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Abstract

This paper presents the extension of the self-calibrating method to the coupled inverse modelling of groundwater flow and

mass transport. The method generates equally likely solutions to the inverse problem that display the variability as observed in

the field and are not affected by a linearisation of the state equations. Conditioning to the state variables is measured by an

objective function including, among others, the mismatch between the simulated and measured concentrations. Conditioning is

achieved by minimising the objective function by gradient-based methods. The gradient contains the partial derivatives of the

objective function with respect to: log conductivities, log storativities, prescribed heads at boundaries, retardation coefficients

and mass sources. The derivatives of the objective function with respect to log conductivity are the most cumbersome and need

the most CPU-time to be evaluated. For this reason, to compute this derivative only advective transport is considered. The

gradient is calculated by the adjoint-state method. The method is demonstrated in a controlled, synthetic study, in which the

worth of concentration data is analysed. It is shown that concentration data are essential to improve transport predictions and

also help to improve aquifer characterisation and flow predictions, especially in the upstream part of the aquifer, even in the case

that a considerable amount of other experimental data like conductivities and heads are available. Besides, conditioning to

concentration data reduces the ensemble variances of estimated transmissivity, hydraulic head and concentration.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Flow and transport predictions are always uncer-

tain due to an imperfect knowledge of the aquifer

properties. It is of crucial importance in practical

applications to reduce the uncertainty of these

predictions. The conditioning to measurement data

by inverse modelling algorithms offers means to

reduce prediction uncertainty. A large number of

inverse modelling techniques is available in the

literature (e.g. Kitanidis and Vomvoris, 1983;

Dagan, 1985; Carrera and Neuman, 1986a,b,c;

Sahuquillo et al., 1992; RamaRao et al., 1995; Oliver

et al., 1997; Hanna and Yeh, 1998; Hu, 2000).

However, the conditioning to concentration ðcÞ data is

less widely studied, in spite of the fact that c data, for

example from controlled tracer tests, may give
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important information on spatially variable aquifer

properties like hydraulic conductivities ðKÞ:

Graham and McLaughlin (1989a,b) condition to

concentration measurements by propagating and

updating conditional concentration ensemble

moments. In their approach, heterogeneous transmis-

sivity is the only source of uncertainty and modelled

as a, possibly non-stationary, random space function.

First, a methodology is presented to calculate the

temporal evolution of non-conditional ensemble

concentration moments, in combination with a

numerical method to solve the moment propagation

equations (Graham and McLaughlin, 1989a). Next,

the formulation is extended for conditional concen-

tration ensemble moments. The concentration ensem-

ble moments are updated by the Kalman filter

approach at times that new concentration measure-

ments become available (Graham and McLaughlin,

1989b). The methodology does not allow the updating

of the heterogeneous transmissivity field, the source

of uncertainty. Other limitations are the restriction to

moderately heterogeneous transmissivity fields and

the CPU-intensivity of the method. Rubin (1991a,b)

derives, in two papers, an approach that allows the

conditioning of concentration ensemble moments on

hydraulic head, conductivity, velocity and concen-

tration measurements. Concentration residuals (devi-

ations between predicted concentrations and

measured concentrations) are interpolated in space

and time by cokriging so that at each location and time

an expected deviation is obtained. The covariances of

the time–space concentration field are obtained from

tracking a sufficiently large number of particles

through a velocity field that may be conditioned to

conductivity, head and velocity data. The approach of

Rubin is also limited to moderately heterogeneous

transmissivity fields and does not update the trans-

missivity field. Medina and Carrera (1996) solve the

fully coupled inverse problem and their methodology

allows the estimation (updating) of many flow and

transport parameters. The methodology is an exten-

sion of the zonation approach of Carrera and Neuman

(1986a,b,c). The approach does not have the limi-

tations of the previous methods, and its main

disadvantage is the limitation in representing hetero-

geneity by the number of zones in which the aquifer

has to be partitioned, a number that cannot be too

large to avoid unstable solutions. Some applications

of the methodology of Medina and Carrera can be

found in Medina (1993), Wagner (1992), Iribar et al.

(1997), Sonnenborg et al. (1996) and Mayer and

Huang (1999).

None of the previous studies generates multiple

equally likely aquifer models as solution to the fully

coupled inverse problem. In this paper an extension of

the self-calibrating method is presented that generates

multiple equally likely aquifer models, all of them

consistent with the experimental information that may

consist of K data, indirect information on K;

storativity coefficient ðSÞ data, hydraulic head ðhÞ

data (steady and/or transient), c data and data on

retardation coefficients ðRÞ: The parameters that can

be generated are spatially variable K; spatially

variable S; prescribed boundary heads, mass injection

and/or extraction and spatially variable R: The method

is not restricted to a small variance of K; and since it

provides multiple realisations for all parameters and

state variables, local probability distribution functions

are obtained.

