we studied the pattern of

strain distribution in an inclusion containing circular strain

markers, arranged in a Cartesian grid inside the inclusion. A

set of experiments was run on models with stiff inclusions

(m . 1) under varying a/b ratios, keeping the viscosity

contrast constant. The strain distribution is virtually

homogeneous when a/b , 0.5, but shows discernible

heterogeneity at larger values of a/b, showing increasing

finite strain towards the core of the inclusion compared with

the periphery (Fig. 5a).

The nature of strain heterogeneity in inclusions with

m , 1 is strikingly different from that in inclusions with

m . 1. In this case the finite strain increases from the center

to the periphery of the inclusion. At a large value of a/b ratio

( ¼ 0.9) the deformed inclusions show localization of high

finite strain at the tapered ends of the flattened inclusion, and

relatively low strain at the center of the inclusion (Fig. 5b).

3.4. Distortion patterns of passive markers inside inclusions

The heterogeneous deformation of inclusions is reflected

in the distortion pattern of internal passive foliations

initially perpendicular to the bulk extension direction.

Within stiff inclusions (m . 1), the markers remain straight

when the viscosity ratio is low and the concentration of

inclusions is not large (a/b , 0.5). In other conditions, the

deformed markers become curved, with the convex side

facing the bulk extension direction (Fig. 6a). When the

inclusions are softer than the matrix (i.e. m , 1), passive

markers also develop curved shapes. But, the sense of

curvature is opposite to that within stiff inclusions (Fig. 6b).

4. Test model verification of the theoretical results

Experiments were conducted on physical models con-

taining a number of deformable inclusions hosted in a

viscous matrix of putty. The inclusions were either stiffer or

softer than the matrix. Commercial plasticine was used to

simulate stiff inclusions and the viscosity ratio of plasticine

and putty was estimated to be about four. We prepared soft

inclusions with a mixture of wheel-bearing grease and talc

powder in a 1:1 volume ratio, which gave a viscosity ratio of

Fig. 5. Heterogeneous strain distributions inside (a) stiff (m . 1) and (b) soft (m , 1) inclusions in numerical models. Finite strain of models ¼ 0.3.
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inclusion to matrix of about 0.2. Test models were prepared

in the following way. A number of circular, platy inclusions

were embedded in a rectangular slab of putty (Fig. 7), with

their circular sections exposed to the surface of the model.

Experiments reveal the effect of mechanical interaction

on the degree of flattening of the inclusions. The initial

model had an inclusion surrounded by a number of closely

spaced neighbors. A similar inclusion was kept at a large

distance from them to obtain the finite strain of inclusions in

a non-interacting state and to compare it with those in the

multiple association. It was observed that the central

inclusion in the multiple association underwent flattening

larger than the far-field inclusion (Fig. 8a). The observation

agrees with the theoretical inference that the stretching rate

of an inclusion is larger for smaller inter-inclusion distance

(Fig. 2). For example, the axial ratio of the deformed far-

field inclusion was 1.1, whereas the axial ratio of the central

inclusion was 1.3, for a bulk strain ellipse with axial ratio of

2.25. Experimental results thus indicate that in addition to

the viscosity contrast (Gay, 1968a; Lisle et al., 1983;

Treagus et al., 1996), the concentration of inclusions in the

system is another crucial parameter controlling the magni-

tude of flattening of stiff inclusions.

Model experiments also confirmed the theoretical result

that the circular cross-section of an inclusion in an

interacting state deforms into a shape departing from that

of an ellipse. It was observed that the deformed shape of a

stiff inclusion in multiple inclusion system was like a super-

ellipse, whereas that of a soft inclusion was like a sub-

ellipse (Fig. 8b and c).

Similar experiments on inclusions containing circular or

line markers show that the deformation inside inclusions in

an interacting state is heterogeneous (Fig. 9a), as obtained in

the numerical models (Fig. 5a). Within stiff inclusions, the

axial ratio of strain ellipses increases inward, defining a

zone of high finite strain in the central part of the inclusion.

The heterogeneous deformation also led to curved distortion

patterns of passive foliation markers within the inclusions

(Fig. 9b), which conforms to those obtained from numerical

simulations (Fig. 6a). The deformation inside inclusions

softer than the matrix is also heterogeneous, which is

reflected in the inwardly convex distortion patterns of

markers initially at right angles to the bulk extension

direction (Fig. 9c), as in the numerical simulations (Fig. 6b).