This paper presents the extension of the self-

calibration method to the coupled inverse modelling

of flow and transport. Previously, the method was

developed for the inverse modelling of 2D steady-

state flow (Sahuquillo et al., 1992; Gómez-Hernández

et al., 1997; Capilla et al., 1997), 2D transient flow

(Hendricks Franssen et al., 1999) and 3D flow in

fractured media (Hendricks Franssen and Gómez-

Hernández, 2002).

This paper consists of two main parts. In the first

part the methodology is presented. In the second part a

synthetic study is discussed that illustrates the

methodology and investigates the worth of concen-

tration data.

2. Theory

Saturated constant-density groundwater flow in a

fully confined aquifer is considered

7·K7h ¼ S
›h

›t
þ W

where K is hydraulic conductivity tensor, S is

storativity, W represents sinks and sources, h is

hydraulic head and t is time.
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The following equation for the transport of solutes

is considered

1

R
7·ðfD·7c 2 fvcÞ ¼ f

›c

›t
þ q

where R is the retardation coefficient, f is the aquifer

porosity, D is the hydrodynamic dispersion tensor, c is

the mass concentration, v is the pore velocity vector

and q are mass sinks and sources.

The spatially variable K is modelled by a multi-

Gaussian Random Stochastic Field (RSF) and also S

and R may be modelled as RSF. Conditioning data

may be available for the following parameters and

state variables: K; S; R (also indirect or soft

information on these parameters could be used), h

(steady and/or transient) and c: The outcome sought is

the generation of a large number of realisations of the

spatially variable parameters (mainly K; but also

possibly other parameters like S; R; boundary

conditions and mass source information) that are all

conditioned to the available data.

2.1. Conditioning to K; S and R

The first step in the conditioning is to generate a

field Y ¼ log10K; and possibly also Z ¼ log10S (in

case of transient groundwater flow) and R (in case of

linear reactive transport) conditional to Y ; Z and R

data. This is achieved by geostatistical simulation,

like, for instance, MultiGaussian sequential co-

simulation (Gómez-Hernández and Journel, 1993).

A variogram function has to be specified for each of

the three parameters and in case there is an evidence

for cross-correlation, also cross-variograms between

parameters have to be specified. Conditioning to soft

information of K; S or R could be done by sequential

indicator simulation (Gómez-Hernández and Srivas-

tava, 1990). The generated realisations of the RSF’s

display spatial variability as observed in the field and

modelled by the variograms.

2.2. Solving groundwater flow and mass transport

The groundwater flow and the mass transport

equation are solved for each of the generated sets of

Y ; Z and R: A block-centred finite difference

approach is used to solve the equations numerically.

Boundary and initial conditions have to be specified,

together with information on water injection

(recharge) or extraction (pumping), the contaminant

concentration of the water injected and the dispersiv-

ity coefficients. After solving the state equations, the

simulated h and c are compared with the measured

values at the same locations and times.

The following objective function is defined that

measures the mismatch between simulated and

measured head and concentration values

J¼
XNt

t¼1

XNh

i¼1

jitðh
SIM
i;t 2hMEAS

i;t Þ2þc
XNTC

t¼1

XNC

i¼1

zitðc
SIM
i;t 2cMEAS

i;t Þ2

where the first term corresponds to the head

discrepancies at the different time steps (if only

steady-state flow is simulated this corresponds to the

first and only time step) and the second term to the

discrepancies between measured and simulated con-

centrations. Additional terms that penalise the differ-

ences between initial parameter values and updated

parameter values can be included, but were set to zero

in the study that is presented in this paper. Nh is the

number of head measurement locations, Nt the

number of time steps with head measurements, hi;t

the heads, NC is the number of concentration

measurement locations, NTC the number of time

steps with concentration measurements, ci;t the

concentrations and the superscripts SIM and MEAS

refer to ‘simulated’ and ‘measured’, respectively. The

weights jit and zit are chosen inverse-proportional to

the average estimated measurement errors. The value

of the trade-off coefficient c should be chosen

considering which type of data is more important to

reproduce and their overall variability within the area

of study.

The objective function J is minimised in order to

achieve a satisfactory reproduction of the head and

concentration data. When J reaches a value below a

user-defined one, it is considered that the head and

concentration data are reproduced sufficiently close.

The minimisation process is also terminated in case

the number of iterations exceeds a user-specified

maximum number of iterations or in case the

objective function reduction is very small during at

least 10 succesive iterations. It is possible that the

optimisation finds a local minimum, but in case of a

sufficient close reproduction of the measurement data

this is not considered a problem. Nevertheless,
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the implementation of faster converging optimisation

algorithms that are less sensitive to local minima is

subject to future research.

2.3. Minimisation of the objective function

If J is not sufficiently low, a gradient-based

minimisation process is started. The gradient of the

objective function with respect to those parameters

deemed most relevant to the flow and transport

processes is calculated. These parameters include

the log conductivity (or log transmissivity) and

possibly prescribed boundary heads, storativity coef-

ficients, retardation coefficients and mass sinks and

sources. Since these parameters are spatially variable

and display a spatial correlation, the gradient is not

computed with respect to the parameter values at each

discretisation cell, but only at each of the so-called

master blocks, imposing that the parameter variations

in between master blocks can be obtained by

interpolating the master blocks variations. The master

blocks can also be seen as a way to simplify the

parameterisation of the perturbation applied to

the seed parameter field(s) in order to minimise the

objective function. The number of master blocks is

always much smaller than the total number of cells,

and they are overlaid on a regular grid. The

interpolation in between master block locations is

carried out by ordinary kriging (or cokriging if several

parameter fields are modified simultaneously). In case

for example only log hydraulic conductivity is

perturbed the hydraulic conductivity at a grid cell is

updated applying the following formula

DYij ¼
XNP

k¼1

lk
ijDYk

where NP is the number of master blocks, DYk the log

conductivity perturbations at the master blocks, lk
ij the

kriging weights for the interpolation of the pertur-

bation at location ij from the master location

perturbations. The calculated kriging weights are

based on an interpolation using a variogram that is

equal to the initially specified variogram.

The determination of the optimal perturbations

DYk is not straightforward. Since the objective

function includes the state variables, and these depend

in a complex way, through the flow and transport

equations, on the parameters, determining the gradient

of the objective function with respect to the parameter

perturbations at master locations is cumbersome. The

details in determining this gradient can be found in

Gómez-Hernández et al. (1997), for the parameters

related to the flow equation, and in Hendricks

Franssen (2001) for the parameters related to the

transport equation. In both cases, adjoint state

formulations can alleviate the computations. The

calculation of the derivatives of the objective function

with respect to the parameters is especially compli-

cated due to the complex relationship between

parameters and state variables, especially concen-

trations with respect to conductivities, since a local

change in conductivity induces a global change in the

spatial distribution of piezometric heads, which in

turn modify the seepage velocities and the elements of

the hydrodynamic dispersion tensor. This complexity

requires that an approximation be made and, for the

purpose of computing the gradient of the objective

function, the coefficients of the dispersion tensor are

considered constant (an approximation that is found to

be adequate in the tests carried out). The above

approximation affects only the computation of the

gradient, and not the computation of the state of the

system, which is always determined solving the full

flow and transport equations.

Non-linear optimisation algorithms are used to

calculate an updating direction as a function of the

gradient vector; these algorithms include steepest

descent or conjugate gradient. Then, linear search is

carried out to optimise the step size along the updating

direction. Details are given in Hendricks Franssen

et al. (1999) and Hendricks Franssen (2001). The

resulting perturbation fields are added to the fields

from the last iteration and the groundwater flow and

mass transport equations are solved for the new,

updated fields.

3. Synthetic study

The study domain has extension of 500 m by

500 m and is divided in 50 by 50 square grid cells of

10 m in the side.

A reference log transmissivity field is generated

with an average transmissivity of 26.0 log10(m2/s).

The variogram of log transmissivity is spherical with
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a range of 125 m, zero nugget and sill of 0.25

(log10(m2/s))2.

Steady-state groundwater flow is simulated with

prescribed head boundaries on the south and north and

impermeable boundaries on the west and east. The

prescribed head value is 5 m along the southern

boundary and 0 m along the northern boundary. These

prescribed head values force a flow from south to north.

On the southern boundary, a line contamination

source is present. The contaminants are introduced in

the system by a constant concentration of 1.0 unit

(standardised concentration) along a 100 m long

transect centered on the southern boundary. For the

rest of the southern boundary the prescribed

concentration values are equal to zero. On

the northern boundary also prescribed concentrations

equal to zero are imposed. These boundary con-

ditions are justified because during the time of the

transport simulation the northern boundary is far

enough from the contaminant plume. The contami-

nants are subject to hydrodynamic dispersion and do

not show retardation or any chemical reaction. The

longitudinal and transversal dispersion coefficients

are set equal to 10 m. This value is large to avoid

numerical instabilities (Peclet number equal to one).