5. Discussion

The deformed shapes of inclusions are often used for

estimation of bulk strain. In order to do this, we need to

consider the strain partitioning between the inclusion and

bulk system. Earlier theoretical results show that this

depends mainly on the viscosity contrast between inclusion

and matrix (Gay, 1968a; Bilby et al., 1975). Our analysis

suggests that, for the same viscosity contrast, variations in

concentration of inclusions can result in a significant change

in the ratio of strain rates of inclusion and the bulk rock. It

thus appears that in the use of deformed inclusions for strain

analysis their volume concentration needs to be taken into

account if they occur in large concentration. It may be noted

Fig. 6. Distortion patterns of internal markers at right angles to the bulk

extension direction within (a) stiff and (b) soft inclusions. a/b ¼ 0.9. Finite

strain of models ¼ 0.3.

Fig. 7. Schematic sketch of the experimental setup for deformation of models containing ductile inclusions (shaded) embedded in a putty block. The model was

deformed under approximate pure shear by moving two vertical rigid bars towards each other (arrows). The flow of the model took place in the horizontal

directions, and was restricted in the vertical direction by a horizontal glass plate at the top.
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that the strain-partitioning ratio in this analysis has been

derived considering a spherical initial shape of the

inclusion, although for a given viscosity contrast the strain

of stiff inclusions increases with increasing initial axial ratio

of elliptical inclusions (Treagus and Treagus, 2001). It thus

seems that the ratio of strain rates between inclusion and

bulk rock may not remain constant, but is likely to increase

as the shape of inclusion departs more and more from a

sphere with progressive deformation (Smith, 1975).

Analytical solutions for the flow inside an inclusion show

that the deformation within interacting inclusions is

heterogeneous, which we also demonstrated in two-dimen-

sional numerical models (ZX plane of bulk strain),

representing the central section at right angles to the

direction of no bulk strain. The same solutions can be

Fig. 8. (a) Contrasting flattening of inclusions occurring in multiple

association and that away from them under the same bulk deformation.

Note that the isolated inclusion has flattened less than the central one

occurring in multiple inclusions. Deformed shapes of inclusions (b) stiffer

(m < 4) and (c) softer (m < 0.2) than the matrix in test models. The

inclusions in the models were initially circular in cross-section, and had

more or less similar relative dispositions with a/b < 0.7. Length of the

photo-plate (b) is 3.8 cm.

Fig. 9. (a) Heterogeneous strain distributions inside deformed stiff

inclusions in test models. Note that the finite strain decreases radially

away from the center of inclusions. (b) Deformed models showing outward-

convex distortion patterns of passive markers, initially perpendicular to the

bulk extension direction within flattened inclusions. (c) Heterogeneous

deformation of inclusions softer than the matrix, as reflected from curved

distortion patterns of internal passive markers, initially at right angles to the

bulk extension direction.
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utilized to study the nature of heterogeneous deformation on

any section parallel to the XY and YZ planes of bulk finite

strain. We compare the results obtained from these two-

dimensional simulations with that observed in physical

model experiments, assuming that a thin circular inclusion

might be a representative of the central section across a

spherical inclusion at a right angle to the direction of no bulk

strain. However, the deformation patterns on any other

section are likely to be different from those observed in

laboratory experiments presented here.

We have applied a relatively large amount of bulk strain

in numerical models to show the nature of deformed shapes

of inclusions in an interacting state. On the other hand, the

solutions that are used for the numerical simulations have

been obtained by imposing boundary conditions on

spherical surfaces around the inclusion, which is valid

only for small amounts of bulk strain. We make this

departure intentionally to exaggerate the deformed geome-

try to show qualitatively the non-ideal shape of the

inclusion.

In the two-dimensional consideration of numerical

simulations we have used the ratio of inclusion diameter

to inter-inclusion distance (a/b) as a parameter representing

the effect of concentration. It is evident that the inter-

inclusion distance (b) is related to the volume proportion of

inclusions in the system. In the case of three-dimensional

analysis, an equivalent parameter, (a/b)3 can be considered

as a measure of their volume concentration (Happel, 1957).

However, the mathematical entity of this parameter is

different from that of volume fraction, which is also a

measure of volume concentration used in different analyses

(e.g. Mandal et al., 2000; Treagus, 2002). The maximum

value of (a/b)3 can be one for systems with inclusions in

contact with one another, whereas that of volume fraction

cannot exceed 0.74.