However, the assumption that the gradient could be

estimated adequately neglecting the partial deriva-

tives of the dispersive part of the transport equation

with respect to the log conductivity perturbations was

still acceptable. The mass transport equation is

Fig. 1. Reference log transmissivity field, steady-state head field and concentration fields for time step 10 and 20.
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solved for time steps of 109 s (31.69 years) until

2 £ 1010 s (633.76 years).

Fig. 1 shows the reference transmissivity, steady-

state hydraulic head, and concentration (at two

different time steps) fields.

3.1. Scenarios studied

One hundred equally likely solutions to the inverse

problem are calculated for eight different scenarios.

The scenarios differ in the kind of conditioning data.

Table 1 illustrates the types of data used in each of the

eight scenarios. In four of the eight scenarios

(scenarios 2, 4, 6 and 8) 20 Y data are used in the

conditioning procedure. The Y data are obtained by

random sampling the reference Y field. Also in four of

the eight scenarios (scenarios 3, 4, 7 and 8) 20 steady-

state head data are used as conditioning information.

The steady-state head data are sampled at the same

locations as the transmissivity data. Finally, in four of

the studied scenarios (scenarios 5, 6, 7 and 8)

concentration data are used in the conditioning

procedure and for these scenarios a coupled inversion

procedure was done. The concentration data are

sampled from the reference concentration field for

the last time step (2 £ 1010 s) at 13 locations along

a monitoring line perpendicular to the mean flow

direction, 100 m from the source. No concentration

data from earlier time steps were used. However, the

method allows to consider time series of concen-

tration measurements and it is expected that time

series of concentration measurements (instead of one

single measurement) would yield a better estimation

of the unknown parameters and a larger uncertainty

reduction. Fig. 2 shows the location of the measure-

ment data.

For the eight different scenarios the aim was to

generate realisations of log transmissivity with pat-

terns of variability similar to those of the reference case

and reproducing the h and c data as close as possible

(no measurement errors are modelled). The Y data are

reproduced exactly by construction of the seed fields

and the restrictions of the self-calibrating algorithm.

This means that at the locations were Y data are

available this measurement is reproduced (in case of no

measurement error), but that at the rest of the grid cells

there is uncertainty with respect to Y : In case that both h

and c data are used as conditioning information it is

necessary to define a trade-off value (the parameterc in

the expression given in Section 2.2) in order to weight

the two pieces of information. It was found that a value

equal to 1.0 yields good results in this study in terms of

reproducing both measured hydraulic head and

concentration data closely. Larger trade-off values

Fig. 2. Sample locations of transmissivity, steady-state piezometric head, and concentration at time step 20.

Table 1

Conditioning data sets used in the different scenarios analysed

20 Y data 20 h data 13 c data

Scenario 1 No No No

Scenario 2 Yes No No

Scenario 3 No Yes No

Scenario 4 Yes Yes No

Scenario 5 No No Yes

Scenario 6 Yes No Yes

Scenario 7 No Yes Yes

Scenario 8 Yes Yes Yes
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Fig. 3. On the left column an unconditional realisation (scenario 1), on the right column a conditional one using the logtransmissivity, steady-

state head and concentration data sets (scenario 8).
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did not result in a sufficiently close reproduction of the

hydraulic head data.

One hundred master blocks are located within the

simulation domain on a square regular grid.

Fig. 3 shows, as an example, a realisation not

conditioned to any information (scenario 1) and a

realisation conditioned to Y ; steady-state h and c data

(scenario 8). The figure illustrates how the realisation

conditioned to all the information is closer to the

reference fields than the unconditional realisation. In

the unconditional realisation the contaminant plume

extends much further than in the reference field.

3.2. Evaluation of results

For each of the eight scenarios, 100 equally likely

realisations are generated by the sequential self-

calibrated method, as outlined in Section 2. Each of

the realisations is compared with the reference fields

and the following performance measures are defined

for each of the scenarios

AAEðXÞ ¼
1

N

XN

i¼1

l �XSIM;i 2 XREF;il

AESDðXÞ ¼
1

N

XN

i¼1

sXi

where AAE is the average absolute error, AESD the

average ensemble standard deviation, N the number of

discretisation grid cells, and i is a grid cell index, X

represents either decimal log transmissivity, steady-

state hydraulic head or mass concentration at a certain

time step, the over bar indicates ensemble average, the

subscript SIM refers to the realisations, and the

subscript REF to the reference values; finally, sXi
is

the ensemble standard deviation of X at a given node.

3.3. Results

Table 2 shows the calculated AAE for log

transmissivity, hydraulic head and concentration for

the eight scenarios. The results are standardised so

that AAE is equal to 100 for the scenario with no

conditioning data. Fig. 4 shows the ensemble

averaged log transmissivity, hydraulic head and

concentration fields for some of the scenarios.

The AAE for log transmissivity, hydraulic head

and concentration are below 100 for all the scenarios

with conditioning data. It indicates that the presence

of conditioning data results in all cases in an improved

characterisation of the transmissivity, hydraulic head

and concentration fields.

3.3.1. Results when a single type of data are used for

conditioning

In this section, scenarios 2, 3 and 5 are analysed,

that is, those scenarios in which only one type of

conditioning data is considered. In all cases, con-

ditioning to a single type of data helps in improving

the characterisation of the three attributes; log

transmissivity, steady-state piezometric head and

concentration although in different ways. When only

transmissivity data are used, the characterisation of

the transmissivity improves (AAEðYÞ-reduction of

8% with respect to the scenario with no conditioning

data, i.e. scenario 1), but also the characterisation of

the steady-state head field (AAEðhÞ-7% reduction)

and it is particularly important the improvement of the

characterisation of the concentration field (AAEðcÞ-

average reduction of 32% over the 20 time steps). It

shows how conditioning to transmissivity data helps

in producing a better description of the seepage

velocities resulting in a noticeable improvement of the

characterisation of the concentrations. Conditioning

to hydraulic head data yields a similar reduction of

AAEðYÞ as before (9%), a much more pronounced

AAEðhÞ reduction (51%) and just a small AAEðcÞ

reduction (an average of 3% over the 20 time steps). It

is not straightforward to explain why head and

Table 2

Standardised average absolute error (scenario 1 ¼ 100) for the log

transmissivity, steady-state head and concentration (averaged over

20 time steps) fields

AAEðYÞ AAEðhÞ AAEðcÞ

Scenario 1 100 100 100

Scenario 2 92 93 68

Scenario 3 91 49 97

Scenario 4 81 34 70

Scenario 5 96(80) 92(54) 54(29)

Scenario 6 91(72) 90(73) 58(17)

Scenario 7 88(74) 52(73) 43(31)

Scenario 8 79(65) 35(55) 37(28)

Bold script indicates conditioning to this type of data. Between

brackets are given the statistics calculated over the upstream part of

the aquifer.
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transmissivity data had such a different impact on the

characterisation of the concentration field in this case,

particularly considering that the improvement of the

characterisation of the head field should result in a

much better description of hydraulic head gradients,

and thus of seepage velocities. Finally, the use of

concentration data only yields the smaller reduction

AAEðYÞ (4%), some AAEðhÞ reduction (8%) and, as

would be expected, a large AAEðcÞ reduction (46%).

The impact of concentration conditioning is more

pronounced if the aquifer is divided in two by

a horizontal line at the level of the monitoring location.

In such case, the values of the AAE computed only on

the upstream zone (the one between the source and the

monitoring line) are much smaller than when com-

puted over the entire aquifer. Indeed, AAEðYÞ shows a

20% reduction with respect to the unconditional case,

AAEðhÞ shows a 46% reduction and AAEðcÞ shows a

71% reduction. This illustrates that the AAEðYÞ and

AAEðhÞ reductions are small for the downstream zone

of the aquifer, but very important for the upstream

zone of the aquifer. This is logical as the concen-

Fig. 4. Ensemble averages of log transmissivity for scenarios 1, 2 and 8; ensemble averages of steady-state head for scenarios 1, 3 and 8;

ensemble averages of concentration at time step 20 for scenarios 1, 4 and 8.
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trations are much more sensitive to groundwater flow

velocities (and thus the transmissivities and hydraulic

heads) in the upstream zone of the aquifer than in the

downstream zone. Finally, the characterisation of the

concentration field improves both for the upstream

zone of the aquifer and the downstream zone, but also

in this case, the improvement is more significant for

the upstream zone.