6. Conclusions

The main conclusions of this analysis are outlined along

the following points. (1) Spherical inclusions in multi-

inclusion systems deform heterogeneously, and the princi-

pal parameters that control the deformation of the inclusions

are: viscosity ratio of inclusion and matrix and concen-

tration of inclusions. (2) For a given viscosity contrast, the

ratio of flattening rate of stiff inclusions to that of the bulk

system is larger for a larger concentration of inclusion. This

factor needs to be considered for strain analysis of deformed

rocks. (3) Circular sections of stiff inclusions are deformed

into shapes resembling the geometry of super-ellipses,

whereas those of soft inclusions develop geometry similar to

sub-ellipses. (4) Stiff inclusions show increasing finite strain

towards the center of inclusion. In contrast, soft inclusions

describe a low-strain zone at the center. (5) Within

inclusions, passive markers at right angles to bulk extension

direction are distorted into curved shapes with the convex

side facing outward in the case of stiff inclusion and inward

in the case of soft inclusions.
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Appendix A

Considering an irrotational type of bulk flow, the general

expressions of the velocity fields inside and outside a

spherical inclusion, after Lamb (1932), can be represented

by:

u ¼
1

h

X r2

2ð2n þ 1Þ

›pn

›x
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X ›Fn

›z
ðA1cÞ

where pn is a solid harmonic function of degree n for

pressure distribution in the field. Fn is another solid

harmonic function of degree n. h is the co-efficient of

viscosity of the medium under consideration. For the

present purpose the expressions of these two functions are

considered retaining the harmonics of orders 23 and þ2

(cf. Taylor, 1932; Happel, 1957; Gay, 1968a) for description
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of the flow outside the inclusion. It then follows that:

F2 ¼
1

4
K x2 2 y2
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x2 2 y2
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r5
;

p2hmC2a22 x2
2 y2
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; p23hmA23a3 x2 2 y2

� �
r5

ðA2Þ

hm is the co-efficient of viscosity of the matrix. Similarly, in

order to describe the flow inside the inclusion the

expressions of the functions can be chosen retaining

harmonics of order 2 as:

F0
2 ¼ B2 x2 2 y2

� �
; p0

2 ¼ hiA2a22 x2 2 y2
� �

ðA3Þ

hi is the co-efficient of viscosity of the inclusion. In Eqs.

(A2) and (A3), K, B23, C2, A23, B2 and A2 are constants,

which need to be determined by applying boundary

conditions.

Substituting the expressions of pn and Fn in Eqs. (A1a)–

(A1c), one can have the components of the flow perturbation

outside the inclusion:
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The entire flow around the inclusion is then obtained by

adding the perturbation to the homogeneous pure shear flow

as:

u ¼ up þ _ex; v ¼ vp 2 _ey;w ¼ wp ðA5Þ

Similarly, substituting the expressions of f0
n and p0

n in Eqs.

(A1a)–(A1c), the velocity components of flow inside the

inclusion follow:

u0 ¼
A2

21

r2

a2
5 2 2

x2 2 y2

r2

 !
x þ 2B2x ðA6aÞ

v0 ¼
A2

21

r2

a2
25 2 2

x2 2 y2

r2

 !
y 2 2B2y ðA6bÞ

w0 ¼ 2
2A2

21

r2

a2

x2 2 y2

r2

 !
z ðA6cÞ

In order to determine the constants, for convenience, the

velocity functions in Eq. (A5) are transformed in terms of

spherical coordinates (Fig. A1), as:

vpr ¼
1

2
K þ

1

7
C2

r2

a2
þ

1

2
A23

a3

r3
2 3B23

a5

r5

" #

rðcos2u2 sin2ucos2fÞ

ðA7aÞ

vpu ¼ 2
1

2
K þ

5

21
C2

r2

a2
þ 2B23

a5

r5

" #

rsinucosuð1 þ cos2fÞ

ðA7bÞ

vpf ¼
1

2
K þ

5

21
C2

r2

a2
þ 2B23

a5

r5

" #
rsinfcosfsinu ðA7cÞ

Similarly, after writing the velocity functions for flow inside

the inclusion (Eqs. (A6a)–(A6c)) in terms of spherical

coordinates, we have:

v0r ¼
A2

7

r2

a2
þ 2B2

" #
rðcos2u2 sin2ucos2fÞ ðA8aÞ

v0u ¼ 2
5

21
A2

r2

a2
þ 2B2

" #
rsinucosuð1 þ cos2fÞ ðA8bÞ

v0f ¼
5

21
A2

r2

a2
þ 2B2

" #
rsinfcosfsinu ðA8cÞ

Eqs. (A7a) – (A7c) and (A8a) – (A8c) contain six

unknown constants, which can be determined with the

help of the following boundary conditions. As our model

considers a non-slip condition at the matrix–inclusions

interface, the conditions of continuity of the velocity and

Fig. A1. Consideration of spherical co-ordinates with origin at the center of

an inclusion.
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stress fields across the interface (r ¼ a) are imposed:

vr ¼ v0r; vu ¼ v0u; vf ¼ v0f ðA9Þ

sru ¼ s0
ru; srf ¼ s0

rf; srr ¼ s0
rr ðA10Þ

where

sru ¼ hm

1

r

›vr

›u
þ

›vu
›r

2
vu
r

� �
;

s0
ru ¼ hi

1

r

›v0r
›u

þ
›v0u
›r

2
v0u
r

� �
;

sru ¼ hm

1

rsinu

›vr

›f
þ

›vf

›r
2

vf

r

� �
;

s0
rf ¼ hi

1

rsinu

›v0r
›f

þ
›v0f

›r
2

v0f

r

" #
;

srr ¼ 2p þ 2hm

›vr

›r

� �
;

s0
rr ¼ 2p0 þ 2hi

›v0r
›r

� �

After substituting the velocity components from Eqs.

(A7a)–(A7c) and (A8a)–(A8c) in the above conditions

(Eqs. (A9) and (A10)), the following equations are obtained:

A2

7
þ 2B2 ¼ _e þ

1

2
K þ

1

7
C2 þ

1

3
A23 2 3B23 ðA11Þ

5

21
A2 þ 2B2 ¼ _e þ

1

2
K þ

5

21
C2 þ 2B23 ðA12Þ

hm 22 _e 2 K 2
16

21
C2 2 A23 þ 16B23

� �

¼ hi 2
16

21
A2 2 4B2

� �
ðA13Þ

hm 2 _e þ K 2
1

7
C2 2 3A23 þ 24B23

� �

¼ hi 2
1

7
A2 þ 4B2

� �
ðA14Þ

Now, in order to describe the interacting state of the

inclusion in the system we follow Happel’s (1957) model

that considers a spherical envelope of radius b around the

inclusion (b is the average inter-inclusion distance), and

imposes the conditions of no normal flow and vanishing

stress tensor components at the boundary of the envelope. It

then follows that at r ¼ b:

vpr ¼ 0 ðA15Þ

sp
ru ¼ hm

1

r

›vpr
›u

þ
›vpu
›r

2
vpu
r

� �
r¼b

¼ 0 ðA16aÞ

sp
rf ¼ hm

1

rsinu

›vpr
›f

þ
›vpf

›r
2

vpf

r

" #
r¼b

¼ 0 ðA16bÞ

From the above conditions, we have:

1

2
K þ

1

7
C2

b2

a2
þ

1

2
A23

a3

b3
2 3B23

a5

b5
¼ 0 ðA17Þ

K þ
16

21
C2

b2

a2
þ A23

a3

b3
2 16B23

a5

b5
¼ 0 ðA18Þ

We now have six independent equations (Eqs. (A12)–

(A14), (A17) and (A18)), relating the constants in the

velocity functions. Following the conventional algebraic

method, the solutions of the constants are:

A23 ¼ 2 _e
m 2 1

LJ þ I
;

B23 ¼
2

21
_e

b7

a7

m 2 1

LJ þ I
L;

C2 ¼ 2 _e
m 2 1

LJ þ I
L;

K ¼ 2 _e
a3

b3

m 2 1

LJ þ I
;

A2 ¼ 2 _e 1 þ
5

2

b7

a7

 !
L 2

21

4

" #
m 2 1

LJ þ I
;

B2 ¼
1

2
_e 1 þ

m 2 1

LJ þ I

� �
5

2
2

a3

b3
2

b7

a7
L

 !" #
ðA19Þ

where

I ¼ 1 þ
3

2
m þ m 2 1ð Þ

a3

b3
;

J ¼
16

21
ð1 2 mÞ2

b7

a7
ðm þ 1Þ

( )
2

1

7

b7

a7
m

" #
;

L ¼

21 4 þ
19

4
m

� �

19 m 2 1ð Þ þ
1

2

b7

a7
80 þ 95mð Þ

" #

m is the viscosity ratio of inclusion and matrix.