In the previous discussion the value of AAEðcÞ was

reported on average over the 20 time steps. Fig. 5

shows the temporal evolution of the AAEðcÞ for

scenario 1 (no conditioning data) and the temporal

evolution of the AAEðcÞ for scenario 5 (13 concen-

tration data). From Fig. 5 also the difference between

the previous two values can be deduced, that is, the

reduction on AAEðcÞ with respect to the unconditional

scenario introduced by conditioning to concentration

data only. For the whole aquifer, the AAEðcÞ increases

throughout the simulation time and reaches its

maximum at the last simulation time step (time step

20). This is the case for both scenario 1 (no

conditioning data) and scenario 5 (conditioning to

concentration data). The concentration data at time

step 20 reduce the AAEðcÞ for all time steps, but do

not result in a lower AAEðcÞ for time step 20 as

compared to earlier time steps. It is interesting to

compare the values of AAEðcÞ for the entire aquifer

and for the upstream zone. In both cases, and for both

scenarios, they start at zero (perfect prediction of no

concentration at time zero); however, the evolution of

AAEðcÞ is increasing when computed over the entire

aquifer and tends towards zero when computed only

on the upstream zone. At large times, the concen-

tration measurements at the monitoring locations will

provide little information about the distribution of

downstream concentrations; however, it will provide

almost exact information on whether the plume is

fully developed and the area in between source and

monitoring is fully contaminated. In any case and for

both evaluations of the AAEðcÞ; the influence of the

conditioning data is clearly noticeable by the lower

values of the scenario 5 with respect to scenario 1.

3.3.2. Results for different kinds of conditioning

information

In case both transmissivity and hydraulic head data

are available (scenario 4) the AAE reductions are

larger and close to the sum of the AAE-reductions for

the scenarios 2 (just transmissivity data) and 3 (just

hydraulic head data). The AAEðYÞ reduction is 19%,

the AAEðhÞ reduction 66% and the AAEðcÞ reduction

on average over the 20 time steps is 30%.

The combination of concentration and transmis-

sivity data (scenario 6) results in a stronger AAE-

reduction than only concentration data or only

transmissivity data. However, in this case, the AAE-

reduction is smaller than the sum of the AAE-

reductions of scenario 2 (just transmissivity data)

and scenario 5 (just concentration data). The AAEðYÞ

reduction is 9% (the sum would have been 12%), the

AAEðhÞ reduction 10% (the sum would have been

15%) and the AAEðcÞ reduction 42%. It should be

noticed that the use of just concentration data yielded

a stronger AAEðcÞ reduction.

The combination of concentration and hydraulic

head data (scenario 7) yields important AAEðcÞ

reductions. Whereas the AAEðYÞ and AAEðhÞ

reductions are close to the sum of the AAEðYÞ and

Fig. 5. Evolution of AAEðcÞ for scenarios 1 and 5 (in absolute value,

without standardisation), computed over the entire aquifer (top) and

over the upstream zone only (bottom).
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AAEðhÞ reductions for scenario 3 (just hydraulic head

data) and scenario 5 (just concentration data), the

AAEðcÞ reduction (57%) is even larger than the sum

of the AAEðcÞ reductions for scenario 3 (just

hydraulic head data; reduction 3%) and scenario 5

(just concentration data; reduction 46%).

Finally, in case all conditioning information is used

(scenario 8) the best results are obtained. The AAEðYÞ

reduction is 21%, the largest reduction of all scenarios

studied. As found in other synthetic studies (e.g.

Hendricks Franssen et al., 1999), the AAEðhÞ

reduction is usually much bigger than the AAEðYÞ

reduction, but it is the improved characterisation of

the transmissivity field that guarantees that under

other flow regimes a better characterisation of the

groundwater flow will be obtained. The AAEðYÞ

reduction for scenario 8 is nearly equal to the sum of

the AAEðYÞ reductions for just transmissivity data

(8%), just hydraulic head data (9%) and just

concentration data (4%). Fig. 4 shows that the

conditioning data are able to characterise the principal

zones of enhanced and reduced transmissivity. The

AAEðhÞ reduction is 65%, which is basically the same

reduction (66%) obtained for scenario 3, with just

hydraulic head and transmissivity data. Hence, the

concentration data did not help to reduce further the

AAEðhÞ; which may be due to a slightly less accurate

reproduction of the hydraulic head data, when both

types of data are used in the benefit of reproducing the

concentration data. Nevertheless, the final AAEðhÞ

reduction for scenario 8 is again very close to the sum

of the AAEðhÞ reductions for just transmissivity data

(7%), just hydraulic head data (51%) and just

concentration data (8%). Finally, the AAEðcÞ

reduction (again averaged over the 20 time steps)

reaches also its maximum in case all the conditioning

information is used (63%). The reduction is around

66% for the time steps 9 until 20, but for the first time

steps the reduction is smaller. Fig. 4 shows that the

conditioning data are able to characterise approxi-

mately the contaminant plume, while in the uncondi-

tional case the contaminant plume covers a smaller

part of the aquifer than in the reference. The AAEðcÞ

reduction for this case is smaller than the sum of the

AAEðcÞ reductions for just transmissivity data, just

hydraulic head data and just concentration data.

For scenario 5 (conditioning to only concentration

data) it was found that the AAE-reductions are much

larger for the upstream part of the aquifer. Is this still

the case if besides concentration data also hydraulic

head and/or transmissivity data are used in the inverse

modelling? The AAEðYÞ reductions are larger in

the upstream part of the aquifer for all cases where

concentration measurement data are available. We

saw that for scenario 5 the overall AAEðYÞ reduction

was 4%, while in the upstream part it was 20%. For

scenario 6 (concentration and transmissivity data) the

overall reduction is 9%, and the reduction for the

upstream part is 28%. For scenario 7 (concentration

and head data) the contrast in AAEðYÞ reduction

between the upstream and downstream part is

reduced: the overall reduction is 12% and the

reduction for the upstream part is 26%. For scenario

8 (concentration, head and transmissivity data) the

overall reduction is 21% while it is 35% for the

upstream part. It can be concluded that the head and

transmissivity data give an additional AAEðYÞ

reduction, but the additional value of the concen-

tration data is evident, especially from the ensemble

statistics of the upstream part of the aquifer. This is

not the case for the AAEðhÞ reduction. While for

scenario 5 (concentration data only) there was a strong

contrast with an overall AAEðhÞ reduction of 8% and

a reduction in the upstream part of 46%, for all other

scenarios with concentration data the contrast is less

or even inexistent. For scenario 6 (concentration and

transmissivity data) the overall AAEðhÞ reduction was

10% and for the upstream part 28%. In case also

hydraulic head data are available (scenarios 7 and 8)

the AAEðhÞ reduction is not stronger for the upstream

part than for the rest of the aquifer. Finally, the

AAEðcÞ reduction is in all cases larger in the upstream

part of the aquifer than in the rest of the aquifer. For

scenario 5 (just concentration data) we saw already

that the overall AAEðcÞ reduction was 46% and the

reduction for the upstream part was 71%. For scenario

6 (concentration and transmissivity data) the contrast

is even bigger: 42% AAE(c) reduction for all the

aquifer and 83% for the upstream part only. The head

data reduce the contrast in AAEðcÞ reduction as they

were more capable to improve the characterisation of

the concentration field downstream of the monitoring

locations. For scenario 7 (concentration and head

data) the overall AAEðcÞ reduction was 57% and for

the upstream part it was 69%. In case head,

concentration and transmissivity data are available
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(scenario 8) the overall AAEðcÞ reduction was 63%

and for the upstream part it was 72%.

The behaviour of the AAEðcÞ as function of the

simulation time step is the same for the scenarios 6, 7

and 8 as for the scenario that just concentration data

were available (scenario 5). The AAEðcÞ; when

calculated over the whole aquifer, increased continu-

ously in time. On the contrary, the AAEðcÞ calculated

over the upstream part of the aquifer reached its

maximum very fast after the start of the transport

simulations (time step 1 or 2) and decreased

afterwards.

3.3.3. Average ensemble standard deviations

Table 3 shows the calculated AESD for each of the

scenarios. The AESD can be considered a measure of

local accuracy of the ensemble-averaged conditional

fields with respect to the reference field. The general

conclusion is that the conditioning data result in a

reduction of the AESD, therefore improved local

accuracy. It means that the conditional ensemble

averaged, transmissivity, hydraulic head and concen-

tration fields are not only closer to the reference fields

(AAE-reduction), but also that the uncertainty on

these estimates is smaller (AESD-reduction). Fig. 6

shows the ensemble-averaged standard deviations of

the transmissivity, steady-state head and concen-

tration fields for some of the scenarios.

Looking into more detail we see that the AESD-

reductions with respect to the unconditional case are

smaller than the corresponding AAE-reductions.

Nevertheless, the AESD-reductions are also consider-

able. The AESDðYÞ reduction is 19% for scenarios 4

and 8. This is similar to the maximum AAEðYÞ

reduction (for scenario 8) of 21%. It is found that

transmissivity and head data help to reduce the

uncertainty on the transmissivity field. Fig. 6 clearly

illustrates the impact of the conditioning transmissiv-

ity data. However, when conditioning to concen-

tration data, the surprising result is that the AESDðYÞ

increases. If only concentration data are used for

conditioning (scenario 5) the AESDðYÞ increase is 7%

as compared with the scenario with no conditioning

data. In case that also transmissivity data are used

(scenario 6) an AESDðYÞ decrease of 12% is

observed; this decrease is smaller than the decrease

of 15% observed when only transmissivity data were

used in the conditioning.

For the uncertainty on the head field, conditioning

to concentration data also results in an AESDðhÞ

increase as compared to the unconditional case.

However, the increases are smaller than for

AESDðYÞ: For scenario 5 the AESDðhÞ is 5% larger

than for the case with no conditioning data. Never-

theless, the maximum AESDðhÞ reduction is

achieved in case all conditioning data (including

concentration data) are used. The steady-state head

data contribute the most to the AESDðhÞ reduction:

in case that only steady-state head data are available,

an AESDðhÞ reduction of 41% is already achieved.