References

Bilby, B.A., Eshelby, J.D., Kundu, A.K., 1975. The change of shape of a

viscous ellipsoidal region embedded in a slowly deforming matrix

having different viscosity. Tectonophysics 28, 265–274.

Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal

inclusion, and related problems. Proceedings of the Royal Society of

London A241, 376–396.

Freeman, B., 1987. The behaviour of deformable ellipsoidal particles in

three-dimensional slow flows: implications for geological strain

analysis. Tectonophysics 132, 297–309.

Gay, N.C., 1968a. Pure shear and simple shear deformation of

inhomogeneous viscous fluids—I. Theory. Tectonophysics 5, 211–234.

Gay, N.C., 1968b. Pure shear and simple shear deformation of

inhomogeneous viscous fluids—II. The determination of the total finite

strain in a rock from objects such as deformed pebbles. Tectonophysics

5, 292–302.

N. Mandal et al. / Journal of Structural Geology 25 (2003) 1359–1370 1369



Gay, N.C., Fripp, R.E.P., 1976. The control of ductility on the deformation

of pebbles and conglomarates. Philosophical Transactions Royal

Society 283, 109–128.

Happel, J., 1957. Viscosity of suspensions of uniform spheres. Journal of

Applied Physics 28, 1288–1292.

Lamb, H., 1932. Hydrodynamics, Cambridge University Press, Cambridge.

Lisle, R.J., 1985. Geological Strain Analysis. A Manual for Rf =f

Technique, Pergamon Press, Oxford.

Lisle, R.J., 1988. The superellipsoidal form of coarse clastic sediment

particles. Mathematical Geology 20, 879–890.

Lisle, R.J., Rondeel, H.E., Doorn, D., Brugge, J., Van de Gaag, P., 1983.

Estimation of viscosity contrast and finite strain from deformed

elliptical inclusions. Journal of Structural Geology 5, 603–609.

Mandal, N., Chakraborty, C., Samanta, S.K., 2000. An analysis of

anisotropy of rocks containing shape fabrics of rigid inclusions. Journal

of Structural Geology 22, 831–839.

Ramsay, J.G., 1967. Folding and Fracturing of Rocks, McGraw-Hill, New

York.

Ramsay, J.G., Huber, M.I., 1983. The Techniques of Modern Structural

Geology. Vol. 1. Strain Analysis, Academic Press, London.

Ramsay, J.G., Lisle, R., 2000. The Techniques of Modern Structural

Geology. Vol. 3. Applications of Continuum Mechanics in Structural

Geology, Academic Press, London.

Shimammoto, T., 1975. The finite element analysis of the deformation of a

viscous spherical body embedded in a viscous medium. Journal of the

Geological Society of Japan 81, 255–267.

Smith, R.B., 1975. A unified theory of the onset of folding, boudinage and

mullion structures. Geological Society of America Bulletin 86,

1601–1609.

Taylor, G.I., 1932. The viscosity of a fluid containing small drops of

another fluid. Proceedings of Royal Society London A 138, 41–48.

Treagus, S.H., 2002. Modelling the bulk viscosity of two-phase mixtures in

terms of clast shape. Journal of Structural Geology 24, 57–76.

Treagus, S.H., Lan, L., 2000. Pure shear deformation of square objects and

applications to geological strain analysis. Journal of Structural Geology

22, 105–122.

Treagus, S.H., Treagus, J.E., 2001. Effects of object ellipticity on strain, and

implications for clast-matrix rocks. Journal of Structural Geology 23,

601–608.

Treagus, S.H., Hudleston, P.J., Lan, L., 1996. Non-ellipsoidal inclusions as

geological strain markers and competence indicators. Journal of

Structural Geology 18, 1167–1172.

N. Mandal et al. / Journal of Structural Geology 25 (2003) 1359–13701370


	Deformation of ductile inclusions in a multiple inclusion system in pure shear
	Introduction
	Theoretical model
	Deformation of ductile inclusions
	Strain partitioning between stiff inclusions and the bulk rock
	Shapes of deformed inclusions
	Strain distribution inside deformed inclusions
	Distortion patterns of passive markers inside inclusions

	Test model verification of the theoretical results
	Discussion
	Conclusions
	Acknowledgements
	References