Fig. 6 shows how the zone with local AESDðhÞ

above 0.15 reduces in case conditioning data are

used. If the maps are compared with the head sample

locations (Fig. 2) it is clear that the larger AESDðhÞ

correspond to zones with few experimental head

data.

The uncertainty on the concentration field,

characterised by means of the AESDðcÞ also shows

an increase in case that only concentration data are

used in the conditioning. AESDðcÞ for the scenario in

which only concentration data are used is 8% larger

than the scenario with no conditioning data. This

increase can be explained by the fact that the

ensemble averaged contaminant plume covers a

smaller part of the aquifer in the unconditional case

than in the reference field. The part that is not

covered by the contaminant plume has a low

ensemble standard deviation. For the scenario that

also concentration data are used in the conditioning,

the position of the contaminant plume is better

characterised and its location is closer to the reference

Table 3

Standardised average ensemble standard deviation (scenario

1 ¼ 100) for the log transmissivity, steady-state head and

concentration (averaged over 20 time steps) fields

AESDðYÞ AESDðhÞ AESDðcÞ

Scenario 1 100 100 100

Scenario 2 85 79 95

Scenario 3 96 59 97

Scenario 4 81 51 82

Scenario 5 107 105 108

Scenario 6 88 82 90

Scenario 7 98 61 84

Scenario 8 81 50 69
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plume. However, this also means that the uncertainty

on the contaminant concentration increases in those

parts of the aquifer in which for the case of no

conditioning data the contaminant concentration was

close to zero. In case more conditioning data are

available the AESDðcÞ finally decreases and the

lowest AESDðcÞ is found for the scenario where

transmissivity, head and concentration data are

available; the AESDðcÞ reduction is 31%.

The AESDðcÞ reduction is clearly smaller than

the AAEðcÞ reduction. It is thought that this is

also—in part—due to the mismatch on the position

of the contaminant plume in the unconditional case.

Finally, it can be concluded that the concentration

data contribute the most to the AESDðcÞ reduction

(in case all the conditioning data are available), but

head and transmissivity data also have an important

contribution to reduce the uncertainty. Fig. 6

illustrates that the AESDðcÞ reduce in case more

conditioning data are used and shows also that the

largest AESDðcÞ correspond to the zones with an

elevated concentration gradient.

Fig. 6. Ensemble standard deviations of log transmissivity for scenarios 1, 2 and 8; of steady-state head for scenarios 1, 3 and 8; and of

concentration at time step 20 for scenarios 1, 4 and 8.
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4. Discussion and conclusions

The synthetic study illustrates that when

concentration data are also used for conditioning,

the characterisation of the transmissivity, steady-state

head and concentration fields are improved. The

impact of the concentration data on the characteris-

ation of the upstream part of the aquifer is especially

noticeable. The synthetic study also illustrates that the

best results are obtained in case transmissivity, head

and concentration data are used together. The

uncertainty also reduces in the conditioning process;

the lowest variances are found for the cases that

transmissivity, steady-state head and concentration

data are used as conditioning information. However,

in this specific case the presence of just concentration

data yielded an average ensemble standard deviation

larger than in the unconditional case. The fact that the

average plume in the unconditional case is much

smaller than the reference plume makes that the

ensemble standard deviation of the concentration field

first increases when conditioning data become

available; the first conditioning data correct the

position of the plume and the associated under-

estimation of the variance of the concentration field.

This study shows the importance of the condition-

ing to concentration data. However, in this synthetic

study just one source of uncertainty—the transmissi-

vities—was considered. In reality many more sources

of uncertainty should be considered, like boundary

conditions, porosity, local dispersivities and, in some

cases, the information on the mass sources. In

controlled conservative tracer experiments the

amount of injected mass is nearly exactly known

and the additional uncertainty may be limited.

However, the application of this methodology on

contaminated sites with an uncertain mass release

history is more complicated. In those studies, the

spatial–temporal characterisation of the contami-

nation source is of especial interest. A main question

is to what extent it is possible to characterise the

aquifer transmissivities and the contaminant source

altogether, given a limited amount of conductivity

data, a strongly spatially variable hydraulic conduc-

tivity and limited information on the contaminant

release history. As the methodology allows calibrat-

ing mass release information, porosity and retar-

dation, it should be applied in more complicated

synthetic cases with multiple sources of uncertainty

and in a real-world case study in order to find out what

is the worth of concentration data in those cases.

Yet, this synthetic study gives promising results with

respect to the worth of concentration data.
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